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0.1 Introduction

Internet agents are expected to accomplish their tasks despite heterogeneity;
agents of different designs and of varying skills and domain knowledge need
to interact successfully through knowledge and information exchange and
effective coordination. We identify two distinct and separate problems that
Internet agents are faced in an open and dynamic environment: knowledge
sharing and coordination.

The knowledge sharing problem between heterogeneous agents has a long
thread of work behind it. For a large category of agent systems, the main
mechanism for knowledge sharing is the Agent Communication Language
(ACL). An ACL relies on a three-layer conceptual breakdown of the knowl-
edge sharing problem. The concepts originated in the work of the Knowledge
Sharing Effort (KSE) [37] and have found their way into Knowledge Query
Manipulation Languages (KQML) [2] [29], the first ACL, and in FIPA ACL,
the ACL proposed by the Foundation for Intelligent Physical Agents (FIPA),
a standardization organization in the area of agents. A simple formulation
of the knowledge sharing problem between heterogeneous intelligent agents
is: “expressions in a given agent’s native language should be understood by
some other agent that uses a different implementation language and domain
assumptions”.

The three-layered approach distinguishes between propositions and propo-
sitional attitudes. The first and the second layers are concerned with sharing
the meaning of propositions and the third layer is concerned with sharing the
meaning of propositional attitudes. So, the first layer is that of (syntactic)
translation between languages in the same family (or between families) of
languages !. The second layer is concerned with guaranteeing that the se-
mantic content of tokens is preserved across applications; in other words, the
same concept, object, or entity has a uniform meaning across agents even if
different “names” are used to refer to it. Every agent incorporates some view
of the domain (and the domain knowledge) to which it applies. The technical
term for this body of “background” knowledge is ontology. More formally, an
ontology is a particular conceptualization of a set of objects, concepts and
other entities about which knowledge is expressed and of the relationships
that hold among them. An ontology consists of terms, their definitions, and
axioms relating them [20]; terms are normally organized in a taxonomy. The
final layer addresses the communication between agents. This is not merely
about transporting bits and bytes between agents; agents should be able to
communicate complex “attitudes” about their information and knowledge
content. Agents need to ask other agents, to inform them, to request their
services for a task, to find other agents who can assist them, to monitor
values and objects, and so on. Such functionality, in an open environment,

1 The Object Management Group (OMG) standardization effort is an example of
work in this direction, within the family of object-oriented languages.



can not be provided by a simple Remote Procedure Call (RPC) mechanism.
Agents issue requests by specifying not a procedure but a desired state in a
declarative language, i.e., in some ACL.

Assuming effective translations between their respective representation
languages, with shared ontologies, an ACL allows them to share their knowl-
edge content. But knowledge sharing alone does not guarantee effective prob-
lem solving any more than superb language skills guarantee effective perfor-
mance for a human agent. Accomplishing tasks requires coordination.

Coordination is the process by which agents reason about their local ac-
tions and the (anticipated) actions of others in order to ensure that all agents
in a community act in a coherent manner towards a goal or a set of goals. The
actions of multiple agents need to be coordinated because of dependencies
between agents’ actions, there is a need to meet global constraints, and no
one agent has sufficient competence, resources or information to achieve such
system goals. Examples of coordination include supplying timely information
to other agents or ensuring that the actions of agents are synchronized. In an
environment of heterogeneous agents coordination is a difficult task because
agent must reconcile conflicting or incomplete views of the environment they
are acting upon or interacting with.

An ACL offers agents building blocks for coordination. To the extend that
coordination is communicative, as is often the case in heterogeneous agent
communities, agents can use the propositional attitudes supplied by ACLs in
order to sustain the complex interactions with other agents that are necessary
for coordination. The ACL alone, though, does not help agents to decide when
to “talk” and what exactly to “say” when they do so. Ideally, agents would
possess such a rich understanding of themselves, their environment and other
agents, that, like human agents, they could decide what to “say” and for what
purpose. There is a sizable amount of work in this direction, the problem is
extremely difficult in an open and dynamic environment. The direction we
explore in this chapter in differs in that it is not concerned with the internal
structure of agents. ACL research has been exploring conversation protocols
as mechanisms for structuring agent interactions. Such protocols serve as pre-
arranged protocols for coordinating specific task-related agent interactions.
We are concerned with a suitable formalism for expressing such coordination
protocols. Our goal is a formalism that guarantees certain useful properties
for such protocols.

We next outline the organization of this chapter. In Section 0.2 we very
briefly outline the basic concepts of ACLs and conversation protocols for
ACL-speaking agents. In Section 0.3 we discuss conversation protocols, their
use for coordination between agents and related work by other researchers.
We continue by presenting our formalism for specifying conversation proto-
cols, which is based on Colored Petri Nets CPNs), in Section 0.4, complete
with examples of conversation protocols specified in our formalism. In Section



0.5 we discuss the merits of CPN-based descriptions of conversation protocols
for agent coordination and in Section 0.6 we present relevant work on CPNs.

0.2 From Agent Communication Languages to
Conversation Protocols

An Agent Communication Language provides agents with a means to ex-
change information and knowledge. ACLs, such as KQML or FIPA ACL,
are languages of propositional attitudes. Propositional attitudes are three-
part relationships between: (1) an agent, (2) a content-bearing proposition
(e.g., “it is raining”), and (3) a finite set of propositional attitudes an agent
might have with respect to the proposition (e.g., believing, asserting, fear-
ing, wondering, hoping, etc.). For example, < a, fear, raining(t,ow) > is a
propositional attitude.

ACLs are intended to be above the layer of mechanisms such as RPC
or RMI because: (1) they handle propositions, rules and actions instead of
simple objects (with no semantics associated with them), and (2) the ACL
message describes a desired state in a declarative language, rather than a
procedure or method. But ACLs by no mean cover the entire spectrum of
what agents may want to exchange. More complex objects can and should be
exchanged between agents, such as shared plans and goals, or even shared
experiences and long-term strategies.

At the technical level, when using an ACL, agents transport messages over
the network using some lower-level protocol (SMTP, TCP/IP, IIOP, HTTP,
etc.). The ACL itself defines the types of messages (and their meaning) that
agents may exchange. Agents though, do not just engage in single message
exchanges but they have conversations, i.e. task-oriented, shared sequences
of messages that they observe, in order to accomplish specific tasks, such as a
negotiation or an auction. At the same time, some higher-level conceptualiza-
tion of the agent’s strategies and behaviors drives the agent’s communicative
(and non-communicative) behavior.

Traditionally, we understand the message types of ACLs as speech acts,
which in turn are usually accounted for in terms of beliefs, desires, intentions
and similar modalities. This kind of intentional-level description can either be
just a useful way to view a system or it can have a concrete computational
aspect. The latter case describes a large range of BDI? agents which have
some (implicit or explicit) representation of the corresponding modalities.
This representation is built on top of a substrate that describes the conceptual
model of knowledge, goals and commitments of an agent, commonly known
as a BDI theory. Despite the criticism that BDI theories and BDI agents
have faced, such as the number and choice of modalities and the fact that
multi-modal BDI logics have neither complete axiomatizations nor they are

% BDI stands for Belief, Desire (or Goal) and Intention.



efficiently computable, they offer an appealing framework to account for agent
communications, because agents, when communicating, they communicate
their BDI states and/or attempt to alter their interlocutors BDI states.

While an ACL is good for message-passing among agents, on its own it
does not offer much in terms of agent coordination. But when an agent sends
a message, it has expectations about how the recipient will respond to the
message. Those expectations are not encoded in the message itself; a higher-
level structure must be used to encode them. The need for such conversation
policies is increasingly recognized by both the KQML [30] and the FIPA
communities [18, 12].

A conversation is a pattern of message exchange that two (or more) agents
agree to follow in communicating with one another. In effect, a conversation
is a pre-arranged coordination protocol, A conversation lends context to the
sending and receipt of messages, facilitating interpretation that is more mean-
ingful.

Although, conversations have become part of many infrastructures for
ACL-speaking agents, relatively little work has been devoted to the problem
of conversation specification and implementation. For conversations to be
used for agent coordination, the following three issues require attention:

1. Conversation specification: How can conversations best be described so
that they are accessible both to people and to machines?

2. Conversation sharing: How can an agent use a specification standard to
describe the conversations in which it is willing to engage, and to learn
what conversations are supported by other agents?

3. Conversation aggregation: How can sets of conversations be used as agent
‘APIs’ to describe classes of capabilities that define a particular service?

Although we have worked on items (2) and (3) (see [10]), our primary
focus, in arguing the usefulness of conversations for agent coordination, is on
their specification with emphasis on the ability to validate properties that are
important in the context of coordination, such as liveliness and reachability.

0.3 Coordination using Conversation Protocols

Well-defined, sharable conversation protocols, with testable, desirable prop-
erties, can be used to coordinate agents that attempt to accomplish specific
tasks. Typically, a conversation protocol is associated with a specific task,
such as registration, or a particular type of a negotiation. Agents adhering
to the same conversation protocol, can coordinate their communicative ac-
tions as they attempt to accomplish the task suggested by the conversation
protocol. Such a coordination is akin to a scripted interaction, with specific
properties, rather than coordinated action resulting from a deep understand-
ing of the domain and the task at hand. Nevertheless, it can be effective for



tasks that can be adequately described in the form of possible sequences of
communicative interactions.

A specification of a conversation that could be shared among agents must
contain several kinds of information about the conversation and about the
agents that will use it. First, the sequence of messages must be specified.
Traditionally, deterministic finite-state automata (DFAs) have been used for
this purpose; DFAs can express a variety of behaviors while remaining con-
ceptually simple. For more sophisticated interactions, however, it is desirable
to use a formalism with more support for concurrency and verification. Next,
the set of roles that agents engaging in a conversation may play must be enu-
merated, and the constraints and dependencies between individual messages
need to be captured. Many conversations will be dialogues, and will specify
just two roles; however conversations with more than two roles are equally
important, representing the coordination of communication among several
agents in pursuit of a single common goal. For some conversations, the set of
participants may change during the course of the interaction.

These capabilities will allow the easy specification of individual conversa-
tions. To develop systems of conversations though, developers must have the
ability to extend existing conversations through specialization and composi-
tion. Specialization is the ability to create new versions of a conversation that
are more detailed than the original version; it is akin to the idea of subclass-
ing in an object-oriented language. Composition is the ability to combine two
conversations into a new, compound conversation. Development of these two
capabilities will entail the creation of syntax for expressing a new conversa-
tion in terms of existing conversations, and for linking the appropriate pieces
of the component conversations.

The set of conversations in which an agent will participate defines an in-
terface to that agent. Thus, standardized sets of conversations can serve as
abstract agent interfaces (AAIs), in much the same way that standardized
sets of function calls or method invocations serve as APIs in the traditional
approach to system-building. That is, an interface to a particular class of ser-
vice can be specified by identifying a collection of one or more conversations
in which the provider of such a service agrees to participate. Any agent that
wishes to provide this class of service need only implement the appropriate
set of conversations.

Implementing and expressing conversations for software agents is not a
new idea. As early as 1986, Winograd and Flores [46] used state transi-
tion diagrams to describe conversations. The COOL system [3] has perhaps
the most detailed current FSM-based model to describe agent conversations.
Each arc in a COOL state transition diagram represents a message transmis-
sion, a message receipt, or both. One consequence of this policy is that two
different agents must use different automata to engage in the same conver-
sation. COOL also uses an :intent slot to allow the recipient to decide which
conversation structure to use in understanding the message. This is a simple



way to express the semantics of the conversation, though it is not sufficient
for sophisticated reasoning about, and sharing of conversations.

Other conversation models have been developed, using various approaches.
Extended FSM models, which, like COOL, focus more on expressivity than
adherence to a model, include Kuwabara et al. [27], who add inheritance to
conversations, Wagner et al. [44], and Elio and Haddadi [13], who defines a
multi-level state machine, or Abstract Task Model (ATM). A few others have
chosen to stay within the bounds of a DFA, such as Chauhan [6], who uses
COOL as the basis for her multi-agent development system 2, Nodine and
Unruh [38], and Pitt and Mamdani [41], who uses DFAs to specify protocols
for BDI agents. Also using automata, Martin et al. [33] employs Push-Down
Transducers (PDT). Lin et al. [32] and Cost et al. [9] demonstrate the use of
CPNs, and Moore [36] applies state charts. Parunak [39] introduces Dooley
Graphs. Bradshaw [5] introduces the notion of a conversation suite as a col-
lection of commonly-used conversations known by many agents. Labrou [28]
uses definite clause grammars to specify conversations.

While each of these works makes contributions to our general understand-
ing of conversations, more work needs to be done to facilitate the sharing and
use of conversation policies by agents.

In the next section of this chapter we describe a formalism based on
Colored Petri Nets, which can be used to specify conversation protocols.

0.4 Modeling Conversation Protocols with Colored
Petri Nets

0.4.1 Colored Petri Nets

Petri Nets (PN), or Place Transition Nets, are a well known formalism for
modeling concurrency. A PN is a directed, connected, bipartite graph in which
each node is either a place or a transition. Tokens occupy places. When there
is at least one token in every place connected to a transition, we say that the
transition is enabled. Any enabled transition may fire, removing one token
from every input place, and depositing one token in each output place. Petri
nets have been used extensively in the analysis of networks and concurrent
systems. For a more complete introduction, see [1].

CPNs differ from PNs in one significant respect; tokens are not simply
blank markers, but have data associated with them. A token’s color is a
schema, or type specification. Places are then sets of tuples, called multi-sets.
Arcs specify the schema they carry, and can also specify basic boolean condi-
tions. Specifically, arcs exiting and entering a place may have an associated

3 More recent work with this project, JAFMAS, explores conversion of policies to
standard Petri Nets for analysis [19].



function which determines what multi-set elements are to be removed or de-
posited. Simple boolean expressions, called guards, are associated with the
transitions, and enforce some constraints on tuple elements. This notation is
demonstrated in examples below. CPNs are formally equivalent to traditional
PNs; however, the richer notation makes it possible to model interactions in
CPNs where it would be impractical to do so with PNs.

CPNs have great value for conversational modeling, in that they are a
relatively simple formal model with a graphical representation and support
for concurrency, which is necessary for many non-trivial interactions. Addi-
tionally, CPNs are well researched and understood, and have been applied to
many real-world applications. As such, many tools and techniques exist for
the design and analysis of CPN-based systems.

0.4.2 Conversation Protocols using Colored Petri Nets

As mentioned earlier, conversations are often specified by simple or modified
DFAs. For the purposes of example, we will consider conversation definition
in JDFA, a loose Extended Finite State Machine (EFSM) for modeling con-
versations, introduced in [10], [40]. The base model is a DFA, but the tokens
of the system are messages and message templates, rather than simply char-
acters from an alphabet. Messages match template messages (with arbitrary
match complexity, including recursive matching on message content) to de-
termine arc selection. A local read/write store is available to the machine.
CPNs make it possible to formalize much of the extra-model extensions of
DFAs. To make this concrete, we take the example of a standard JDFA rep-
resentation of a KQML Register conversation* and reformulate it as a CPN.
The graphic depiction of this JDFA specification can be seen in Figure 0.1.

register
START (reg )

Fig. 0.1. Diagrammatic DFA representation of the simplified KQML Register con-
versation

There are a number of ways to formulate any conversation, depending on
the requirements of use. This conversation has only one final, or accepting,
state, but in some situations, it may be desirable to have multiple accepting

4 A register conversation is one the most basic KQML conversations, used for an
agent to register its name and availability with an agent service. FIPA ACL uses
a similar concept.



states, and have the final state of the conversation denote the result of the
interaction.

In demonstrating the application of CPNs here, we will first develop an
informal model based on the simplified Register conversation (in KQML)
presented, and then describe a complete and working CPN-ML model of the
full Register conversation.

Some aspects of the model which are implicit under the DFA model must
be made explicit under CPNs. The DFA allows a system to be in one state
at a time, and shows the progression from one state to the next. Hence, the
point to which an input is applied is clear, and that aspect is omitted from
the diagrammatic representation. Since a CPN can always accept input at
any location, we must make that explicit in the model.

We will use an abbreviated message which contains the following compo-
nents, listed with their associated variable names: performative(p), sender(s),
receiver(r), reply-with(id), in-reply-to(re), and content(c)®.

We denote the two receiving states as places of the names Register and
Done (Figure 0.2). These place serve as a receipt locations for messages,
after processing by the transitions T1 and T2, respectively. As no message
is ever received into the initial state, we do not include a corresponding
place. Instead, we use a a source place, called In. This is implicit in the DFA
representation. It must serve as input to every transition, and could represent
the input pool for the entire collection of conversations, or just this one. Note
that the source has links to every place, but there is no path corresponding
to the flow of state transitions, as in the DFA-based model.

The match conditions on the various arcs of the DFA are implemented
by transitions preceding each existing place. Note that this one-to-one cor-
respondence is not necessary. Transitions may conditionally place tokens in
different places, and several transitions may concurrently deposit tokens in
the same place.

(p;sirid,re,c)

—(

(p,s,rid,re,c) p,s,rid,re,c)

(p,s,rid,re,c)

InO

Fig. 0.2. Preliminary CPN model of a simplified KQML register conversation.

Various constants constrain the actions of the net, such as performa-
tive (Figure 0.3). These can be represented as color sets in CPN, rather
than hard-coded constraints. Other constraints are implemented as guards;

5 These variable names correspond to attributes of a typical ACL message. Syn-
tactically, a ACL message is a balanced parenthesis list that begins with the
performative (or message type, or propositional attitude) followed by attribute-
value pairs for the sender of the message, the intended receiver and so on



boolean conditions associated with the transitions. Intermediate places S, R
and I assure that sender, receiver and ID fields in the response are in the
correct correspondence to the initial messages. I not only ensures that the
message sequence is observed, as prescribed by the message IDs, but that only
one response is accepted, since the ID marker is removed following the re-
ceipt of one correct reply. Not all conversations follow a simple, linear thread,
however. We might, for example, want to send a message and allow an ar-
bitrary number of asynchronous replies to the same ID before responding
(as is the case in a typical Subscribe conversation), or allow a response to
any one of a set of message IDs. In these cases, we allow IDs to collect in a
place, and remove them only when replies to them will no longer be accepted.
Places interposed between transitions to implement global constraints, such
as alternating sender and receiver, may retain their markings; that is implied
by the double arrow, a shorthand notation for two identical arcs in opposite
directions.

We add a place after the final message transaction to denote some arbi-
trary action not implemented by the conversation protocol (that is, not by an
arc-association action). This may be some event internal to the interpreter,
or a signal to the executing agent itself. A procedural attachment at this
location would not violate the conversational semantics as long as it did not
in turn influence the course of the conversation.

if p=reply actionl
else if p=error action2
else action3

(p,s.rid,re,c)

(p.s.rid,re,c)

T1 [—>| Register T2

(p.s.rid,re,c)

Fig. 0.3. Informal CPN model of a simplified KQML register conversation.

This CPN is generally equivalent to the JDFA depicted in Figure 0.1. In
addition to modeling what is present in the JDFA, it also models mecha-
nisms implicit in the machinery, such as message ordering. Also, the JDFA
incorporates much which is beyond the underlying formal DFA model, and
thus cannot be subjected to verification. The CPN captures all of the same
mechanisms within the formal model.



0.4.3 A Conversation protocol for a simple Negotiation between
Agents

Mes(s,r,c) @ (s,1,¢)

Receive Mesgs

Send messages

Rece. response

Send response

Thinking

MES

Mes(r,s,c

Fig. 0.4. Pair-wise negotiation process for a MAS constituted of two functional
agents.

(1,8,¢)

In this section we present a simple negotiation protocol proposed in [7].
The CPN diagram in Figure 0.4 describes the pair-wise negotiation process in
a simple MAS, which consists of two functional agents bargaining for goods.
The messages used are based on the FIPA ACL negotiation performative set.

The diagram depicts three places places: Inactive, Waiting, and Think-
ing, which reflect the states of the agents during a negotiation process®;
we will use the terms state and place interchangeably. Both agents in this
simple MAS have similar architecture, differing primarily in the number of
places/states. This difference arises from the roles they play in the negotia-
tion process. The agent that begins the negotiation, called the buyer agent,
which is shown on the left side of the diagram, has the responsibility of han-
dling message failures. For this, it has an extra ‘wait’ state (Waiting), and
timing machinery not present in the other agent, seller. For simplicity, some
constraints have been omitted from this diagram; for example, constraints on
message types, as depicted in the previous examples.

In this system, both agents are initially waiting in the Inactive places.
The buyer initiates the negotiation process by sending a call for proposals
(‘CFP’) to some seller, and its state changes from Inactive to Waiting. The

6 It is not always the case with such a model that specific nodes correspond to
states of the system or particular agents. More often the state of the system is
described by the combined state of all places.



buyer is waiting for a response (‘proposal’, ‘accept-proposal’, ‘reject-proposal’
or ‘terminate’). On receipt, its state changes from Inactive to Thinking, at
which point it must determine how it should reply. Once it replies, completing
the cycle, it returns to the Inactive state. We have inserted a rudimentary
timeout mechanism which uses a delay function to name messages which have
likely failed in the Timeout place. This enables the exception action (Throw
Exception) to stop the buyer from waiting, and forward information about
this exception to the agent in the Thinking state. Timing can be handled
in a number of ways in implementation, including delays (as above), the
introduction of timer-based interrupt messages, or the use of timestamps.
CPN-ML supports the modeling of time-dependent interactions through the
later approach.

Note that this protocol models concurrent pairwise interactions between
a buyer and any number of sellers.

0.5 Advantages for Coordination when using
CPN-described Conversations

There are a number of benefits to be derived from modeling agent coordi-
nation with a formal system, and with CPNs in particular. Formal models
have a more clearly defined semantics, and are more amenable to standard-
ization, exchange and reuse. They also facilitate analysis, both empirical and
analytic.

The ability to verify the properties of a specification is one of the impor-
tant benefits of applying formal methods. These benefits can be derived in
two ways:

— Verification of the conversation policies or protocols directly, and
— Verification of agents or Multi Agent Systems (MAS) that are based on
such protocols.

We will first consider the range of properties amenable to analysis, and
then discuss their value in the two contexts described. The focus will be on
the methods provided by Design/CPN and associated tools.

In addition to ‘proof by execution’, CPNs can be checked for a variety
of properties. This is done by way of an Occurrence Graph (OG) [11]. Each
node in an OG consists of a possible marking for the net. If another marking
(B) can be reached by the firing of a transition, the graph contains a directed
arc from the node representing the initial marking to B. All nodes in an OG
are therefore derived from some initial marking of the net.

The properties subject to verification are:

1. Reachability Properties: This relates to whether or not the marking de-
noted by node B is reachable by some sequence of transition firings from
node A.



2. Boundedness Properties: The upper or lower bound on the contents of
place X in the net, over all possible markings. This can be the cardinality
of the multiset at node X, or the greatest or least multiset itself.

3. Home Properties: The marking or set of markings which are reachable
from all other markings in the OG define a homespace. One can verify
that a marking or set of markings constitutes a homespace, or determine
whether or not a home marking exits, and what the minimal such marking
is.

4. Liveness Properties: A marking from which no further markings can be
derived is ‘dead’. Liveness, then, relates to the possible progressions from
a given node in the OG. One can verify that a marking is dead, or list
dead markings in the OG.

5. Fairness Properties: Relates to the degree to which certain transition
instances (TT) will be allowed with respect to other TIs.

Many of these properties have different values depending on whether we
are regarding a conversation protocol or a Multi Agent System, and also
on the complexity of the net. Conversation protocols describe/operate on a
message stream, which in most cases is finite; they are themselves static.
One can imagine analyzing a conversation protocol in the context of (1) a
single message stream, or (2) in the presence of a generator for all or many
representative streams. In that sense, we may be interested in boundedness
or home properties, and possibly reachability or fairness, but not liveness.
On the other hand, liveness and fairness will often be more important in the
analysis of a system as a whole.

It is possible to verify properties even for very large and complex nets.
The version of Design/CPN used in this research supports the computation
and analysis of OGs of 20,000 - 200,000 nodes and 50,000 to 2,000,000 arcs.

0.6 Related Work

CPNs are not new, and they have been used extensively for a broad range of
applications (see [25] for a survey of current uses). Since their target domain
is distributed systems, and the line between that domain and MASs is vague
at best, there is much work on which to build. We will review here a few of
the more directly related research endeavors.

Holvoet and Verbaeten have published extensively on the subject of agents
and PNs. In their 1995 paper, “Agents and Petri Nets” [21], they introduced
the idea of enhancing AOP by using high-level nets to model agents, and
extended this thought in [22] to a variant called ‘Generic Nets’. In 1997,
Holvoet and Kielmann introduced PNSOL (Petri Net Semantics for Objective
Linda) [23, 24], used to model agents which live in and communicate through
the Objective Linda [26] tuple space.



Yoo, Merlat and Briot [47] describe a contract-net based system for elec-
tronic commerce that uses a modular design. Among the components are
BRICS (Block-like Representation for Interacting Components) [17]), which
are derived from CPNs.

Fallah-Seghrouchni and Mazouzi have demonstrated the use of CPNs in
specifying conversation policies in some detail, using FIPA ACL as a frame-
work [15, 14, 16]. This work suggests an approach for hierarchical construction
of conversations.

Moldt and Wienberg have developed an approach called AOCPN (Agent
Oriented Colored Petri Nets) [45, 35]. This system employed an object-
oriented language, syntactically similar to C+4, which maps onto CPN,
extended by ‘test arcs’ [8, 31]. They show how this approach can be used
to model societies of agents as described by Shoham [43]. Their model ex-
tends down to the level of individual agent theorem provers, facilitating the
logical specification of agent behavior.

Other work of note includes Billington et al. [4], Purvis and Crane-
field [42], Lin et al. [32] (above), and Merz and Lamersdorf [34].

0.7 Conclusions

An Agent Communication Language is a powerful framework for interacting
agents in an open and dynamic environment. Although an ACL provides a
framework for knowledge sharing between agents, it is, by itself, inadequate
for coordination between agents. Conversations, i.e., well-specified sequences
of message exchanges geared towards particular tasks, use ACL messages as
building blocks for scripted, task-oriented interactions between agents. Such
well-specified conversations, with testable properties, can be used to coordi-
nate the behavior among communicating agents that attempt to accomplish
the tasks specified by conversations.

While FSMs have proven their value for describing conversation policies,
we feel that inherent limitations necessitate the use of a model supporting
concurrency for the more complex interactions. CPNs provide many of the
benefits of FSMs, while allowing greater expression and concurrency. We
presented a CPN-based formalism for modeling conversation policies and we
presented examples of using this formalism to specify conversations. This
formalism provides for the testing of properties that are valuable for agent
coordination.
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