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Abstract

The Connectionist Model Transfer (CMT) frame-
work was proposed to allow an agent the ability to
instantiate and execute neural networks received
from other agents in order to maintain its learning
or classi�cation performance in a dynamic envi-
ronment. One limitation of the CMT framework
was that it assumed the existence of at least one
network in the system that embodied the classi-
�cation mappings required to exhibit satisfactory
classi�cation performance for each situation that
an agent might encounter. In some cases, how-
ever, an agent required a single network that em-
bodied classi�cation mappings of several existing
networks in order to maintain its performance. In
such cases, a new network was manually trained
and submitted to the system. In this paper, we
extend the CMT framework for facilitating the dy-
namic merging of distributed networks. This ex-
tension allows agents to utilize new, automatically
trained networks that embody the classi�cation
mappings of several distributed, and dynamically
selected, networks. We apply this extension to a
simulated aerial reconnaissance system in order to
show how the merging of neural networks can help
maintain the performance of agents tasked with
recognizing images of mobile military objects.

Introduction

In many agent-based systems, neural networks are used
to implement the mechanisms by which agents learn
and classify patterns. In such systems, agents are typi-
cally embedded with a connectionist-based model dur-
ing implementation with no means for overriding this
model during run-time. Thus, the way in which an
agent learns or classi�es patterns often remains static
during the life of the agent. As a result, agents that im-
plement neural networks may be unable to adapt their
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learning or classi�cation behavior to changes in their
environment (especially if such changes are highly dy-
namic), and thus experience a degradation in perfor-
mance. In order to resolve this limitation, the Connec-
tionist Model Transfer (CMT) framework was proposed
for supporting the communication of neural networks
between agents (Quirolgico et al. 1999). By applying
the CMT framework, a sending agent may communi-
cate subsymbolic knowledge (i.e. knowledge encoded in
a neural network) to a receiving agent which, in turn,
could instantiate the received network in a "Plug-and-
Play" fashion  allowing the receiving agent to dy-
namically modify its learning or pattern classi�cation
behavior in real-time.
In systems that implement the CMT framework, the

acquisition of a new network by an agent is triggered by
its network's learning or classi�cation performance. If
the performance of an agent's currently executing net-
work drops below some minimum threshold, the agent
may attempt to acquire a more appropriate network
(i.e. a network that embodies the correct classi�cation
mappings for the task at hand) from another agent in
the system. However, if no such network is available in
the system, the agent must wait until an appropriate
network is manually trained and submitted to the sys-
tem. The process of manually training and submitting
a new network requires human intervention in order to

� determine the classi�cation mappings of the network.

� create an appropriate training set for the network.

� create the necessary environment-speci�c �les for
training the network.

� train and test the network.

� map the network to an appropriate representation for
communication.

� submit the network to the system.

� inform the agent of the network.



Because of the time and e�ort required to manually
train and submit networks to the system, this process
may be inappropriate for systems comprised of agents
that are expected to perform learning or classi�cation
tasks in real-time.
In some cases, an agent may require a network that

embodies classi�cation mappings that are already em-
bodied by other networks in the system. In such cases,
it is possible to automate the training of a new network
that embodies the classi�cation mappings of these net-
works. This process involves acquiring knowledge from
distributed source networks (i.e. networks residing at
remote locations), merging this knowledge into a form
that may be used to train a new network, training the
new network, and submitting the new network to the
system. We refer to this process as network merging.
Through network merging, we may derive a composite
network that embodies the classi�cation mappings of
multiple source networks. In this paper, we extend the
CMT framework in order to support network merging of
dynamically selected source networks. This extension
allows an agent that is restricted to executing a single
network at a time the ability to potentially maintain its
performance by acquiring composite networks that em-
body the most appropriate classi�cation mappings for
its speci�c learning or classi�cation task. In addition,
this extension may also potentially improve system per-
formance by:

� facilitating the creation of more accurate networks.

� encouraging the introduction of smaller (and less
complex) networks to the system.

� minimizing the need for human intervention.

We begin this paper by presenting an overview of
the CMT framework in the context of network merg-
ing. This will involve a discussion of issues related to
the modeling of neural networks, the communication of
neural networks between agents, and the management
of neural networks within a multi-agent system. We
then describe the application of the CMT framework
to a simulated aerial reconnaissance system. Using this
system, we demonstrate how the use of composite net-
works derived through network merging can help main-
tain the performance of agents tasked with classifying
images of mobile military objects.

General Framework

The CMT framework is comprised of a model speci-
�cation for representing neural network knowledge, a
protocol for communicating neural network knowledge
between agents, and a speci�cation of agent services for
managing and using neural network knowledge.

Modeling Neural Networks

In order to communicate neural networks between
agents, a suitable speci�cation for their representation
must exist. Although a number of speci�cations have

been proposed for modeling the architecture of neu-
ral networks (Fiesler 1994; Demuth & Beale 1998),
these models lack a representation that provides meta-
knowledge about a network. Such knowledge may be
used by agents in order to assess attributes of a net-
work that are not typically speci�ed by the network's
structural properties. In the CMT framework, neural
network knowledge (i.e. a network's structural param-
eters and meta-knowledge) is represented by a Connec-
tionist Model (CM). A CM is an ontological speci�ca-
tion for representing neural network knowledge. The
general ontology of a CM is shown in Figure 1.
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Figure 1: Connectionist Model ontology.

A CM is comprised of ontologies for specifying a net-
work's meta-knowledge and structural properties. The
meta-knowledge ontology of a CM is, in turn, comprised
of NNHeader, NNEngine and NNData ontologies. The
NNHeader ontology speci�es general knowledge about
a network including the network's

� name, description, keywords, version, type, etc.

� domain, environmental, and contextual constraints.

� author, institution, and contact information.

The NNEngine ontology speci�es knowledge related to
the instantiation and execution of a network including

� information on translators for mapping CMs between
various knowledge representation formats as well be-
tween various neural network development and exe-
cution environments.

� information on available engines (e.g. libraries,
classes, etc.) for executing this network.

The NNData ontology speci�es knowledge about a net-
work's input and output data including its

� sample training and test data.

� classi�cation categories.

� the semantics of classi�cation outputs.

� required sources of input or sensor data.

� required data preprocessor.



� optional rule-base for symbolically describing its
input-to-output classi�cation mappings.

With respect to network merging, the knowledge spec-
i�ed in a NNData ontology is essential for determining
how to train a composite network. Because the CMT
framework requires that each CM that exists in the sys-
tem embody knowledge about its network's input and
output data, such knowledge may be easily acquired
and merged from several distributed CMs in order de-
rive the knowledge required to train a composite net-
work.
The neural network ontology of a CM describes the

structural properties of a network and is based on the
MATLAB network object speci�cation (Demuth &
Beale 1998). This ontology is, in turn, comprised of
ontologies for specifying

� architectural properties (i.e. the number of network
subobjects and they are connected).

� subobject structure properties (i.e. the properties of
array structures that de�ne the network's inputs, lay-
ers, outputs, targets, biases, and weights).

� functions (i.e. the algorithms used for initialization,
adaptation, and training).

� parameters (i.e. the properties and values for the
various initialization, adaptation, and training func-
tions).

� weights and biases (i.e. the network's dynamic pa-
rameters including weight matrices and bias vectors).

Because CMs are de�ned by their ontological struc-
ture, they may be represented and communicated in
a variety of languages including IDL, XML and KIF
(Gesenereth & Fikes 1992), as well as binary formats
(e.g. Java objects). In addition, their modular struc-
ture allows them to be communicated either in their
entirety or partially in order to improve system perfor-
mance.

Communicating Neural Network
Knowledge

Although CMs may be used in systems with varying
communication infrastructures (e.g. CORBA, FIPA,
JINI, etc.), the CMT framework uses the Knowl-
edge Query and Manipulation Language (KQML) for
communicating CMs, or parts thereof, between agents.
KQML (Finin, Labrou, & May�eld 1997; Labrou &
Finin 1997) is a language and protocol for exchang-
ing knowledge between agents. When an agent uses
KQML to communicate knowledge, it does so by pass-
ing a KQML message. Each KQML message is asso-
ciated with a performative that de�nes the permissi-
ble operations that may be attempted on knowledge
maintained and communicated by agents. In the CMT
framework, KQML is used to perform a variety of oper-
ations on CMs and is particularly useful in de�ning the
context surrounding a communicated CM.With respect
to network merging, the CMT framework inherits the

infrastructure by which to communicate NNData from
distributed CMs between agents. For example, suppose
that an agent Agent A wishes to acquire NNData of a
particular CM from another agent Agent B where the
name of the CM is RECON and the version of the CM is
2.0.1. This scenario is shown in Figure 2.

(ask-one
    :sender A
    :receiver B
    :content ( <NNHeader> )
    :reply-with <NNData>
    :ontology NNHeader)

(tell
    :sender B
    :receiver A
    :content ( <NNData> )
    :ontology NNData)

Agent A Agent B

Figure 2: Using KQML to communicate CMs, or parts
thereof.

Here, Agent A sends a KQML message to Agent B
containing NNHeader knowledge that is used to de�ne
the constraints of the query. In this case, the NNHeader
knowledge de�nes the parameter values name=RECON

and version=2.0.1. In addition, Agent A uses the
KQML ask-one performative which instructs Agent
B to return the NNData portion of a CM that matches
the query constraints as de�ned by the communicated
NNHeader knowledge. Note that we may specify con-
straints on the structure to be returned to the query-
ing agent through the :reply-with �eld of a KQML
message. KQML is also used to submit new trained
composite networks back to the system.

Managing Neural Network Knowledge

The CMT framework requires that a core set of CM-
related services be provided by agents in order to man-
age and use neural networks, and that these services
be initiated through protocols inherited from the un-
derlying KQML infrastructure. The set of agents used
to perform CM-related services are comprised of CM-
Producer, CMRepository and CMConsumer agents. In
addition, we present a CMTrainer agent for facilitating
network merging.

CMProducer. A CMProducer is responsible for ser-
vices that are concerned with the creation of CMs from
manually trained neural networks as well as the sub-
mission of these CMs to the system. The general archi-
tecture of a CMProducer is shown in Figure 3.
CMProducers are the least autonomous of all CM

agents as they require interaction with human opera-
tors (i.e. neural network developers). In order to cre-
ate a CM, a human operator instructs the CMProducer
to extract parameter values from a speci�c neural net-
work that has been trained in the local training envi-
ronment and to map these values into a CM in some
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Figure 3: CMProducer agent.

appropriate representation language or binary format.
The mapping from neural network parameter values
to a CM is performed using an environment-speci�c
NN2CM translator. Once a CM is created, a CMPro-
ducer may send the CM to an appropriate agent via a
KQML message.

CMRepository. A CMRepository is responsible for
CM maintenance and storage services. These services
include CM query and search services as well as trans-
lation services for mapping CMs to and from various
representation languages and formats. CM query and
search services allow agents (and humans) to search a
CMRepository's knowledge base for appropriate CMs.
By allowing humans to browse the contents of a repos-
itory and examine descriptions of CMs, they may be
better able to determine which neural networks are ap-
propriate for use in their agents. A CMRepository may
also initiate dialog with other agents in order to inform
agents of new CMs, forward queries to other agents, etc.

CMConsumer. A CMConsumer is responsible for
CM execution-related services. These services are con-
cerned with the instantiation and execution of neural
networks extracted from received CMs. When a CM-
Consumer instantiates and executes a network from
a received CM, it exhibits rote learning. Rote learn-
ing refers to the immediate and direct implantation of
knowledge and skills without requiring further inferenc-
ing or transformation by the learner (Nwana 1996;
Weiβ 1996). Thus, CMConsumers re
ect the knowl-
edge and skills embodied by their currently executing
network. In a dynamic environment, a CMConsumer
may acquire new, more appropriate CMs as its situation
in the environment changes. The general architecture
of a CMConsumer is shown in Figure 4.
In order to execute a received neural network, a CM-

Consumer must �rst instantiate a received CM by us-
ing a CM2NN translator that maps knowledge from the
received CM into a representation that may be used
in the local execution environment. A CMConsumer
must also determine an appropriate set of input (e.g.
sensor) data and provide this data to the execution en-
vironment in real-time. In many cases, a CMConsumer
may use meta-knowledge from a received CM to de-
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Preprocessor
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Figure 4: CMConsumer agent.

termine the appropriate sets of input data required by
the network. In addition, such knowledge may also be
used to assess the semantics of network results. Finally,
a CMConsumer may initiate dialog with other agents
in order to acquire new networks for its current situa-
tion, communicate network results/performance infor-
mation, etc. Note that a CMConsumer may need to
acquire and sample a number of networks for its cur-
rent situation before it �nds one that exhibits suÆcient
performance for the learning or classi�cation task at
hand.

CMTrainer. A CMTrainer is responsible for facili-
ating network merging. The general architecture of a
CMTrainer agent is shown in Figure 5.

NN System API

NN Training Environment

outin

NN2CM
Data

Generators
Performance

Monitor

KQML

Figure 5: CMTrainer agent.

In the CMT framework, network merging is initiated
by a CMConsumer whenever it exists in an environ-
ment such that the learning or classi�cation perfor-
mance of its acquired networks drop below some spec-
i�ed threshold and no other networks are available in
the system. In such cases, we refer to the state of the
CMConsumer's environment as a trigger state. When
a CMConsumer initiates network merging, it noti�es
the CMTrainer that it requires a composite network for
its current trigger state. Using a PerformanceMonitor
that monitors the peformance of all networks sampled
in a particular trigger state, the CMTrainer proceeds
to identify those networks that have exhibited the high-
est performance in the CMConsumer's current trigger



state. The CMTrainer then acquires the NNData in-
formation of these networks from other agents and uses
a DataGenerator to merge this knowledge into several
training �les that are used to train a new, composite
network. Training �les may be comprised of training
data, test data, data preprocessors, and environment-
speci�c neural network �les. Once the training �les are
derived, the CMTrainer initiates the training process
through a local training environment and derives the
composite network. The CMTrainer then maps this
composite network into a CM that is submitted back
to the system (e.g. either back to the CMConsumer or
to a CMRepository).
Note that because the CMT framework supports the

communication of structural parameters of a neural net-
work, we may potentially improve the automatic train-
ing of composite networks through network transfer.
Network transfer refers to the reuse of neural network
parameter values in order to improve the training of
new neural networks (Abu-Mostafa 1989; Pratt 1993;
Towell & Shavlik 1991). Research in network trans-
fer has shown that the reuse of parameter values from
existing networks may potentially accelerate the train-
ing, and improve the accuracy, of new neural networks
(Pratt 1994).

Experiment in Network Merging
In order to demonstrate the bene�ts of network merg-
ing, we conducted a simple experiment that showed
how the use of composite networks could help maintain
the performance of CMConsumers tasked with recog-
nizing images of mobile military objects. This experi-
ment used a simulated aerial reconnaissance system as
the testbed application. In this system, CMConsumers
representing Unmanned Aerial Vehicles (UAVs) were
tasked with traversing a geospatial region and captur-
ing images of mobile military objects as shown in Fig-
ure 6. The goal of each CMConsumer agent was to
correctly classify each image it captured as it moved
within the geospatial region. Figure 7 shows a sample
of the images used in this simulation.
In this experiment, CMConsumers entered an initial-

ization stage followed by an execution stage. The initial-
ization stage was concerned with having CMConsumers
acquire and sample various networks in the system in
order to determine which network exhibited the high-
est classi�cation performance. Sampling of networks
during the initialization stage was carried out by hav-
ing each CMConsumer perform image classi�cation on
20 captured images for each network it acquired. Each
CMConsumer then used its highest-performing network
for carrying out image classi�cation on 100 captured
images during its execution stage.
In order to highlight the impact of network merg-

ing on agent performance, we divided the experiment
into two phases: a control phase and a test phase. In
the control phase of the experiment, each CMConsumer
was restricted to using only those networks that already
existed in the system. However, in the test phase of the

CMConsumer

Type A truck

Type B truck

Type A tank

Type B tank

Type A helicopter

Type B helicopter

Type A SAM

Type B SAM

Type A fighter

Type B fighter

Figure 6: CMConsumer agents traversing a geospatial
region in a simulated aerial reconnaissance system.

Figure 7: Sample reconnaissance images: Type A
�ghter, Type B helicopter, Type A SAM, and Type
A tank

experiment, if the highest performing network used by a
CMConsumer during its initialization stage performed
below some speci�ed threshold, the CMConsumer ini-
tiated network merging in order to derive a composite
network that embodied the classi�cation mappings of
the two highest-performing networks that it sampled
during its initialization stage. This composite network
was then used by the CMConsumer during its execu-
tion stage. In both phases of the experiment, the goal
of each CMConsumer was to accurately classify each of
the 100 images it captured during its execution stage.
Our simulated aerial reconnaissance system was im-

plemented and tested under Solaris 2.6 using Java 2,
the Jackal 3.1 KQML package (Cost et al. 1998) and
the Matlab 5.3 API. This system was comprised of ten
CMConsumers, two CMRepositories, and three CM-
Producers for both phases of the experiment. In addi-
tion, a CMTrainer was used during the test phase of the
experiment. In addition, three initial CMs were intro-
duced to the system for classifying (1) TANK and TRUCK

objects, (2) HELICOPTER, FIGHTER and TRUCK objects,
and (3) TANK, SAM , and HELICOPTER objects. In this
experiment, we de�ned the performance of a network
used by a CMConsumer during its execution stage as
a quadruple p = fK;V; U; rg where K represented the
set of correctly classi�ed images, V represented the set



of incorrectly classi�ed images, U represented the set of
unclassi�able images, and

r =
kKk

kKk+ kV k+ kUk

represented the classi�cation rate of the network. For
n processed images, we computed the average classi�-
cation rate

ravg =

nP

i=1

ri

n

of each network used by a CMConsumer. The average
classi�cation rate of each network used by a CMCon-
sumer during both phases of the experiment are shown
in Table 1.

Average Classification Rates

CMConsumer control test

1 0.70 0.89

2 0.56 0.95

3 0.57 0.85

4 0.55 0.94

5 0.56 0.88

6 0.52 0.87

7 0.54 0.87

8 0.50 0.90

9 0.62 0.92

10 0.62 0.89

Table 1: Average classi�cation rates of networks used
by CMConsumers during control and test phases.

Here, we see that the average classi�cation rates of
networks for each CMConsumer during the test phase
of the experiment were greater than those during the
control phase of the experiment. Thus, these prelimi-
nary results support the claim that the use of network
merging can help to maintain the classi�cation perfor-
mance of agents.

Conclusions

This paper presented an extension to the CMT frame-
work for facilitating network merging. The motivation
for this extension was to allow agents to potentially
improve their learning or classi�cation performance by
utilizing composite networks that embody the classi�-
cation mappings from several distributed and dynami-
cally selected source networks. Using a simulated aerial
reconnaissance system, we conducted a simple experi-
ment that showed how the use of network merging could
help agents maintain their ability to classify images of
military objects.
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