
TAGA: Using Semantic Web Technologies in
Multi-Agent Systems

Youyong Zou, Tim Finin, Li Ding and Harry Chen

Computer Science and Electrical Engineering Department
University of Maryland, Baltimore County
{yzou1,finin,dingli1,hchen4 }@cs.umbc.edu

Abstract. Travel Agent Game in Agentcities (TAGA) is a framework that ex-
tends and enhances the Trading Agent Competition (TAC) scenario to work in
Agentcities, an open multi agent environment based on FIPA compliant platforms.
TAGA uses the semantic web languages and tools (RDF and OWL) to specify
and publish the underlying common ontologies; as a content language within the
FIPA ACL messages; as the basis for agent knowledge bases via XSB-based
reasoning tools; to describe and reason about services. TAGA extends the FIPA
protocols to support open market auctions and enriches the Agentcities with auc-
tion services. The introducing of the semantic web languages improves the inter-
operability among agents. TAGA is intended as a platform for research in multi-
agent systems, the semantic web and automated trading in dynamic markets as
well as a self -contained application for teaching and experimentation with these
technologies.

Keywords: Agentcities, FIPA, Multi Agent System, OWL, Semantic Web,
Trading Agent Competition.

1 Introduction

The Trading Agent Competition (TAC) [Wellman, 2002] was a test bed for intelli-
gent software agents that interact through simultaneous auctions to obtain services
for customers. The trading agents operated within the travel market scenario, buying
and selling goods to best serve their given travel clients. TAC was designed to pro-
mote and encourage research in markets involving auction and autonomous trading
agents and had proven to be successful after three consecutive year’s competitions.

Although TAC’s framework, infrastructure and game rules had evolved over the
past three competitions [Stone, 2000] [Greenwald, 2001] [Wellman, 2001]
[Wellman, 2002], the assumptions and approach of TAC limited its usefulness as a
realistic test bed for agent based automated commerce. TAC used centralized market
server as the sole mechanism for service discovery, communication, coordination,
commitment, and control among the participating software agents. The trading agents
communicate with the central auction server through simple socket interface, ex-
changing pre-defined XML-based messages. In real world, the auction servers and

service providers are distributed among the massive open Internet and have distinct
service descriptions and diverse service access interfaces. The abstractness and
simplicity of the TAC approach helped to launch it as a research vehicle for studying
bidding strategies, but are now perceived as a limiting factor for exploring the wide
range of issues inherent in automated trading in open environment.

Agentcities [Willmott, 2001] [Dale, 2002] is the international initiative designed to
explore the commercial and research potential of agent -based applications by con-
structing an open distributed network of platforms to host diverse agents and ser-
vices. The ultimate goal is to enable the dynamic, intelligent and autonomous com-
position of services to achieve user and business tasks, therefore creating compound
services to address changing needs. In such an open and distributed environment, the
need of standard mechanisms and specifications is crucial for ensuring interopera-
bility of distinct systems. The Foundation for Intelligent Physical gents (FIPA) pro-
duces such standards for heterogeneous and interacting agents and agent-based sys-
tems [O’Brien, 1998]. In the production of these standards, FIPA promotes the
technologies and interoperability specifications that facilitate the end-to-end inter-
working of intelligent agent systems in modern commercial and industrial settings.

Inspired by TAC, we developed Travel Agent Game in Agentcities (TAGA) on the

foundation of FIPA technology and the Agentcities infrastructure. The agents and
services used FIPA supported languages, protocols and service interfaces to create
the travel market framework and provide stable communication environment where
messages expressed in semantic languages can be exchanged. The travel market was
the combination of auctions and varying markets including service registries, service
brokerage, wholesalers, peer-to-peer transactions, bilateral negotiation, etc. This
provided a much richer test bed for experimenting with agents and web services as
well as a rich and interesting scenario to test and challenge agent techno logy. TAGA
is running as a continuous open game at http://taga.umbc.edu/ and source code is
available for research and teaching purposes.

The next section introduced the TAGA game and six types of agents. The details

of using semantic web technology were presented in Section three. We discussed
TAGA’s features and our research contributions in Section four and suggested the
future works in Section five.

2. TAGA Game and Agents

We design TAGA as a general framework for running agent -based market simula-
tions and games. Our first use of TAGA has been to build a travel competition along
the lines that used in the last three year‘s TACs. In the competition, customers travel
from City A to City B and spend several days before flying back. A travel package
includes a round-trip flight ticket, corresponding hotel accommodation and tickets

to entertainment events. A travel agent (an entrant to the game) competes with other
travel agents in making contracts with customers and purchasing the limited travel
services from the Travel Service Agents. Customer selects the travel agent with best
travel itinerary. The objective of the travel agent is to acquire more customers, ful-
fill the customer’s travel package, and maximize the profit.

TAGA provides a flexible framework to run the travel market game. Figure 1 show
the structure of TAGA. The collaboration and competition among six types of agents
who play different market roles simulate the real world travel market. We find that
basing our implementation on FIPA compliant agent platforms has made the frame-
work extremely flexible. We’ll briefly describe the different agents in our initial
TAGA game.

Figure 1: TAGA Architecture

The Auction Service Agent (ASA) operates all of the auctions in TAGA. Supported

auction types include English and Dutch auctions as well as other dynamic markets
similar to Priceline.com and Hotwire.com.

A Service Agent (SA) offers travel related service units such as airline tickets,

lodging and entertainment tickets. Each class of travel related service has multiple
providers with different service quality level and with limited service units. It allows
other agents to query its description (e.g. service type, service quality, location) and
its inventory (the availability or price of a certain type of service unit). Other agents
may directly buy the service units through published service interface. SA also bids
intentionally in the auctions to sell its good, e.g. listing its goods in auction and wait
for the proper buyer.

A Travel Agent (TA) is a business that helps customers acquire trave l service units

and organize travel plan. The units can be bought either directly from the service
agents, or through an auction server.

A Bulletin Board Agent (BBA) provides a mechanism helping customer agents find
and engage one or more travel agents.

A Customer Agent (CA) represents an individual customer who has particular

travel constraints and preferences. Its goal is to engage one or more TAs, negotiate
with them over travel packages, and select one TA that is able to acquire all needed
travel service units.

The Market Oversight Agent monitors the game and updates the financial model

after each reported transaction and finally announces the winning TA when the game
is over.

The basic cycle of the TAGA game has the following five stages:

• A customer-generating agent creates a new customer with particular travel con-

straints and preferences chosen from a certain distribution.
• The CA sends the customer’s travel constraints and preferences to the BBA in

the form of a CFP (call for proposal) message. The BBA forwards the CA’s CFP
message to each of the TAs that has registered with it. Each TA considers the
CA's CFP independently and decides whether and how to respond.

• When deciding to propose a travel package, The TA contacts the necessary ASAs
and SAs and assembles a travel itinerary. Note that the TA is free to implement a
complex strategy using both aggregate markets (ASAs) as well as direct negotia-
tion with SAs. The proposal to the CA includes the travel itinerary, a set of travel
units, the total price and the penalty to be suffered by the TA if it is fail to com-
plete the transaction.

• The CA negotiates with the TAs ultimately selecting one from which to purchase
an itinerary based on its constraints, preferences and purchasing strategy (which
might, for example, depend on a TA’s reputation).

• Once the TA has a commitment from the CA, it attempts to purchase the units in
the itinerary from the ASAs and SAs. There are two possible outcomes: the TA
acquires the units and completes the transaction resulting in a satisfied CA and a
profit or loss for the TA, or the TA is unable or unwilling to purchase all of the
units, resulting in an aborted transaction and the invocation of the penalty (which
can involve both a monetary and a reputation component).

3. Agent Communication

The previous TACs had used a straightforward client-server architecture in which a
single TAC server managed all of the travel service suppliers as well as the custom-
ers. Game participants wrote travel agency (TA) agents that connected as clients to
the central TAC server. Moreover, these TA agents can only interact with service
providers through centralized auction markets. While this architecture greatly sim-

plifies both the development of the TAC infrastructure and the programming of a
TAC client, it is a poor model for commerce in the real world. Peer-to-peer or
multi-agent systems offer a more realistic model where customers, service provi d-
ers and various kinds of “middlemen”, including market providers, operate as
autonomous peer agents. Moreover, agents can develop complex strategies, which
involve a combination of direct transactions (e.g., TA buy direct from hotel agent) as
well as auction-mediated transactions of various kinds. Finally, adopting a multi-
agent systems approach supports an environment in which all aspects of commerce
can be integrated in a more natural manner – service discovery, information seeking,
negotiation, decision making, commitment, transaction execution, etc.

The FIPA standards offer mature, published specifications for multi-agent sys-
tems communication, interactions and infrastructure with an emphasis on agent
communication languages (ACLs) and protocols. We found the FIPA framework to
be a good one for TAGA when augmented with the semantic web languages RDF
[zou, 2003] and OWL. In the remainder of this section we will describe the choices
made for the content languages.

3.1 OWL as Content Language

The content language is a language used to express the content of messages ex-
changed between agents. The FIPA communication infrastructure allows agents to
communicate using any mutually understandable content language as long as it satis-
fied a few minimal criteria as a FIPA compliant content language [FIPA, 2003].
Published FIPA specifications provide a library of registered FIPA compliant con-
tent language, including FIPA-SL, XML and RDF. A good content language should be
able to express rich forms of content and can be efficiently processed and fit well
with existing technology. XML, used by the TAC system, is adequate as a low level
language for encoding information but falls short as a language in which to express
information at the knowledge level, even when augmented by more recent compo-
nents such as XML Schema, XSL or through applications such as WSDL.

Our TAGA system uses OWL [Dean, 2002] as the content language for agent
communication. Compared with RDF that used on our previous TAGA work [Zou,
2003], OWL has a well-defined model-theoretic semantics as well as an axiomatic
specification that determines the intended interpretations of the language. OWL is
unambiguously computer-interpretable, thus making it amenable to agent interopera-
bility and automated reasoning techniques. The benefit of adopting a stronger seman-
tically rich content language like OWL is that it facilitates a higher-level of interop-
erability between agents. By agreeing on how meaning is conveyed, it is simpler for
applications to share meaningful content.

We have defined the OWL ontology for use as a FIPA-compliant content lan-

guage. In addition to the basic required classes (e.g., Agent, ACLMessage, Service,

etc.) and necessary expressive requirement (such as Proposition, Action, and Reifi-
cation), our ontology provides supports for expressing rules, queries and responses
to queries. We believe that OWL is a good choice as a general ACL content lan-
guage for four reasons. First, its expressive power as a knowledge representation
language seems to be adequate for many if not most needs of current agent based
systems. Second, it offers better support for using terms drawn from multiple
ontologies than do current popular ACL content languages. Third, as a semantic web
language, it is designed to fit into and integrate with web-based information and ser-
vice systems. Fourth, OWL has the potential to be a widely accepted and used repre-
sentation language, enhancing the potential for interoperability among many sys-
tems. We will touch briefly on the first two points and leave the others as exercises
for the reader.

 To demonstrate that OWL is an adequate language for ACL content we consider a
list of test cases presented in [Bothelo 2002]. These examples were used as an
expressive test for a candidate FIPA content language and compared the result of
encoding these in SL, KIF [Genesereth, 1992], ebXML, Prolog and DAML. Clearly
OWL is less expressive than SL, KIF or Prolog, but the OWL version of these test
cases given in Table 1 show that it’s up to most of tasks it might be asked to serve.

Expression Representation Comment

“Schrödinger’s
Cat is alive”

<Cat rdf:ID=“schrödinger-s_cat”>
 <owner>Shrodinger</owner>
 <status> alive </status>

</Cat>

There is a live cat in the world
whose owner is Shrodinger.

“Cats are ani-
mals”

<owl:Class rdf:ID=“cat”>
 <rdfs:subClassOf rdf:resource=“#animal”>
</owl:Class>

Cat is subclass of animal

“You making the
tea”

<fipaowl:Action rdf:ID=”tea_action1”>
 <fipaowl:act>making-tea </fipaowl:act>
<fipaowl:actor>you</fipaowl:actor>
<fipaowl:Action>

There is a making-tea action,
“you” are the actor.

“Drinking too
much is bad for
you”

<Behavior rdf:ID=“drinktoomuch”>
<hasBehav-
ior>excessive_drinking</hasBehavior>

<healthy>bad</healthy>
</Behavior >

The behavior of drinking too
much is bad for your health.

“All red
things”

<owl:Class rdf:ID="allredthing ">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Classrdf:about="#Thing"/>
 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasColor"
/>

 <owl:hasValue rdf:resource="#Red" />
 </owl:Restriction> </owl:intersectionOf>

</owl:Class>

The things whose color are
red.

“Any color a
car might have”

<owl:Class rdf:ID="anycarcolor">
 <rdfs:subClassOf> <owl:Restriction>

 <owl:onProperty rdf:resource="#color" />
<owl:allValuesFrom rdf:resource="#CarColor " />

 </owl:Restriction> </rdfs:subClassOf>

The color that limits the color
property value in the car
colors.
This can also be a query:
“Select color where color in

</owl:Class> Car Color”
“All things

are hot”

<owl:Class rdf:about= “#Thing”>
<rdfs:subClassOf> <owl:Restriction>

 <owl:onProperty rdf:resource="#tempterature" />
 <owl:hasValue rdf:resource="#hot" />

</owl:Restriction> </rdfs:subClassOf>
</owl:Class>

All things’s temperature are
hot.

“Something is
cold”

<owl:Thing rdf:ID= “cold_thing”>
<temperature>cold</temperature>

</owl:Thing>

There exist something
whose temperature is cold.

“Herring or
Perch”

<owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Vokda "/>
 <owl:Thing rdf:about="#Perch"/>
 </owl:oneOf>

“Vodka and
Tonic”.

 <owl:u nion Of rdf:parseType="Collection">
 <owl:Class rdf:about="#Vodka " />
 <owl:Class rdf:about="#Tonic" />
 </owl:unionOf>

“Not cricket” <owl:Class rdf:ID="Noncricket">
 <owl:complementOf rdf:resource="#Cricket " />

 </owl:Class>

“Success im-
plies Payment”

<fipaowl:Rule> <fipaowl:Implies >
<fipaowl:head > Payment</fipaowl:head >
<fipaowl:body >Success </fipaowl:body >
</fipaowl:Implies> </fipaowl:Rule>

The rule :
Payment :- Success.

“Luis has the
persistent goal
that W”

<Person rd f:ID= “Luis”>
 <hasPersistentGoals> W </hasPersistentGoals>

</Person>

“Steve Believes
X”

<Person rdf:ID=”steve”>
 < hasProposition>

 < Belief rdf:ID=”stevebelief1”>
 < believe>true</believe>
< Statement > X</Statement>
 </Belief> </hasProposition> </Person >

“Jonathan De-
sires Y”

<Person rdf:ID=”Jonathan”>
 <hasProposition>
<Desire rdf:ID=”jonthandesire11”>
<desire >true</desire>
<Statement > Y </Statement>
</Desire> </hasProposition> </Person >

“Matthias In-
tends Z”

<Person rdf:ID=”Matthias”>
 < hasProposition>
<Intend rdf:ID=”Matthiasintend1”>
 <intend>true</intend>

 <Statement > Z </Statement>
 </Intend> </hasProposition> </Person >

 Table 1: OWL Expressivity Test

Compared with other ACL content languages, OWL provides much better support

in modeling, maintaining, and sharing ontologies. Standard content languages such as
SL and KIF offer no explicit mechanisms for ontology support. FIPA inherited the
simple mechanism for ontology specification first used in KQML [Finin, 1992] that
essentially required that all content terms in a particular message be tagged as com-

ing from a single ontology. Although variations and “work arounds” to this constraint
have been proposed, implemented and used, none have been formally adopted as part
of the stable FIPA specification. OWL supports multiple namespaces and ontolo-
gies and, in fact, is a large part of its raison d'etre. Large scale and open multi-agent
systems will benefit from OWL’s abilities to integrate information from different
ontologies. Moreover, OWL and other semantic web languages, will better support
other services essential to large scale open systems, such as the capability to trans-
late or map information from one ontology to another and to negotiate meaning or
otherwise resolve differences between ontologies.

3.2 Understanding Messages

When an agent receives an incoming ACL message, it computes the meaning of the
message from the ACL semantics, the protocols in effect, the content language and
the conversational context. The agent’s subsequent behavior, both internal (e.g., up-
dating its knowledge base) and external (e.g., generating a response) depends on the
correct interpretation of the message’s meaning. Thus, a sound and, if possible,
complete understanding the semantics of the key communication components (ACL,
protocol, ontologies, content language, context) is extremely impo rtant. In TAGA,
the service providers are independent and autonomous entities, which makes enforc-
ing a design decision that all use exactly the same ontology or protocol difficult, if
not impossible. For example, the Delta Airline service agent may has its own view
of travel business and uses class and property terms that extend an ontology used in
the industry as a whole. This situation paral lels that for the semantic web as a whole
– some amount of diversity is inevitable and must be panned for lest our systems
become impossibly brittle.

The ontologies in TAGA are distributed and managed by multiple parties. This
distributed model is a better fit for deployment in an open web environment. There is
no centralized site or agent that has to understand every ontologies. Ontologies and
rules are designed and implemented by service owners to reflect their business
models and meet their requirements; tan agent belonging to a service owner is re-
sponsible for answering the question related to the ontologies it uses. Ontologies
store in local and may access only by local agent. We could define personalized
ontologies and rules. It would help resolving the problem of security and trust.

Many of the agents we have implemented in the TAGA system use FOWL (Flora
OWL) to represent and reason about content presented in RDF or OWL. FOWL is a
flora-2 [Yang 2000] program that interprets RDF and OWL represented as a collec-
tion of RDF triples. Flora-2 is itself a compiler that compiles from a dialect of f-
logic [Kifer, 1995] into XSB [Sagonas, 1994], taking advantage of the tabling, HiLog
and well-founded semantics for negation features found in XSB. On receivi ng an
ACL message with content in RDF or OWL, a TAGA agent parses the content into
triples, which are then loaded into the XSB engine for processing.

The message’s meaning (communicative act, protocol, content language, ontolo-
gies and context) all play a part in the interpretation. For example, receiving a query
message using query protocol, the agent searches its knowledge base for matching
answers and returns an appropriate inform message. TAGA uses multiple models to
reflect the multiple namespace and ontologies in the system. The agent treats each
ontology as an independent Model in XSB engine. The support of ontology sharing
and exchanging is achieved by defining a set of ontology related actions:

• NewInstance: create an instance using the specified ontology and the instance

data provided;
• OntologyQuery: query another agent about the definition of a term in an ontol-

ogy;
• OntologyShare: inform message about the ontology definition, which include

Class/Property definition, Class-Subclass relation and Class-Property relation.
• OntologyRelation: the message about the conversion and relations among class

or property term defined different ontologies. For example, agent A informs
agent B that the class Person is same class as the class Human used by agent B.
The relations include extension, identical and equivalent. This message can be an
inform message informing other agents about the relation, or query message
asking to confirm the relation, or request message asking to translate the ontol-
ogy term used in multiple ontologies.

3.3 Query Support

Among the most important communicative acts used by agents are those designed to
support querying. The FIPA ACL has a very simple query model supporting just to
acts -- query-if and query-ref – but allows a more compl icated query to be encoded as
a request act. In order to use semantic web languages for ACL content, we have ex-
perimented with the integration of a number of RDF based approaches, including
DQL [Fikes 2002], RQL [Karvounarakis, 2002], RDQL [Seaborne, 2003], Triple
[Sintek 2002], and TAP [Guha 2003]]. Since a consensus query system has not yet
emerged, we have adopted an approach in which agents can use any of several query
systems and associated protocols. An agent specifies the query languages and pro-
tocols it understands as part of its basic service description. Other agents who intend
to submit query to this agent are expected to encode the query string in one of the
support languages. Table 2 is a query and answer example using RDQL language.

Query:
<fipaowl:Query rdf:ID=”query1”>
 <fipaowl:queryLanguage>rdql</fipaowl:queryLanguage>

 <fipaowl:question>
“SELECT ?x,?y
FROM <people.rdf>
WHERE (?x,<dt:friend>,?y),(?y,<dt:friend>,?x)
AND ?x<^gt;?y

USING dt for <http://foo.org#>, rdf for http://www.w3.org/1999/02/22-
rdf-syntax-ns#”

 </fipaowl:question>
 <fipaowl:result_number>10</fipaowl:result_number>
 </fipaowl:Query >

Answer:

<fipaowl:Query rdf:about=”query1”>
<fipaowl:queryLanguage>rdql</fipaowl:queryLanguage>

 <fipaowl:result_number>1</fipaowl:result_number>
 <fipaowl:answer>

“Array ([0] => Array ([?x] => http://foo.org/persons/Carl [?y] =>
http://foo.org/persons/Peter) [1] => Array ([?x] =>
http://foo.org/persons/Peter [?y] => http://foo.org/persons/Carl))”

 </fipaowl:answer>
 </fipaowl:Query>

Table 2: query and answer example

We have found that the basic framework of FIPA standards support this approach

well by having a good set of primitive communicative acts, a way for agents to define
communication protocols [Odell, 2000], and a sound mechanism by which agents
can describe their capabilities and the supporting services. We are planning to ex-
periment with adding mediator agents to TAGA that offer a query translation service.
Such an agent would be able to handle several kinds of query languages permitting it
to act as a proxy. For example, agent A might wish to ask a DQL query of agent B,
which only understands RQL. A query translation service able to process both DQL
and RQL could provide the mediation service – receiving a DQL query from A, send-
ing appropriate RQL queries to B, accepting the response, and reformulating to fit
the DQL protocol.

4. Discussion

In this section we will briefly discuss several additional design issues we have ad-
dressed in TAGA.

Ontologies. In addition to the FIPA content language ontology, we have defined two
domain ontologies in OWL. The first is a travel ontology that covers the basic con-
cepts of traveling needed in TAGA, include the travel itinerary, customers, travel
services and service reservations. The second ontology is one for auctions. This
ontology is used to define the different kinds of auctions, the roles the participants
play in them, and the protocols used.

Service description and matching. FIPA agents are associated with one or more FIPA
platforms, each of which offers a set of agent services including a Directory Facility

(DF) agent that handles service registration, deregistration and matching. When an
agent regi sters a service in a DF, it provides service information like the service type
and owner. However, more specific service information may also be useful when
searching for agent services. For example, a customer may want a booking in a hotel
with at least three star rating, is close to public transportation, offers breakfast, and
accepts VISA card payments. This can be achieved with the use of DAML-S [DAML-
S, 2002] profile. In TAGA, every travel service provider describes its service proc-
ess model with DAML-S language and publishes it as a web page. This covers basic
service information like address, phone number and service interface information.
For example, a hotel may describe booking service as: customer name, payment
methods, travel date as input; reserve number as output; the effect of booking is one
room occupied at the travel date. The travel agent, who is responsible for organizing
travel package, is able to contact with customer agent and related service agents and
finds the best match. First the travel agent loads the DAML-S parsing rule and plan-
ning rules into its XSB reasoning engine. It then loads service agents’ DAML-S pro-
files and customer’s personal profile. The best matching service provi ders are se-
lected and a most profitable travel package is composed dynamically.

Implementation comments. The original Trading Agent Competitions relied on a few
centralized market servers to handle all interactions and coordination, including
service discovery, agent communication, coordination, and game control. In con-
trast, the TAGA framework uses a distributed peer-to-peer approach based on stan-
dard agent languages, protocols and infrastructure components (FIPA, Agentcities),
emerging standards for representing ontologies, knowledge and services (RDF,
OWL, DAML-S) and web infrastructure (e.g., Sun’s Java Web Start). Several FIPA
platform implementations are currently used within TAGA, including Jade
[Bellifemine, 2001] and AAP (April Agent Platform), demonstrating agent interop-
erability. Our current demonstration system allows new users to dynamically join a
running game at any time. A dummy agent implemented in JADE can be downloaded
and run to instantiate a new TA agent. A simple GUI allows the user to set operating
parameters or the java code can be modified or extended. A set of web based moni-
toring services allow one to see the status of a game, examine messages being sent,
lookup the reputation of agents, etc.

Contribution. We see two main contributions in our work. First, TAGA provides a
rich framework for exploring agent-based approaches to e-commerce like applica-
tions. Our current framework allows users to create their own agent (perhaps based
on our initial prototype) to represent a TA or SA and to include it in a running game
where it will compete with other system provided and user defined agents. We hope
that this might be a useful teaching and learning tool, not only for multi-agent sys-
tems techno logy, but also for the semantic web languages RDF and OWL and their
use in agent based systems. Secondly, we hope that TAGA will be seen as a flexible,
interesting and rich environment for simulating agent-based trading in dynamic mar-
kets. Agents can be instantiated to represent customers, aggregators, wholesalers,
and service provides all of which can make decisions about price and purchase

strategies based on complex strategies and market conditions. Moreover, simul a-
tions like TAGA encourage exploring aspects of e -commerce that go beyond auction
theory. TA agents might compete on their ability to better understand the descrip-
tions of services sought and services offered and the basic models of the prefer-
ences of their users in order to best satisfy the needs of their clients. These descrip-
tions, of course, will be in a semantic web language like OWL.

5. Conclusions and future work

Travel Agent Game in Agentcities (TAGA) is a framework that extends and enhances
the Trading Agent Competition (TAC) system to work in Agentcities, an open multi-
agent systems environment of FIPA compliant systems. We hope that TAGA will
serve as an experimental test-bed for several communities of users.

First, it provides an environment, which can be used to explore aspects of multi-
agent systems technology based on the mature, published FIPA standards. Research
on multiagent systems technology is best done with in a rich yet easily unde rstood
problem domain. We have found that the travel agent scenario as originally put forth
by TAC provides both the richness as well as accessibility, especially when opened
up to be peer-to-peer. We are using TAGA as a test-bed for research on the use of
semantic web languages (e.g., RDF and OWL) as content languages and as service
description languages. Future work is planned in adding more sophisticated negotia-
tion and ontology mapping to our TAGA environment.

Second, we hope that TAGA could serve as an interesting framework and test-bed

for experiments with automated markets and trading. By adding autonomous service
provide agents (e.g., for hotels) one could experiment with a dynamic market with
both “shopbots” and “pricebots” [Greenwald, 1999] or investigate the role of inter-
mediation in the form of agents performing a wholesale function.

Third, we hope that others will find TAGA useful as a test, demonstration and

teaching environment, both in technology classes focused multi-agent systems, FIPA
standards or the semantic web and in business or e-commerce classes focused on
automating commerce and trading, auctions or agent -based simulations.

The Agentcities project is exploring the delivery and use of agent -based services

in an open, dynamic and international setting. We are working to increase the int e-
gration of TAGA and emerging Agentcities components and infrastructure and will
include agents running on handheld devices using LEAP [Bergenti, 2001].

Reference

[Anthony, 2001] P. Anthony, W. Hall, V.D. Dang, and N. Jennings: Autonomous agents for
participating in multiple online auctions. In Proc. of the IJCAI Workshop on EBusiness and the
Intelligent Web, Seattle WA, USA, July 2001.

[Bellifemine, 2001] F. Bellifemine, A. Poggi, G. Rimassa, Developing multi agent systems with a
FIPA-compliant agent framework, in Software - Practice And Experience, 2001 N31, pp. 103-
128

[Bergenti, 2001] F. Bergenti and A. Poggi, LEAP: a FIPA Platform for Handheld and Mobile
Devices, ATAL, 2001.

[Bothelo 2002] L. Bothelo, S. Willmott, T. Zhang, J. Dale, A review of Content Languages Suitable
for Agent-Agent Communication, EPFL I&C Technical Report #200233.

[Dale, 2002] J. Dale, S. Willmot, and B.Burg: Agentcities: Challenges and Deployment of Next-
Generation Service Environments. Proc. Pacific Rim Intelligent Multi-Agent Systems, Tokyo,
Japan, August 2002.

[DAML-S, 2002] The DAML Services Coalition (alphabetically Anupriya Ankolenkar, Mark
Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin, Drew McDermott, Sheila A. McIlraith,
Srini Narayanan, Massimo Paolucci, Terry R. Payne and Katia Sycara): DAML-S: Web Service
Description for the Semantic Web, The First International Semantic Web Conference (ISWC),
Sardinia (Italy), June, 2002.

[Dean, 2002] M. Dean and Guus Schreiber (eds): OWL Web Ontology Language 1.0 Reference.
W3C Working Draft. [Eriksson, 2002] Joakim Eriksson and Sverker Janson: The Trading Agent
Competition - TAC 2002, ERCIM News, pp51, October 2002.

[Eriksson, 2002] Joakim Eriksson and Sverker Janson.The Trading Agent Competition - TAC 2002.
ERCIM News, 51, October 2002.

[Finin, 1992] Tim Finin, Rich Fritzson, and Don McKay, ``A Knowledge Query and Manipulation
Language for Intelligent Agent Interoperability'', Fourth National Symposium on Concurrent
Engineering, CE & CALS Conference, Washington, DC June 1-4, 1992.

[Fikes 2002] R. Fikes, P. Hayes and I. Horrocks, DQL - A Query Language for the Semantic Web.
Knowledge Systems Laboratory, 2002.

[FIPA, 2003] FIPA agent standards FIPA Interaction Protocol Library Specification,
http://fipa.org/specs/fipa00025/.

[Genesereth, 1992] Michael R. Genesereth, et al.. Knowledge interchange format version 3.0
reference manual. Report Logic -92-1, Stanford University, Stanford, CA, June 1992.

[Greenwald, 1999] Amy R. Greenwald and Jeffrey O. Kephart: Shopbots and Pricebots,
International Joint Conferences on Artificial Intelligence, Stockholm, August 1999.

[Greenwald, 2001] Amy Greenwald and Peter Stone: Autonomous Bidding Agents in the Trading
Agent Competition, IEEE Internet Computing, March/April 2001.

[Greenwald, 2003] Amy Greenwald (ed.). The 2002 trading agent competition: An overview of
agent strategies. AI Magazine, to appear

[Guha 2003] R.Guha, Rob McCool, Eric Miller, Semantic Search, The Twelfth International World
Wide Web Conference, Budapest Hungary, May 2003

[Karvounarakis, 2002] Gregory Karvounarakis, Sofia Alexaki , Vassilis Christophides , Dimitris
Plexousaki , Michel Scholl, RQL: A Declarative Query Language for RDF, WWW 2002,
Honolulu, Hawaii, US, 2002

[Kifer, 1995] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. JACM, 42(4):741--843, Jul. 1995.

[Odell, 2000] Odell, J., Parunak, H. V. D. & Bauer, B. (2000). Extending UML for Agents. In
Proceedings of the Agent-Oriented Information Systems Workshop at the 17th National
conference on Artificial Intelligence.

[O’Brien, 1998] O’Brien, P and Nicol, R, FIPA - Towards a Standard for Software Agents. In: BT
Technology Journal, Vol.16:3, pages 51-59, 1998.

[Sagonas, 1994] Kostantinos Sagonas, Terrance Swift, and David S. Warren: XSB as an efficient
deductive database engine, In ACM Conference on Management of Data (SIGMOD), 1994.

[Seaborne 2003] A. Seaborne, RDQL – RDF Data Query Language, part of the Jena RDF Toolkit,
HPLabs Semantic Web activity, http://hpl.hp.com/semweb/

[Sintek 2002] Michael Sintek, Stefan Decker: TRIPLE---A Query, Inference, and Transformation
Language for the Semantic Web. International Semantic Web Conference (ISWC) Sardinia,
June 2002.

[Stone, 2000] Peter Stone and Amy Greenwald: The First International Trading Agent Competition:
Autonomous Bidding Agents, Electronic Commerce Research Journal pp1-36, 2000.

[Wellman, 1999] Michael P. Wellman and Peter R. Wurman. A trading agent competition for the
research community. IJCAI-99 Workshop on Agent-Mediated Electronic Commerce,
Stockholm, 1999

[Wellman, 2001] Michael P. Wellman, Peter R. Wurman, Kevin O'Malley, Roshan Bangera, Shou-
de Lin, Daniel Reeves, and William E. Walsh: A trading agent competition. IEEE Internet
Computing, 5(2), pp43-51, March/April 2001.

[Wellman, 2002] Michael P. Wellman, Amy Greenwald, Peter Stone, and Peter R. Wurman: The
2001 Trading Agent Competition, Fourteenth Innovative Applications of Artificial Intelligence
Conference (IAAI-2002), pp935-941, Edmonton, August 2002.

[Willmott, 2001] Willmott, S., Dale, J., Burg, B., Charlton, P. and O'Brien, P., Agentcities: A
Worldwide Open Agent Network. In: AgentLink News, Issue 8, November 2001.

[Yang, 2000] Guizhen Yang and Michael Kifer. FLORA: Implementing an efficient DOOD system
using a tabling logic engine. Proceedings of Computational Logic --- CL-2000, number 1861 in
LNAI, pp 1078--1093. Springer, July 2000.

[Zou, 2003] Youyong Zou, Tim Finin, Li Ding, Harry Chen, and Rong Pan, TAGA: Trading Agent
Competition in Agentcities, Workshop on Trading Agent Design and Analysis, held in
conjunction with the Eighteenth International Joint Conference on Artificial Intelligence, Monday,
11 August, 2003, Acuulco MX.

