1

A Security Architecture for
Agent Communication Language

Tim Finin, James Mayfield and Chelliah Thirunavukkarasu
Computer Science and Electrical Engineering
University of Maryland Baltimore County
Baltimore MD 21250 USA

Abstract

One of the essential features of a software agent is
its ability to cooperate with other software agents.
This cooperation requires, in general, that software
agents be able to communicate in a appropriately
rich agent communication langua¢&CL) and as-
sociated protocols. For an ACL to effective in an
open environment like the Internet, it must support
security, privacy, the integrity of data, and authenti-
cation of agent identity. We discuss some basic and
extended security requirements for software agents
and an architecture to satisfy those requirements for
KQML-speaking agents. The proposed architec-
ture is based on cryptographic techniques and al-
low agents to verify the identity of other agents, de-
tect message integrity violations, protect confiden-
tial data, ensure non-repudiation of message ori-
gin and take counter measures against cipher at-
tacks. Many of these security features will be sup-
ported by and/or implemented by transport mecha-
nisms (e.g., socket-communication, HTTP, SMTP)
on which the ACL will be carried. However, we ar-
gue that such security properties must be part of and
reflected in the ACL model and can not be totally
relegated to the lower levels of the communication
protocol stack.

Introduction

Main reason is that agents must be able to reason about the se-
curity properties of their agents. Lets us maybe do some use-
ful things, like decide who to talk to and by what means and
also to selectively ask for authentication when it is needed.
Introduce notion of lazy authentication. Tle into a truth main-
tenance scenario — only ask an agent to authenticate when you
really need to verify it is indeed the agent you think it is.
etc...

1.2 KQML

Knowledge Query and Manipulation Language (KQMI)

is a communication language and protocol which enables au-
tonomous and asynchronous software agents to share their
knowledge and or work towards cooperative problem solv-
ing. It was developed as a part of tkmowledge Sharing
Effort[20; 19; 13. The KQML language can be thought of

as consisting of three layers: the content layer, the message
layer, and the communication layer. The content layer bears
the actual content of the message, in the programs own repre-
sentation language. KQML can carry expressions encoded in
any representation language, including languages expressed
as ASCII strings and those expressed using a binary nota-
tion. Some KQML-speaking agents (e.g., routers, very gen-
eral brokers, etc.) may ignore the content portion of the mes-
sage, except to determine where it ends.

The communication level encodes a set of message features
which describe the lower level communication parameters,
such as the identity of the sender and recipient, and a unique
identifier associated with the communication.

One of the essential features of a software agent is its abil- Itisthe message layer that is used to encode a message that

ity to cooperate with other software agents. This cooperatio@ne application would like to transmit to another. The mes-
requires, in general, that software agents be able to comm$age layer forms the core of the KQML language, and deter-
nicate in a appropriately richgent communication language mines the kinds of interactions one can have with a KQML—
(ACL) and associated protocols. For an ACL to effective inSPeaking agent. A primary function of the message layer is to
an open environment like the Internet, it must support secuidentify the protocol to be used to deliver the message and to
rity, privacy, the integrity of data, and authentication of agentSupply a seech act or performative which the sender attaches
identity. to the content (such as that it is an assertion, a query, a com-
) mand, or any of a set of known performatives). In addition,
1.1 Why agentsecurity? since the content may be opaque to a KQML-speaking agent,
Several paragraphs saying why security must be modeled ithis layer also includes optional features which describe the
the agent level in addition to the underlying transport levelscontent language, the ontology it assumes, and some type

of description of the content, such as a descriptor naming has been delivered. The architecture supports two security
topic within the ontology. These features make it possiblenodels, basic and enhanced. The basic security model sup-
for KQML implementations to analyze, route and properly ports authentication of sender, message integrity and privacy
deliver messages even though their contentaséessible. of data. The enhanced security model additionally supports
. . non-repudiation of origin (proof of sending) and protection

1.3 Security Requirements from message replay attacks. The enhanced security model

We arrived upon the following requirements for a KQML se- aiso supports frequent change of encryption keys to protect
curity model based on the analysis of the security models fofrom cipher attacks.

Privacy Enhanced Mal4], CORBA[3] and DCE[5]. Inter-
ested readers are referred[®), for a thorough treatment of 2.1 Cryptographic background
security threats and mechanisms to counter them. The sec

rity capabilities that should be supported include: The following paragraphs define the cryptographic tech-

o cipal houl e of niques used by this architecture and the new performative and
* Authentication of principals. Agents should be capable of 5)3 rameters that have been introduced to implement the ar-
proving their identities to other agents and verifying the iden-

tity of other agents. chitecture.
e Preservation of message integritAgents should be able to

detect intensional or accidental corruption of messages. E tion K A t that imol ts th d
¢ Protection of privacyThe security architecture should provide ncry.p lon gys. n agent that implements the proppse
facilities for agents to exchange confidential data. security architecture should have a master K&y, which it

o Detection of Message dup"cation or rep|ay\ rogue agent would use to communicate with other agents. This key can
may record a legitimate conversation and later play it back tobe based on a symmetric or asymmetiey cryptosystem.
disguise its identity. Agentshsuld be able to detect and pre- |f a symmetric key mechanism is used, we suggest that the
vent such playback security attacks. agent, in addition to the general master key, also use a specific

¢ Non-repudiation of message#\n agent should be account- master key/; o> for each agent that it communicates with,

able for the messages that they have sent or received, i.e., th % b . d henticati If h
should not be able to deny having sent or received a message. r better privacy and stronger authentication. It more than

e Prevention of message hijacking.rogue agent should notbe WO agents share a single master key, any of those agents can
able to extract the authentication information from an authen-masquerade as the other or eavesdrop on all the conversations

ticated message and use it to masquerade as a legitimate agepétween the agents sharing the key. If a master key is shared

We also consider several additional constraints or desideRy more than two agents, the strength of security is directly
ata for the architecture. First, the security architecture shoulfelated to the degree of trust between the agents.
not depend on the semantics of KQML performative (i.e., an If an agent does not share a master kgy; . with an-
ask-allfrom an agent will entail @ell or sorry from the re- ~ Other agent, it can use its master k&y,, or can use the ser-
ceiver). The security model should be general and flexibl&vices of a central authentication server to generate such a key.
enough to support different models of agent interaction (e.d he agents may use different keys in either direction of mes-
contract net, electronic commerce). Neither should the archisage flow i.e.,K.1 4> is created byal and would be used
tecture depend on the features offered by any transport laygvhenalis sending a messagea@and K2 41 is created by
since we want to facilitate agents to communicate across he@2and would be used whea® is sending a message ad.
erogeneous transport mechanisms and to extend the securitylf an asymmetric key mechanism is used, a unique key for
model to accommodate embedded KQML messagersiec each pair of agents is not necessary, as the agent can use the
we desire a model which allows light-weight agents with-public key of its peer agent to encrypt the message and pre-
out cryptographic capabilities to authenticate the sender ofent eavesdropping. It can also use its private key to sign the
a message using the services of trustathenticatomgents. message and prove its identity to its peer. We assume that
Finally, we want to allow agents the flexibility to use differ- the agents know the master key of the other agents. We also
ent cryptographic algorithms so that it should not have harguggest a secure mechanism to do master key lookup.
dependencies on any specific cryptographic algorithm. Simi-

larly, we reject systems which assume a global synchroniza- .

tion of time — it difficult to achieve and leads to further secu-as.e.SSIon key. Inthe e'nhanced model, the ggents usean a.d

rity issues of its owr7] ditional key, the session key, to ensure privacy, message in-
' tegrity and proof of identity. The session key can be symmet-

2 Architecture Overview ric or asymmetric and can be generated with the help of the

]]) authentication server. The session keys are set up by using
The proposed security architecture is based on data encryg-protocol explained later which requires the use of a master
tion technique$9]. In tune with the asynchronous nature of key to ensure security.

general ACLs like KQML, the model expects a secure mes-

sage to be self authenticating and does not support any chal- tpyplic key cryptosystems are a very familiar example of an
lenge/response mechanism to authenticate a message afteastymmetric key system.

The agents can use either the session or master key for ex- <encrypted-key>)
changing messages and mu;t inform the other agent Of. th&n instance of this relation specifies a key that the sending
key that was used for encryption to ensure proper decryptlorhgem will use in secure communication with the receiving
When agents exchange keys, they encrypt them using the cute ent. If the third argument ig-ue then the key is a master
rent session or master key. Keys are never exchanged in cle g else it is a session key. If the receiving agent is a vari-
text forzm. .We recommend the use of the enhanced securitgblé (e.g.)7), then the key is used by the sending agents for
kmodelh' Vr\]”j[h ahn expgr;swe malster key and a cheap €SS0 mmunication with all agents. Note that this would typi-

ey which is changed frequently. cally be the case for asymmetric keys. We assume that agent

addresses are represented in this ontology witlatitress/3
Message Id. The message ID is used in the enhanced securg|ation:
rity model to protect agents from attack§ by message replay. (address <agent>
When the two agents establish a session key, they also ex- <transport>
change a message ID which the sender would use in the next <transport-address>)
message. Every message from an agent would carry a mes- . : .
sage ID and a new message ID for the next message. EacEPlSeti?C?jegfi;ﬁ'ﬁerﬁg':? ?r)neecrlfty ;rsainnsfport addresses for the
message ID is used only once to prevent replay and they afet g 9 ' ’

encrypted using the session or master key for security. (address r2d2 smtp r2d2@umbc.edu)
(address r2d2 tcpip (cujo.cs.umbc.edu 8088))

Message Digest. Each secure message generated using thihese addresses are known to special agents, suapeas
architecture has a message digest or signature associated witgne serverandauthenticator agents
it. The digest is calculated using a secure hash function like Several new KQML parameters are required to implement
MD2, MD5 or SHS[9]. This hash function computes a dig- the security architecture.
ital fingerprint of the message (i.e., acts as a "checksum” for :auth-digest (<digest-type> <encrypted-digest>). The
the message). The sender then encrypts this digest using tHgest-typespecifies the hashing function used (MD4, MD5,
session or master key and attaches it to the message. etc.) to compute the message digest. €herypted-digess

This encrypted message digest forms the core of the secie message digest encrypted using the key specified by the
rity architecture. The receiver of a message uses this digegtuth-keyparameter. This parameter should be present to pre-
to verify the identity of the sender and the integrity of the vent message hijack, and to provide for sender authentication
message. The digest also protects the message ID field frofid integrity assurance.

being hijacked and used in a different message. :auth-msg-id (<msg-id> <encrypted-msg-id> This pa-
rameter is required only in the enhanced security model
2.2 Changes to KQML where it is used prevent message replay. The value is a list

In order to implement this security architecture we proposevhose first element is the agreed upon random stringy,idv
several new KQML performatives, several new parameter#f this is the first message. The second element specifies the
and some modifications to a proposed standard ontology fahessage ID for the next message and is encrypted using the
agents. key specified by theauth-keyparameter. For effective pre-
vention of message replay, this parameter should be present

Ontological assumptions. We assume that KQML- N 'each message.
speaking agents use a basic agent ontology which provides a-2uth-key (<bool> <key-type> <encrypted-key>).

small set of classes, attributes and relations helpful in talking NS Parameter specifies the key being used to encrypt any

about agents, their properties and the relationships and evenf@th-digesand:auth-msgparameters present. If the first el-

in which they partake. Assuming this ontology, this architec-6Ment of the triple is igrue then the master key is used
ture introduces a new sub-class of agent nametienticator ~ Otherwise, the session key is used.
and a new relatiorkey/5 which describes a key used by an The following new KQML performatives have been added

agent: to implement the security architecture.

(key <sending-agent> aqth-lmk. The sender Wlshes to authenticate itself to the
<receiving-agent> receiver and set up a session key and message ID.
<master-key?> -
<key-type> ? An agent would use the master key for encryption if it does not

- share a session key with the receiving agent or if it does not know

2This may not always be possible. The enhanced security modéhe receiver in advance. Under these circumstances, it could use this
cannot be used if the sender of a message does not know who tiparameter to help the receiver in choosing the proper decryption key.
intended recipient is; i.e in the case of facilitation performatives *We could eliminate the need for this performative if we are will-
the facilitator determines the intended recipient and not the messageg to send arachievewith an embeddeduth-challengéout this is
originator. simply a mater of protocol detail design.

auth-challenge. The sender challenges the identity of the :content <encrypted-KQML-message>
receiver in regonse to arauth-link The sender encrypts a
random string using the master k& , or K, and sends it
as:content®

auth-private. The sender is sending a confidential mes-
sage to the receiver. Theontentparameter contains the en-
crypted message and ttaaith-keyparameter specifies the en-
cryption key. Theauth-digestparameter should be present
to verify the identity of the sender and treuth-msg-idand
:auth-keyparameters may be present if enhanced securit

model is used. the message digest will not agree with the value of. thuth-

help. We introduce a new generic performative by which . : . . .
:) igestparameter. Since the message digest is encrypted with
an agent can ask another for help in processing the the embe, gestp ge dig P

ded perf i . th | f thent ; e master key of thesender only the:senderor the agents
ed performative given as the value of thententparameter. with which the:sendershares the encryption key could have

;g;renggf/uerzr?;t?ﬁe Tlgllﬁeli;j?rtgrr:ggd by;rg?nir;t;.edlg?gepergenerated the message. If the master key is an asymmetric
: o 9yp . key, only the:sendercould have generated the message, as
-ontologyis authenticationthen a crypto-unaware agent is only the :senderknows the private key that has been used
enlisting the help of a trusted friend to process a performativ%r encryption. Note that we can only verify the identity of
The generator (i.e., the message was encrypted byémneler
ent) of the message. This message can be a replay of a
ggitimate message previously sent by the generator.

This model can be used when R2D2 does not know the recip-
ient in advance, e.g., for messages to be broadcast or routed
by a facilitator agent, or if R2D2 and C3PO do not require
prevention of message replay and can afford the cost of using
the master key.

In the above message, theuth-digestparameter can be
used to verify the integrity of the message, authenticate the
sender and ensure non-repudiation of origin (if the master key
¥s asymmetric in nature). If the message has been corrupted,

parameter. This embedded message can be eithautén
link or a generic message to be authenticated. In the case o
auth-link (i.e., a challenge), the appropriate response is a re-
ply with a random challenge string. In the case of a messagg .1 Enhanced security model

to be authenticated, the response will be an error or a reply to))
forward. The enhanced security model adds prevention of message

replay, and stronger non-repudiation of message origin (if
3 Security model asymmetriq keys' are used.). Everj though non-repudiation
can be achieved in the basic security model, we can only be
An implementation should support the following protocol to syre that the message was generated by the sender, as a rogue
conform with the basic security model. This model supportsagent can replay a message and we will not be able to detect
authentication, integrity and privacy of data. If asymmetricit,
keys are used for session and master keys, this model alsop [7] we demonstrate how the new KQML performatives
supports non-repudiation of origin. and parameters can be used to converse/communicate se-
When R2D2 sends a secure message to C3PO, it woulgrely, the role of authenticator agents for key registration
compute a message digest and encrypt it using the master kgid management. In the remainder of this section we give

(as indicated by the valuE for the:auth-keyparameter). two small examples and show how the protocols can be cap-
<performative> tured in Protolingua.
:sender R2D2
receiver C3PO Self authentication
:auth-key T

:auth-digest (<digest-type><encrypted-digest>) Agent R2D2 has cryptographic capabilities and would like to
prove its identity to agent C3PO. The agents would follow the

Alternatively, if R2D2 needs to send a confidential messagd®!!owing handshake protocol to achieve it.
to C3PO, it can encrypt the message and embed it auém

. ! 1. auth-link
private performative. 2. auth-challenge
auth-private __srely
:sender R2D2 4. replylerror
receiver C3PO 5.-<ﬁ]erformalive>/
:auth-key T WPV e
:auth-digest (<digest-type> <encrypted-digest>)

°Again, if we were motivated to decrease the number of perfor-Figure 1:The self authentication protocol is initiated by an
matives at the expense of putting more in the authentication ontolygent who wants to establish its identity before beginning
ogy, we could represent auth-challenggperformative as aask- a dialo
onewith :contentof (encrypt ?s ESkhere ES is the encrypted string 9.
and the encrypt/2 relation holds between the string with respect to
the current key. R2D2 sends aauth-linkperformative to C3PO.

auth-link 1) Crypto un-aware agents

fsen(jer R2D2 Agent Leia may not have crypto capabilities. But it trusts its
‘receiver C3PO h . henti

reply-with <expression> friend R2D2 an.d R2.D2 is prepared to authenticate messages
f i henti d : d wi on behalf of Leia. Since Leia does not have crypto capabili-

If C3PO will not authenticate senders, it can respon WIthties, it will not acceptauth-privateperformative. The agents

an error, otherwise i.t sends auth-challengavith a random . would follow the handshake protocol given below to verify
string encrypted using the master key. A random string '%kyWaIker' s identity.

used to prevent message replay.

auth-challenge (2) Lauthlink o iauﬂtaﬂmﬂﬁp
:sender C3PO s unchalenge e
‘receiver R2D2 E saihnenigy
lin-reply-to <expression> 3;;;%2@/ :
:reply-with <expression> —ERe :

:content <encrypted-random-string>
Figure 2:Using the trusted friend protocol, agent leia asks

R2D2 responds with eply performative with the:auth- agent R2D2 for help in authenticating agent Skywalker.

digest :auth-msg-idand new session key (if present) en-
crypted in the master key. The value:gbntentand:auth-

msg-idis the decrypted random string. The session key pal-in
rameter is optional.

Agent SkyWalker begins by sending Agent Leiaaarth-
k message to initiate the process of proving its identity to

| 3 Leia.
i) auth-link (@)
:sender R2D2 -
‘receiver C3PO :sen(:!er SkyWalker
lin-reply-to <expression> :recelve_r Leia _
‘reply-with <expression> reply-with <expression>
-auth-digest (<digest-type> <encrypted-digest>) When Leia receives aauth-linkmessage from SkyWalker,

:auth-msg-id (<msg-id> <encrypted-msg-id>)

‘auth-key (T <key-type> <encrypted-key>) Leia requests a challenge string from its trusted friend, R2D2.

:content <random-string> help (2)
e . . . :sender Leia
Now, C3PO can verify if the sender is R2D2 by inspecting ‘receiver R2D2
the random string. Only R2D2 (or in the case of symmet- ‘reply-with <expression>
ric key, one of the other agents which shares the same key) : ontology authentication
could have decrypted the random string as it was encrypted :content (auth-link

:sender SkyWalker
‘receiver Leia
reply-with <expression>)

using the master key. The message digest can be used for
non-repudiation if asymmetric keys are used.

C3PO responds with @ply or anerror depending on the R2D2 will generate a random string on behalf of Leia, encrypt

success of authentication (3). ibusing the master key (shared by Leia and SkyWalker or

NO\.N’ R2D2 can send an authenticated message to C3PLeia's master key, which R2D2 knows) and will forward it to
by using the session key or master key to encrypt the messagel.

digest and a non replayable message by usingatit-msg-

; reply 3)
id parameters. eender R2D2
<performative> (4a) ‘receiver Leia
:sender R2D2 iin-reply-to <expression>
:receiver C3PO :content (SkyWalker <encrypted-random-string>)
:auth-digest (<digest-type> <encrypted-digest>) . . .
:auth-msg-id (<msg-id> <encrypted-msg-id>) Leia will construct arauth-challengeperformative and send
:auth-key (<bool> <key-type> <encrypted-key>) it to SkyWalker. Subsequent performative from SkyWalker
with an:auth-digeswill be forwarded to R2D2.
Or if R2D2 needs to send a confidential message to C3PO, auth-challenge (4)
it can encrypt the message and embed it iraath-private :sender Leia
performative. ‘receiver SkyWaIker_
i reply-with <expression>
auth-private (4b) iin-reply-to <expression>
:sender R2D2 :content <encrypted-random-string>
‘receiver C3PO . -
:auth-digest (<digest-type> <encrypted-digest>) SkyWalker will respond with a secureply.
:auth-msg-id (<msg-id> <encrypted-msg-id>) reply (5)
:auth-key (<bool> <key-type> <encrypted-key>) :sender SkyWalker

:content <encrypted-KQML-message> receiver Leia

Leia will wrap the response in drelpand send it to R2D2.

R2D2 will respond with aeply or anerror (7). Leia would

‘reply-with <expression> [5]
lin-reply-to <expression>
:auth-digest

(<digest-type> <encrypted-digest>)
:auth-msg-id (<msg-id> <encrypted-msg-id>)
:auth-key (T <key-type> <encrypted-key>)
:content random-string

(6]

(7]
help
'sender Leia
‘receiver R2D2
reply-with <expression>
:ontology authentication
:content (reply
:sender SkyWalker
‘receiver Leia
. message (5) ...

(6)

(8]

(9]

forward the R2D2's reply to SkyWalker (8). The handshake
is now complete and SkyWalker can send secure performatival]
to Leia, which Leia would verify with the help of R2D2 (9).

4 Conclusion
The proposed security model addresses privacy, authenticé\l-z]

tion

and non-repudiation (if asymmetric key mechanism is

used for the master and session keys) in agent communica-
[13]

tion.

The limitations of our agent security model limitations are
discussed in detail in [CHELIAH95] and briefly touched on
here. The model does not provide a mechanism to exchange
credentials nor support the non-repudiation of message rdi4]

ceipt.

Message replay detection requires that recipients is

known in advance cuasing problems in an agent architec-
ture whichh makes use of facilitator class agents to automat19l
ically rout messages whose intended recipients are described

in general terms by the sending agent. The security archite -%6]

message ID and next session key, to prevent message replay

ture

requires that agents maintain state information, e.g. ne

attack and cipher attack.

Ultimately, this security model depends on the strength of; 7
the crypto algorithm, message digest function and the random
number generator used by the agent for its effectiveness.

References

(1]

(2]

10]

Draft specification of the KQML agent communication [18]

language, Tim Finin, Jay Weber et al, Jun 15 1993,
http://www.cs.umbc.edu/kgml/kgmispec/spec.html

Security Mechanisms in High-Level Network Protocols, Vic-
tor L.Voydock, Stephen T. Kent, ACM Computing Surveys,
Vol.15, No. 2, 135-171, Jun 83

OSTF RFP3 Submission, Corba Security, OMG Document
Number 95-3-3, Mar 8 1995, htfiwww.omg.org/docs/95-3-
3.ps

Privacy Enhancementfor Internet Electronic Mail: Part I: Mes-
sage Encryption and Authentication Procedures, J. Linn, Oct
02 1993, http/ds.internic.net/rfc/rft421.txt

[19]

[20]

Security in
a Distributed Computing Environment, OSF-O-WP11-1090-3,
http://www.osf.org/comm/lifOSF-O-WP11090-3.ps

Project Athena Technical Plan, Section E.2.1, Kerberos Au-
thentication and Authorization System,
S.P.Miller, B.C.Neuman, J.I.Schiller and J.H.Saltzer, Oct 27
1988, ftp//athena-dist.mit.edplib/kerberos/doc/techplan.PS

Limitations of the Kerberos Authentication System, S.M.
Bellovin,

M. Merritt, Praceedings of the Winter 1991 Usenix Confer-
ence, Jan 1991, fiffresearch.att.com/dist/internsecurity/-
kerblimit.usenix.ps

Security Service API: Cryptographic APl Recommenda-
tion, NSA Cross Organization, CAPI Team, Jun 12 1995,
http://www.omg.org/docs/95-6-6.ps

RSA Labs' frequently
http://www.rsa.com/rsalabs/faq

asked questions (FAQ),

Software Design Document for KQML, Revision 3.0, Mar
1995, LORAL Corporation, Paoli PA, USA

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire.
KQML: an information and knowledge exchange protocol. In
Kazuhiro Fuchi and Toshio Yokoi, editor&nowledge Build-
ing and Knowledge Sharin@hmsha and 10S Press, 1994.

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire.
The KQML information and knowledge exchange protocol.
In Third International Conference on Information and Knowl-
edge Managemepitiovember 1994.

Michael Genesereth and Richard Fikes. Knowledge inter-
change format, version 3.0 reference manual. Technical re-
port, Computer Science Department, Stanford University, June
1992.

Mike Genesereth. An agent—-based approach to software inter-
operability. Technical Report Logi®1-6, Logic Group, CSD,
Stanford University, February 1993.

Michael R. Genesereth and Steven P. Katchpel. Software
Agents. newblock Communications of the ACM, v37, n7, pp
48-53, 147,1994.

Daniel R. Kuokka, James G. McGuire, Jay C. Weber, Jay M.
Tenenbaum, Thomas R. Gruber, and Gregory R. Olsen. Shade:
Technology for knowledge—based collaborative. AAAI
Workshop on Al in Collaborative Desigh993.

Yannis Labrou and Tim Finin. A semantics approach for
KQML — a general purpose communication language for soft-
ware agents. Imhird International Conference on Informa-
tion and Knowledge ManagememMovember 1994. Avail-
able ashttp://www.cs.umbc.edu/kgml/papers/-
kgml-semantics.ps

James G. McGuire, Daniel R. Kuokka, Jay C. Weber, Jay M.
Tenenbaum, Thomas R. Gruber, and Gregory R. Olsen. Shade:
Technology for knowledge—based collaborative engineering.
Journal of Concurrent Engineering: Applications and Re-
search (CERA)1(2), September 1993.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator,
and W. Swartout. Enabling technology for knowledge sharing.
Al Magazine 12(3):36-56, Fall 1991.

Ramesh Patil, Richard Fikes, Peter Patel-Schneider, Don-
ald McKay, Tim Finin, Thomas Gruber, and Robert Neches.

The DARPA knowledge sharing effort: Progress report. In

B. Nebel, C. Rich, and W. Swartout, editoiBrinciples of

[21]

[22]

[23

Knowledge Representation and Reasoning: Proc. of the Third
International Conference (KR'92%an Mateo, CA, November
1992. Morgan Kaufmann.

M.Tenenbaum, J. Weber, and T. Gruber. Enterprise integration:
Lessons from shade and pact. In C. Petrie, ediaterprise
Integration ModelingMIT Press, 1993.

Chelliah Thirunaukkarasu. A Security Architecture for
KQML. Technical Report MS-EECS-95-nn, Computer Sci-
ence and Electrical Engineering Department, University of
Maryland Baltimore ©unty. August, 1995.

KQML Agent Technology Software. UMBC technical report.
1995.

