GASSATA, a Genetic Algorithm
as an Alternative Tool
for Security Audit Trails Analysis

Ludovic ME
SUPELEC
B.P. 28
35511 Cesson Sévigné Cedex
France
lme@supelec-rennes.fr

Abstract

Security audit efficiency is low because the security officer has to man-
age such a huge amount of data recorded in the audit trail, that the task
is humanly quite impossible.

Therefore, our objective is to design an automatic tool to increase the
security audit trail analysis efficiency. The tool, so called GASSATA, for
Genetic Algorithm for Simplified Security Audit Trails Analysis, should be
viewed as an additional tool in the set of tools which allow the security
officer to keep a sharp eye on potential intrusions.

The main ideas on which our work is based are the following : (i)
anomaly detection! (i.e. answering the question “Is the user’s behavior
normal according to the past?”) is well treated by tools as NIDES, so we
choose to investigate misuse detection (i.e. answering the question “does
the user’s behavior correspond to a known attack described as an attack
scenario?”), (ii) we have to detect intrusions on heterogeneous networks
on which the construction of a global time is impossible, so we eliminate
the timing aspect of the attack scenarii (that is the reason why we qualify
our analysis by the “simplified” adjective) which are given as sets of events
generated by the attacks, (iii) our approach is pessimistic in the sense that
we try to explain the data contained in the audit trail by the occurrence
of one or more attack, (iv) this problem of explanation is NP-Complete,
so we use an heuristic method, genetic algorithms, to solve it.

IThe statistical approach mainly used to enforce anomaly detection leads to some problems:
the choice of the parameters of the statistical model is tricky, the statistical model leads to
a flow of alarms in the case of a noticeable systems environment modification and a user can
slowly change his behavior in order to cheat the system.

Our presentation is organised as follows. Section 1 presents our view of
the security audit trail analysis problem. In section 2 we show how to apply
genetic algorithms to this problem. Section 3 discusses our experiments
which exhibit fairly good results. Finally, section 4 concludes and proposes
furthur work.

1 Our View of the Security Audit Trail Anal-
ysis Problem

Formally, our approach can be expressed by the following statement:

e let N, be the number of type of audit events and N, the number of potential
known attacks.

o let AE be an N. x N, attacks-events matrix which gives the set of events
generated by each attack. AFE;; is the number of audit events of type 2
generated by the scenario j (AF;; > 0) (See Fig. 4 for an example of such
a matrix).

e let R be a N,-dimensional weight vector, where R; (R; > 0) is the weight
associated with the attack ¢ (R; is proportional to the risk inherent in the
attack scenario 7).

o let O be a N.-dimensional vector where O; counts the number of events of
type ¢ present in the audit trail (O is called “observed audit vector”).

o let H be a N,-dimensional hypothesis vector, where H; = 1 if the attack 2
is present according to the hypothesis and H; = 0 otherwise (H describes
a particular attack subset).

To explain the data contained in the audit trail (i.e. O) by the occurrence of
one or more attack, we have to find the H vector which maximizes the R x H
product (it’s the pessimistic approach: finding H so that the risk is the greatest),
subject to the constraint (AE.H); < O;, (1 <i < N,) (see Fig. 1).

Finding the “right” H vector is reductible to the zero-one integer program-
ming problem which is known to be NP-complete. The application of classical
algorithms is therefore impossible is our case where N, equals to several hundreds.

The heuristic approach that we have chosen to solve that NP-complete prob-
lem is the following: a hypothesis is made (e.g. among the set of possible attacks,
attacks ¢, j and k are present in the trail), the realism of the hypothesis is eval-
uated and, according to this evaluation, an improved hypothesis is tried, until a
solution is found.

In order to evaluate a hypothesis corresponding to a particular subset of
present attack, we count the number of events of each type generated by all

1 i Na — .
_— H | i = Maximum ’?

:
Na
i AE H [—_— i X H . AE, > i 9
| et

Figure 1: Our View of the Security Audit Trail Analysis Problem

the attacks of the hypothesis. If these numbers are less than or equal to the
number of events recorded in the trail, then the hypothesis is realistic.

The last problem is to find an algorithm to derive a new hypothesis based on
the past hypothesis: it is the role of the genetic algorithm.

2 Using Genetic Algorithms for Misuse Detec-
tion

Genetic algorithms ((GA) are optimum search algorithms based on the mechanism
of natural selection in a population. A population is a set of artificial creatures
(individuals or chromosomes). These creatures are strings of length 1 coding a
potential solution to the problem to be solved, most often with a binary alphabet.
The size L of the population is constant. The population is nothing but a set of
points in a search space. The population is randomly generated and then evolves:
in every generation, a new set of artificial creatures is created using the fittest or
pieces of the fittest individuals of the previous one. The fitness of each individual
is simply the value of the function to be optimized (the fitness function) for
the point corresponding to the individual. The iterative process of population
creation is achieved by three basic genetic operators: selection (selects the fittest
individuals), reproduction or crossover (promotes exploration of new regions of
the search space by crossing over parts of individuals) and mutation (protects the
population against an irrecoverable loss of information). The general structure
of a GA is thus the following:

Random generation of the first generation
Repeat

Indiwvidual Selection

Reproduction

Mutation
Until stop criteria is reached

Genetic operators are randomized ones but genetic algorithms are no simple
random walks: they efficiently exploit historical information to speculate on new
search points with expected improved performance.

Two sub-problems arise when applying GAs to a particular problem: (i) cod-
ing a solution for that problem with a string of bits and (ii) finding a fitness
function to evaluate each individual of the population.

2.1 Coding a Solution with a Binary String.

An individual is a 1 length string coding a potential solution to the problem to
be solved. In our case, the coding is straightforward: the length of an individual
is N, and each individual in the population corresponds to a particular H vector
as defined in section 1.

2.2 The Fitness Function.

We have to search, among all the possible attack subsets, for the one which
presents the greatest risk to the system. This results in the maximization of the
product R.H. As GAs are optimum search algorithms, finding the maximum of
a fitness function, we can easily conclude that in our case this function should be
made equal to the product R.H. So we have:

Nq
Fitness = Z R;.I;

=1

where [is an individual.

This fitness function does not, however, take into account the constraint fea-
ture of our problem which implies that some hypotheses (i.e. some individuals)
among the 2V« possible ones are not realistic. This is the case for some 7 type of
events when (AE.H); > O;. As a large number of individuals do not respect the
constraint we decided to penalize them by reducing their fitness values. So we
compute a penalty function (P) which increases as the realism of this individual
decreases: let T, be the number of types of events for which (AFE.H); > O;, the
penalty function applied to such an H individual is then:

P=T7

Two parts fitness function

i AE
ij

Individua
H— |

Figure 2: A Fitness Function for Using Genetic Algorithms on Misuse Detection

A quadratic penalty function (i.e. p = 2) allows a good discrimination among
the individuals. The proposed fitness function is thus the following:

Na
F(L)=a+ (Z R;.I; — B.T. ‘2)

i=1

The 3 parameter makes it possible to modify the slope of the penalty function
and a sets a threshold making the fitness positive. If a negative fitness value is
found, it is equaled to 0 and the corresponding individual cannot be selected. So
the a parameter allows the elimination of too unrealistic hypotheses.

See figure 2.2 which illustrates the choices of the individuals and of the fitness
function.

3 Experimental Results for Simulated Users
and Attacks

3.1 Experimental Environment

The system AIX offers a security audit subsystem, allowing to generate various
kinds of audit events which are recorded in a protected file. For our experiments,
we use this audit subsystem.

Audited hosts Audit host (GASSATA)

Host 1 4 N\
I N\
= ‘ ‘
Log g
P
generator E Syntax GASSATA AG
Analyse events
e o [Network
N - ra\ Y b
- S - N
c, o
L ——> Nework . 4
Log 3 | interface
T e— —>
generator 2 \‘ | Rules Attacks
- —
. 20
Host 2 \\/
r ~ . J
, N\
Log 5
generator | B < Hosts config Configuration module
N 7,
) N J

Figure 3: Architecture of GAsSATA

Our prototype, GASSATA (see figure 3 which gives its architecture), finds
the H vector which maximizes the R.H product, subject to (AE.H); < O; (1 <
i < N,). If the audit session is too long, this constraint is always enforced and
GASSATA converges on the N,-dimensional unit vector. To avoid this problem,
the duration of the audit session should be chosen carefully. This is why we work
on the basis of 30 minute audit sessions. We translate the audit trail into user-
by-user audit vectors with a linear one-pass algorithm. (In a real environment,
successive audit trails and audit vectors must be archived on tapes for possible
future investigations.)

To perform realistic experiments on several user types., we defined the follow-
ing 4 kinds of users: the inexperienced user, the novice developer, the profes-
sional developer and the UNIX intensive user. Each kind of user is defined by a
sequence of commands which could be completed by this user over a 30 minute
period. Each of these sequences is translated into an observed audit vector. We
designed an Attacks-Events matrix including 24 different attacks. An example of
an attack is given by the following commands?, which allow the attacker to print
any file (before step 2, the attacker has to make sure that there are jobs waiting
in the print queue):

> touch £
> 1lpr -s £

2These commands have to be translated into AIX audit events which appear in the ma-
trix. The length of 30 minutes is just an example. Nevertheless, the Attack-Events matrix
corresponds to that length.

Attaks

User_Login fail 3. ...
User Login (23ha6h) ||. . . . 1

Short_Session A |

User_SU OK .3 .

User_SU fail .

who, w, finger,f,ps... ||. 3 8

more, pg, cat, Vi, ... 2 S
Is OK 30.

1s fail 5

df, hostname, uname . S

arp, netstat, ping O

ypcat3

lpr O (O I |

rm, mv o1

In O |

whoami, id
rexec, rlogin, rsh, ... o E
Proc_Execute . 3 . . . 35 . 8 3 2 3 . . 103 . 300. 2 . 5
Proc_SetPri L. oo oo ... 100.

File_Open fail e 2

File_Open fail cp e 1

File_Open .netrc . |

File_Read Ipr S O
File_Read passwd, ... ||. B .
File_Write passwd, ...||. 1
fail
File_Write cp OK e {0
File_Unlink rm A 1 0
File_Mode P

Figure 4: An example of attacks matrix

>rm £
> In -s /etc/security/passwd f

The number of events resulting from the 24 attacks is 28 (so we have here a 24 x 28
matrix, see figure 4). (We used also 200 x 28 matrix in order to appreciate the
performances of GAsSATA in terms of run times, see section 3.2 and figures 7

and 8.)

In order to appreciate the results given by GAsSATA, we must know in ad-
vance the set of attacks really presents in the analysed audit trail. It is why
attacks are simulated by including. in the observed audit vectors, events corre-
sponding to one or more attacks. Moreover, we have to appreciate GAsSATA’s
result when no attack is included in the trail.

Each experiment performed can be characterized by a 4-tuple (P., P,. L, a)
where P, is the crossover probability, P, is the mutation probability, L the pop-
ulation size, and a the number of attacks actually presents in the audit trail. For
each value of the 4-tuple, we perform 10 runs (all the following results are aver-
ages over the 10 runs). From a genetic point of view, it is interesting to analyse
the influence of each parameter. From a security point of view, the quality of the

0.9
0.8
0.7
0.6
0.5 n
0.4 .
0.3 n
0.2 .
0.1 .

0 20 40 60 80 100

Figure 5: Evolution of 7, and 7T, vs generation

detection is more important. We focus here on the security point of view and to
appreciate the detection’s quality, we define two ratios, T}, and T,, as follows:

e T, is the number of individuals in which bits corresponding to present at-
tacks are 1 out of the total number L of individuals,

e T, is the number of individuals in which bits corresponding to absent attacks
are 1 out of the total number L of individuals.

We note T),, and T,, the values of T,, and T, for the generation :. Thus, we
have T,, ~ 0.5 and T,, ~ 0.5 (the initial population is randomly generated) and
should have 7, . =1and T, . =0 (all the present attacks are detected and
no absent attack is detected).

In order to appreciate the convergence of the population and the time needed
for a detection, we compute, for each generation, the minimum, maximum and

average whole population fitness values.

3.2 Results

Figure 5 shows the evolution of T}, and T, versus the generation number (i.e.
versus time). It shows that there is a good discrimination between present and
absent attacks: the mean values of T, and T,,,, are respectively 0.996 and

0.0044. We are close to the optimal values 1 and 0. The number of attacks
actually present in the trail have no influence on this result.

250

200

150

100

50

80 100

Figure 6: Average min, max and avg fitness for 10 runs (A = 500, P. = 0.6,
P, =0.002 and a = 2) vs generation

Figure 6 shows that the maximum fitness value converges quickly on the
optimum (after about 20 generations with a (24 x 28) Attacks-Events matrix.
The remainder of the population follows and after 100 generations, the average
fitness is about 99% of the maximum fitness. Once again, the number of attacks
present in the trail have no influence on this result.

If the number of attacks coded in the Attacks-Events matrix grows, the final
generation number has to increase to keep the detection’s quality at the same level

(i.e. T, and T,

Pfinal A final
of the execution time when the number of attacks grows. When considering 200
attacks, GASSATA needs 10 minutes and 25 seconds to give the result of the

analysis. Figure 8 compares the evolution of the number of possible solutions

close to their optimal values). Figure 7 shows the evolution

and the evolution of the execution time in seconds when the number of attacks
coded in the matrix grows: the first grows exponentially whereas the second grows
polynomially. When considering 24 attacks. the number of tried hypothesis out
of the total number of possible solution is 0.003. With 100 attacks it becomes
5.9 x 1072% and with 200 attacks 7.7 x 1075, Tt shows that genetic algorithms
constitute a powerful heuristic method.

Finally. let us note that the duration of the audit session has no influence on
the execution time because it only depends on the sizes of the two matrix H and
AFE which are constant.

700 I I I

”exectime.res” ——

600

500

400

300

200

100

20 40 60 80 100 120 140 160 180 200

Figure 7: Execution time in seconds vs number of attacks in the matrix

4

Future Work

Some remaining problems (arising due to the use of predefined attack scenarios
or to our simplified view of the problem) motivate future work :

We are not able to take into account attacks characterized by event absence
(e.g a programmer who does not use the cc compiler).

By using a binary coding for the individuals, we cannot detect the multiple
realization of a particular attack. As a consequence, we should try non-

binary GAs.

If the same event or group of events occurs in several attacks, an intruder
realizing these attacks simultaneously does not duplicate this event or group
of events. In that case, G’%SATA fails to find the optimal H vector. We
have no solution to that problem for the moment. This means that we only
consider independent attacks.

GASSATA does not precisely locate attacks in the audit trail. Just like
statistical intrusion detection tools, it only gives a presumptive set of at-
tacks present in a given audit session. The audit trail must be investigated
later by the security officer to precisely locate the attacks.

Our experiments are pretty simple simulations. That first step of experi-
mentation was necessary but now, our objective is to use GAsSATA in a real

10

1le+70
gkky —
” exectime.res”

le+50 _

le+60

le+40 - —
le+30 —
le+20 |- —

le+10 |- -

0 50 100 150 200

Figure 8: Number of possible solutions and execution time in seconds vs number
of attacks in the matrix

environment, for a community of 100-200 real users generating actual audit data
into which we will look for real potential attacks. That second step in experi-
mentation will allow us to compare, on a practical basis, our tool with other ones.

See http://wwuw.supelec-rennes.fr/rennes/si/equipe/lme/these/these-1m.html
for more information on this work.

11

