
A Security Architecture for
Agent Communication Language

Tim Finin, James Mayfield and Chelliah Thirunavukkarasu
Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore MD 21250 USA

Abstract

One of the essential features of a software agent is
its ability to cooperate with other software agents.
This cooperation requires, in general, that software
agents be able to communicate in a appropriately
rich agent communication language(ACL) and as-
sociated protocols. For an ACL to effective in an
open environment like the Internet, it must support
security, privacy, the integrity of data, and authenti-
cation of agent identity. We discuss some basic and
extended security requirements for software agents
and an architecture to satisfy those requirements for
KQML-speaking agents. The proposed architec-
ture is based on cryptographic techniques and al-
low agents to verify the identity of other agents, de-
tect message integrity violations, protect confiden-
tial data, ensure non-repudiation of message ori-
gin and take counter measures against cipher at-
tacks. Many of these security features will be sup-
ported by and/or implemented by transport mecha-
nisms (e.g., socket-communication, HTTP, SMTP)
on which the ACL will be carried. However, we ar-
gue that such security properties must be part of and
reflected in the ACL model and can not be totally
relegated to the lower levels of the communication
protocol stack.

1 Introduction
One of the essential features of a software agent is its abil-
ity to cooperate with other software agents. This cooperation
requires, in general, that software agents be able to commu-
nicate in a appropriately richagent communication language
(ACL) and associated protocols. For an ACL to effective in
an open environment like the Internet, it must support secu-
rity, privacy, the integrity of data, and authentication of agent
identity.

1.1 Why agentsecurity?
Several paragraphs saying why security must be modeled in
the agent level in addition to the underlying transport levels.

Main reason is that agents must be able to reason about the se-
curity properties of their agents. Lets us maybe do some use-
ful things, like decide who to talk to and by what means and
also to selectively ask for authentication when it is needed.
Introduce notion of lazy authentication. TIe into a truth main-
tenance scenario – only ask an agent to authenticate when you
*really* need to verify it is indeed the agent you think it is.
etc...

1.2 KQML
Knowledge Query and Manipulation Language (KQML)[1]
is a communication language and protocol which enables au-
tonomous and asynchronous software agents to share their
knowledge and or work towards cooperative problem solv-
ing. It was developed as a part of theKnowledge Sharing
Effort [20; 19; 13]. The KQML language can be thought of
as consisting of three layers: the content layer, the message
layer, and the communication layer. The content layer bears
the actual content of the message, in the programs own repre-
sentation language. KQML can carry expressions encoded in
any representation language, including languages expressed
as ASCII strings and those expressed using a binary nota-
tion. Some KQML-speaking agents (e.g., routers, very gen-
eral brokers, etc.) may ignore the content portion of the mes-
sage, except to determine where it ends.

The communication level encodes a set of message features
which describe the lower level communication parameters,
such as the identity of the sender and recipient, and a unique
identifier associated with the communication.

It is the message layer that is used to encode a message that
one application would like to transmit to another. The mes-
sage layer forms the core of the KQML language, and deter-
mines the kinds of interactions one can have with a KQML–
speaking agent. A primary function of the message layer is to
identify the protocol to be used to deliver the message and to
supply a speech act or performative which the sender attaches
to the content (such as that it is an assertion, a query, a com-
mand, or any of a set of known performatives). In addition,
since the content may be opaque to a KQML-speaking agent,
this layer also includes optional features which describe the
content language, the ontology it assumes, and some type



of description of the content, such as a descriptor naming a
topic within the ontology. These features make it possible
for KQML implementations to analyze, route and properly
deliver messages even though their content is inaccessible.

1.3 Security Requirements
We arrived upon the following requirements for a KQML se-
curity model based on the analysis of the security models for
Privacy Enhanced Mail[4], CORBA[3] and DCE[5]. Inter-
ested readers are referred to[2], for a thorough treatment of
security threats and mechanisms to counter them. The secu-
rity capabilities that should be supported include:

� Authentication of principals. Agents should be capable of
proving their identities to other agents and verifying the iden-
tity of other agents.

� Preservation of message integrity.Agents should be able to
detect intensional or accidental corruption of messages.

� Protection of privacy.The security architecture should provide
facilities for agents to exchange confidential data.

� Detection of Message duplication or replay.A rogue agent
may record a legitimate conversation and later play it back to
disguise its identity. Agents should be able to detect and pre-
vent such playback security attacks.

� Non-repudiation of messages.An agent should be account-
able for the messages that they have sent or received, i.e., they
should not be able to deny having sent or received a message.

� Prevention of message hijacking.A rogue agent should not be
able to extract the authentication information from an authen-
ticated message and use it to masquerade as a legitimate agent.

We also consider several additional constraints or desider-
ata for the architecture. First, the security architecture should
not depend on the semantics of KQML performative (i.e., an
ask-all from an agent will entail atell or sorry from the re-
ceiver). The security model should be general and flexible
enough to support different models of agent interaction (e.g
contract net, electronic commerce). Neither should the archi-
tecture depend on the features offered by any transport layer
since we want to facilitate agents to communicate across het-
erogeneous transport mechanisms and to extend the security
model to accommodate embedded KQML messages. Second,
we desire a model which allows light-weight agents with-
out cryptographic capabilities to authenticate the sender of
a message using the services of trustedauthenticatoragents.
Finally, we want to allow agents the flexibility to use differ-
ent cryptographic algorithms so that it should not have hard
dependencies on any specific cryptographic algorithm. Simi-
larly, we reject systems which assume a global synchroniza-
tion of time – it difficult to achieve and leads to further secu-
rity issues of its own[7].

2 Architecture Overview
The proposed security architecture is based on data encryp-
tion techniques[9]. In tune with the asynchronous nature of
general ACLs like KQML, the model expects a secure mes-
sage to be self authenticating and does not support any chal-
lenge/response mechanism to authenticate a message after it

has been delivered. The architecture supports two security
models, basic and enhanced. The basic security model sup-
ports authentication of sender, message integrity and privacy
of data. The enhanced security model additionally supports
non-repudiation of origin (proof of sending) and protection
from message replay attacks. The enhanced security model
also supports frequent change of encryption keys to protect
from cipher attacks.

2.1 Cryptographic background

The following paragraphs define the cryptographic tech-
niques used by this architecture and the new performative and
the parameters that have been introduced to implement the ar-
chitecture.

Encryption Keys. An agent that implements the proposed
security architecture should have a master key,Ka, which it
would use to communicate with other agents. This key can
be based on a symmetric or asymmetric1 key cryptosystem.
If a symmetric key mechanism is used, we suggest that the
agent, in addition to the general master key, also use a specific
master key,Ka1;a2 for each agent that it communicates with,
for better privacy and stronger authentication. If more than
two agents share a single master key, any of those agents can
masquerade as the other or eavesdrop on all the conversations
between the agents sharing the key. If a master key is shared
by more than two agents, the strength of security is directly
related to the degree of trust between the agents.

If an agent does not share a master key,Ka1;a2 with an-
other agent, it can use its master key,Ka, or can use the ser-
vices of a central authentication server to generate such a key.
The agents may use different keys in either direction of mes-
sage flow i.e.,Ka1;a2 is created bya1 and would be used
whena1 is sending a message toa2andKa2;a1 is created by
a2and would be used whena2 is sending a message toa1.

If an asymmetric key mechanism is used, a unique key for
each pair of agents is not necessary, as the agent can use the
public key of its peer agent to encrypt the message and pre-
vent eavesdropping. It can also use its private key to sign the
message and prove its identity to its peer. We assume that
the agents know the master key of the other agents. We also
suggest a secure mechanism to do master key lookup.

Session key. In the enhanced model, the agents use an ad-
ditional key, the session key, to ensure privacy, message in-
tegrity and proof of identity. The session key can be symmet-
ric or asymmetric and can be generated with the help of the
authentication server. The session keys are set up by using
a protocol explained later which requires the use of a master
key to ensure security.

1Public key cryptosystems are a very familiar example of an
asymmetric key system.



The agents can use either the session or master key for ex-
changing messages and must inform the other agent of the
key that was used for encryption to ensure proper decryption.
When agents exchange keys, they encrypt them using the cur-
rent session or master key. Keys are never exchanged in clear
text form. We recommend the use of the enhanced security
model 2 with an expensive master key and a cheap session
key which is changed frequently.

Message Id. The message ID is used in the enhanced secu-
rity model to protect agents from attacks by message replay.
When the two agents establish a session key, they also ex-
change a message ID which the sender would use in the next
message. Every message from an agent would carry a mes-
sage ID and a new message ID for the next message. Each
message ID is used only once to prevent replay and they are
encrypted using the session or master key for security.

Message Digest. Each secure message generated using this
architecture has a message digest or signature associated with
it. The digest is calculated using a secure hash function like
MD2, MD5 or SHS[9]. This hash function computes a dig-
ital fingerprint of the message (i.e., acts as a ”checksum” for
the message). The sender then encrypts this digest using the
session or master key and attaches it to the message.

This encrypted message digest forms the core of the secu-
rity architecture. The receiver of a message uses this digest
to verify the identity of the sender and the integrity of the
message. The digest also protects the message ID field from
being hijacked and used in a different message.

2.2 Changes to KQML
In order to implement this security architecture we propose
several new KQML performatives, several new parameters
and some modifications to a proposed standard ontology for
agents.

Ontological assumptions. We assume that KQML-
speaking agents use a basic agent ontology which provides a
small set of classes, attributes and relations helpful in talking
about agents, their properties and the relationships and events
in which they partake. Assuming this ontology, this architec-
ture introduces a new sub-class of agent namedauthenticator
and a new relation,key/5 which describes a key used by an
agent:

(key <sending-agent>
<receiving-agent>
<master-key?>
<key-type>

2This may not always be possible. The enhanced security model
cannot be used if the sender of a message does not know who the
intended recipient is; i.e in the case of facilitation performatives
the facilitator determines the intended recipient and not the message
originator.

<encrypted-key>)

An instance of this relation specifies a key that the sending
agent will use in secure communication with the receiving
agent. If the third argument istrue then the key is a master
key, else it is a session key. If the receiving agent is a vari-
able (e.g.,?), then the key is used by the sending agents for
communication with all agents. Note that this would typi-
cally be the case for asymmetric keys. We assume that agent
addresses are represented in this ontology with theaddress/3
relation:

(address <agent>
<transport>
<transport-address>)

Instances of this relation specify transport addresses for the
agent given in the first argument, as in:

(address r2d2 smtp r2d2@umbc.edu)
(address r2d2 tcpip (cujo.cs.umbc.edu 8088))

These addresses are known to special agents, such asagent
name serversandauthenticator agents.

Several new KQML parameters are required to implement
the security architecture.

:auth-digest (<digest-type> <encrypted-digest>). The
digest-typespecifies the hashing function used (MD4, MD5,
etc.) to compute the message digest. Theencrypted-digestis
the message digest encrypted using the key specified by the
:auth-keyparameter. This parameter should be present to pre-
vent message hijack, and to provide for sender authentication
and integrity assurance.

:auth-msg-id (<msg-id><encrypted-msg-id> This pa-
rameter is required only in the enhanced security model
where it is used prevent message replay. The value is a list
whose first element is the agreed upon random string, orNIL

if this is the first message. The second element specifies the
message ID for the next message and is encrypted using the
key specified by the:auth-keyparameter. For effective pre-
vention of message replay, this parameter should be present
in each message.

:auth-key (<bool> <key-type> <encrypted-key>).
This parameter specifies the key being used to encrypt any
:auth-digestand:auth-msgparameters present. If the first el-
ement of the triple is istrue then the master key is used3,
otherwise, the session key is used.

The following new KQML performatives have been added
to implement the security architecture.

auth-link. The sender wishes to authenticate itself to the
receiver and set up a session key and message ID.4

3An agent would use the master key for encryption if it does not
share a session key with the receiving agent or if it does not know
the receiver in advance. Under these circumstances, it could use this
parameter to help the receiver in choosing the proper decryption key.

4We could eliminate the need for this performative if we are will-
ing to send anachievewith an embeddedauth-challengebut this is
simply a mater of protocol detail design.



auth-challenge. The sender challenges the identity of the
receiver in response to anauth-link. The sender encrypts a
random string using the master keyKs;r or Ks and sends it
as:content.5

auth-private. The sender is sending a confidential mes-
sage to the receiver. The:contentparameter contains the en-
crypted message and the:auth-keyparameter specifies the en-
cryption key. The:auth-digestparameter should be present
to verify the identity of the sender and the:auth-msg-idand
:auth-keyparameters may be present if enhanced security
model is used.

help. We introduce a new generic performative by which
an agent can ask another for help in processing the the embed-
ded performative given as the value of the:contentparameter.
The nature of the ”help” is determined by the embedded per-
formative and the value of the:ontologyparameter. If the
:ontology is authentication, then a crypto-unaware agent is
enlisting the help of a trusted friend to process a performative
it has received, which is included as the value of the :content
parameter. This embedded message can be either anauth-
link or a generic message to be authenticated. In the case of a
auth-link (i.e., a challenge), the appropriate response is a re-
ply with a random challenge string. In the case of a message
to be authenticated, the response will be an error or a reply to
forward.

3 Security model
An implementation should support the following protocol to
conform with the basic security model. This model supports
authentication, integrity and privacy of data. If asymmetric
keys are used for session and master keys, this model also
supports non-repudiation of origin.

When R2D2 sends a secure message to C3PO, it would
compute a message digest and encrypt it using the master key
(as indicated by the valueT for the:auth-keyparameter).

<performative>
:sender R2D2
:receiver C3PO
:auth-key T
:auth-digest (<digest-type><encrypted-digest>)
...

Alternatively, if R2D2 needs to send a confidential message
to C3PO, it can encrypt the message and embed it in anauth-
privateperformative.

auth-private
:sender R2D2
:receiver C3PO
:auth-key T
:auth-digest (<digest-type> <encrypted-digest>)

5Again, if we were motivated to decrease the number of perfor-
matives at the expense of putting more in the authentication ontol-
ogy, we could represent anauth-challengeperformative as anask-
onewith :contentof (encrypt ?s ES)where ES is the encrypted string
and the encrypt/2 relation holds between the string with respect to
the current key.

:content <encrypted-KQML-message>

This model can be used when R2D2 does not know the recip-
ient in advance, e.g., for messages to be broadcast or routed
by a facilitator agent, or if R2D2 and C3PO do not require
prevention of message replay and can afford the cost of using
the master key.

In the above message, the:auth-digestparameter can be
used to verify the integrity of the message, authenticate the
sender and ensure non-repudiation of origin (if the master key
is asymmetric in nature). If the message has been corrupted,
the message digest will not agree with the value of the:auth-
digestparameter. Since the message digest is encrypted with
the master key of the:sender, only the:senderor the agents
with which the:sendershares the encryption key could have
generated the message. If the master key is an asymmetric
key, only the:sendercould have generated the message, as
only the :senderknows the private key that has been used
for encryption. Note that we can only verify the identity of
the generator (i.e., the message was encrypted by the:sender
agent) of the message. This message can be a replay of a
legitimate message previously sent by the generator.

3.1 Enhanced security model

The enhanced security model adds prevention of message
replay, and stronger non-repudiation of message origin (if
asymmetric keys are used). Even though non-repudiation
can be achieved in the basic security model, we can only be
sure that the message was generated by the sender, as a rogue
agent can replay a message and we will not be able to detect
it.

In [?] we demonstrate how the new KQML performatives
and parameters can be used to converse/communicate se-
curely, the role of authenticator agents for key registration
and management. In the remainder of this section we give
two small examples and show how the protocols can be cap-
tured in Protolingua.

Self authentication

Agent R2D2 has cryptographic capabilities and would like to
prove its identity to agent C3PO. The agents would follow the
following handshake protocol to achieve it.

1. auth-link

2. auth-challenge

3. reply

auth-private

R2D2 C3PO

5. <performative>/

4. reply/error

Figure 1:The self authentication protocol is initiated by an
agent who wants to establish its identity before beginning
a dialog.

R2D2 sends anauth-linkperformative to C3PO.



auth-link (1)
:sender R2D2
:receiver C3PO
:reply-with <expression>

If C3PO will not authenticate senders, it can respond with
an error, otherwise it sends aauth-challengewith a random
string encrypted using the master key. A random string is
used to prevent message replay.

auth-challenge (2)
:sender C3PO
:receiver R2D2
:in-reply-to <expression>
:reply-with <expression>
:content <encrypted-random-string>

R2D2 responds with areply performative with the:auth-
digest, :auth-msg-idand new session key (if present) en-
crypted in the master key. The value of:contentand :auth-
msg-idis the decrypted random string. The session key pa-
rameter is optional.

reply (3)
:sender R2D2
:receiver C3PO
:in-reply-to <expression>
:reply-with <expression>
:auth-digest (<digest-type> <encrypted-digest>)
:auth-msg-id (<msg-id> <encrypted-msg-id>)
:auth-key (T <key-type> <encrypted-key>)
:content <random-string>

Now, C3PO can verify if the sender is R2D2 by inspecting
the random string. Only R2D2 (or in the case of symmet-
ric key, one of the other agents which shares the same key)
could have decrypted the random string as it was encrypted
using the master key. The message digest can be used for
non-repudiation if asymmetric keys are used.

C3PO responds with areply or anerror depending on the
success of authentication (3).

Now, R2D2 can send an authenticated message to C3PO
by using the session key or master key to encrypt the message
digest and a non replayable message by using the:auth-msg-
id parameters.

<performative> (4a)
:sender R2D2
:receiver C3PO
:auth-digest (<digest-type> <encrypted-digest>)
:auth-msg-id (<msg-id> <encrypted-msg-id>)
:auth-key (<bool> <key-type> <encrypted-key>)
...

Or if R2D2 needs to send a confidential message to C3PO,
it can encrypt the message and embed it in anauth-private
performative.

auth-private (4b)
:sender R2D2
:receiver C3PO
:auth-digest (<digest-type> <encrypted-digest>)
:auth-msg-id (<msg-id> <encrypted-msg-id>)
:auth-key (<bool> <key-type> <encrypted-key>)
:content <encrypted-KQML-message>

Crypto un-aware agents
Agent Leia may not have crypto capabilities. But it trusts its
friend R2D2 and R2D2 is prepared to authenticate messages
on behalf of Leia. Since Leia does not have crypto capabili-
ties, it will not acceptauth-privateperformative. The agents
would follow the handshake protocol given below to verify
SkyWalker's identity.

SkyWalker Leia R2D2

auth-private

1. auth-link 2. auth-challenge-help

4. auth-challenge

5. reply 6. auth-mesg-help

3. reply

9. <performative>/

8. reply/error 7. reply/error

Figure 2:Using the trusted friend protocol, agent leia asks
agent R2D2 for help in authenticating agent Skywalker.

Agent SkyWalker begins by sending Agent Leia anauth-
link message to initiate the process of proving its identity to
Leia.

auth-link (1)
:sender SkyWalker
:receiver Leia
:reply-with <expression>

When Leia receives anauth-linkmessage from SkyWalker,
Leia requests a challenge string from its trusted friend, R2D2.

help (2)
:sender Leia
:receiver R2D2
:reply-with <expression>
: ontology authentication
:content (auth-link

:sender SkyWalker
:receiver Leia
:reply-with <expression>)

R2D2 will generate a random string on behalf of Leia, encrypt
it using the master key (shared by Leia and SkyWalker or
Leia's master key, which R2D2 knows) and will forward it to
Leia.

reply (3)
:sender R2D2
:receiver Leia
:in-reply-to <expression>
:content (SkyWalker <encrypted-random-string>)

Leia will construct anauth-challengeperformative and send
it to SkyWalker. Subsequent performative from SkyWalker
with an:auth-digestwill be forwarded to R2D2.

auth-challenge (4)
:sender Leia
:receiver SkyWalker
:reply-with <expression>
:in-reply-to <expression>
:content <encrypted-random-string>

SkyWalker will respond with a securereply.
reply (5)

:sender SkyWalker
:receiver Leia



:reply-with <expression>
:in-reply-to <expression>
:auth-digest

(<digest-type> <encrypted-digest>)
:auth-msg-id (<msg-id> <encrypted-msg-id>)
:auth-key (T <key-type> <encrypted-key>)
:content random-string

Leia will wrap the response in anhelpand send it to R2D2.

help (6)
:sender Leia
:receiver R2D2
:reply-with <expression>
:ontology authentication
:content (reply

:sender SkyWalker
:receiver Leia
... message (5) ...)

R2D2 will respond with areply or anerror (7). Leia would
forward the R2D2's reply to SkyWalker (8). The handshake
is now complete and SkyWalker can send secure performative
to Leia, which Leia would verify with the help of R2D2 (9).

4 Conclusion
The proposed security model addresses privacy, authentica-
tion and non-repudiation (if asymmetric key mechanism is
used for the master and session keys) in agent communica-
tion.

The limitations of our agent security model limitations are
discussed in detail in [CHELIAH95] and briefly touched on
here. The model does not provide a mechanism to exchange
credentials nor support the non-repudiation of message re-
ceipt. Message replay detection requires that recipients is
known in advance cuasing problems in an agent architec-
ture whichh makes use of facilitator class agents to automat-
ically rout messages whose intended recipients are described
in general terms by the sending agent. The security architec-
ture requires that agents maintain state information, e.g. next
message ID and next session key, to prevent message replay
attack and cipher attack.

Ultimately, this security model depends on the strength of
the crypto algorithm, message digest function and the random
number generator used by the agent for its effectiveness.

References
[1] Draft specification of the KQML agent communication

language, Tim Finin, Jay Weber et al, Jun 15 1993,
http://www.cs.umbc.edu/kqml/kqmlspec/spec.html

[2] Security Mechanisms in High-Level Network Protocols, Vic-
tor L.Voydock, Stephen T. Kent, ACM Computing Surveys,
Vol.15, No. 2, 135-171, Jun 83

[3] OSTF RFP3 Submission, Corba Security, OMG Document
Number 95-3-3, Mar 8 1995, http://www.omg.org/docs/95-3-
3.ps

[4] Privacy Enhancementfor Internet Electronic Mail: Part I: Mes-
sage Encryption and Authentication Procedures, J. Linn, Oct
02 1993, http://ds.internic.net/rfc/rfc1421.txt

[5] Security in
a Distributed Computing Environment, OSF-O-WP11-1090-3,
http://www.osf.org/comm/lit/OSF-O-WP11-1090-3.ps

[6] Project Athena Technical Plan, Section E.2.1, Kerberos Au-
thentication and Authorization System,
S.P.Miller, B.C.Neuman, J.I.Schiller and J.H.Saltzer, Oct 27
1988, ftp://athena-dist.mit.edu/pub/kerberos/doc/techplan.PS

[7] Limitations of the Kerberos Authentication System, S.M.
Bellovin,
M. Merritt, Proceedings of the Winter 1991 Usenix Confer-
ence, Jan 1991, ftp://research.att.com/dist/internetsecurity/-
kerblimit.usenix.ps

[8] Security Service API: Cryptographic API Recommenda-
tion, NSA Cross Organization, CAPI Team, Jun 12 1995,
http://www.omg.org/docs/95-6-6.ps

[9] RSA Labs' frequently asked questions (FAQ),
http://www.rsa.com/rsalabs/faq

[10] Software Design Document for KQML, Revision 3.0, Mar
1995, LORAL Corporation, Paoli PA, USA

[11] Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire.
KQML: an information and knowledge exchange protocol. In
Kazuhiro Fuchi and Toshio Yokoi, editors,Knowledge Build-
ing and Knowledge Sharing. Ohmsha and IOS Press, 1994.

[12] Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire.
The KQML information and knowledge exchange protocol.
In Third International Conference on Information and Knowl-
edge Management, November 1994.

[13] Michael Genesereth and Richard Fikes. Knowledge inter-
change format, version 3.0 reference manual. Technical re-
port, Computer Science Department, Stanford University, June
1992.

[14] Mike Genesereth. An agent–based approach to software inter-
operability. Technical Report Logic–91–6, Logic Group, CSD,
Stanford University, February 1993.

[15] Michael R. Genesereth and Steven P. Katchpel. Software
Agents. newblock Communications of the ACM, v37, n7, pp
48–53, 147, 1994.

[16] Daniel R. Kuokka, James G. McGuire, Jay C. Weber, Jay M.
Tenenbaum, Thomas R. Gruber, and Gregory R. Olsen. Shade:
Technology for knowledge–based collaborative. InAAAI
Workshop on AI in Collaborative Design, 1993.

[17] Yannis Labrou and Tim Finin. A semantics approach for
KQML – a general purpose communication language for soft-
ware agents. InThird International Conference on Informa-
tion and Knowledge Management, November 1994. Avail-
able ashttp://www.cs.umbc.edu/kqml/papers/-
kqml-semantics.ps .

[18] James G. McGuire, Daniel R. Kuokka, Jay C. Weber, Jay M.
Tenenbaum, Thomas R. Gruber, and Gregory R. Olsen. Shade:
Technology for knowledge–based collaborative engineering.
Journal of Concurrent Engineering: Applications and Re-
search (CERA), 1(2), September 1993.

[19] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator,
and W. Swartout. Enabling technology for knowledge sharing.
AI Magazine, 12(3):36–56, Fall 1991.

[20] Ramesh Patil, Richard Fikes, Peter Patel-Schneider, Don-
ald McKay, Tim Finin, Thomas Gruber, and Robert Neches.
The DARPA knowledge sharing effort: Progress report. In
B. Nebel, C. Rich, and W. Swartout, editors,Principles of



Knowledge Representation and Reasoning: Proc. of the Third
International Conference (KR'92), San Mateo, CA, November
1992. Morgan Kaufmann.

[21] M.Tenenbaum, J. Weber, and T. Gruber. Enterprise integration:
Lessons from shade and pact. In C. Petrie, editor,Enterprise
Integration Modeling. MIT Press, 1993.

[22] Chelliah Thirunavukkarasu. A Security Architecture for
KQML. Technical Report MS-EECS-95-nn, Computer Sci-
ence and Electrical Engineering Department, University of
Maryland Baltimore County. August, 1995.

[23] KQML Agent Technology Software. UMBC technical report.
1995.


