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Overview

Feature selection is a basic step in the construction of a vector space orbag of
wordsmodel [BB99]. In particular, when the processing task is to partition a given
document collection into clusters of similar documents a choice of good features
along with good clustering algorithms is of paramount importance. This chapter
suggests two techniques for feature or term selection along with a number of clus-
tering strategies. The selection techniques significantly reduce the dimension of
the vector space model. Examples that illustrate the effectiveness of the proposed
algorithms are provided.

4.1 Introduction

A common form of text processing in many information retrieval systems is based
on the analysis of word occurrences across a document collection. The number of
words/terms used by the system defines the dimension of a vector space in which
the analysis is carried out. Reduction of the dimension may lead to significant sav-
ings of computer resources and processing time. However poor feature selection
may dramatically degrade the information retrieval system’s performance.

Dhillon and Modha [DM01] have recently used the sphericalk–means
algorithm for clustering text data. In one of the experiments of [DM01]
the algorithm was applied to a data set containing 3893 documents. The
data set contains the following three document collections (available from
ftp://ftp.cs.cornell.edu/pub/smart):

� Medlars Collection (1033 medical abstracts),
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� CISI Collection (1460 information science abstracts),

� Cranfield Collection (1400 aerodynamics abstracts).

Partitioning the entire collection into3 clusters generates the following “confu-
sion” matrix reported in [DM01]:

Medlars CISI Cranfield
cluster 0 1004 5 4
cluster 1 18 1440 16
cluster 2 11 15 1380

(here the entryij is the number of documents that belong to clusteri and docu-
ment collectionj). The confusion matrix shows that only 69 documents (i.e., less
that 2% of the entire collection) have been “misclassified” by the algorithm. After
removing stopwords Dhillon and Modha [DM01] reported 24,574 unique words,
and after eliminating low–frequency and high–frequency words they selected
4,099 words to construct the vector space model.

The main goal of this contribution is to provide algorithms for (a) selection
of a small set of terms and (b) clustering of document vectors. In particular, for
data similar to described above, we are able to generate better or similar quality
confusion matrices while reducing the dimension of the vector space model by
more than 70%.

The outline of the chapter is the following. A brief review of existing algo-
rithms we employ for clustering documents is provided in Section 4.2. The data
is described in Section 4.3. The term selection techniques along with the clus-
tering results are presented in Sections 4.4 and 4.5, while Section 4.6 contains a
new clustering algorithm along with the corresponding clustering results. Future
research directions are briefly outlined in Section 4.7.

4.2 Clustering Algorithms

In this section, we review two known clustering algorithms we apply to parti-
tion documents into clusters. The means algorithm, introduced in [Kog01b], is a
combination of the batchk�means and the incrementalk�means algorithms (see
[DHS01b]). The Principal Direction Divisive Partitioning method was introduced
recently by D. Boley [Bol98].

4.2.1 Means clustering algorithm

For a set of vectorsX = fx1; : : : ;xdg in Euclidean spaceRw denote the centroid

of the set
1

d

dX
i=1

xi bym(X).
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Let f�lg
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l=1 be a partition ofX with the corresponding centroidsm1 =
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For x 2 �i � X denote the index of the centroid nearestx by min(x)

(i.e.,



x�mmin(x)
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It is easy to see [DHS01b] that
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Next we present the classical batchk�means algorithm and discuss some of its
deficiencies. The algorithm suffers from the two major drawbacks:

Batch k�means clustering algorithm (Forgy [For65]).
For a user supplied tolerancetol < 0 do the following:

1. Start with an arbitrary partitioning
n
�
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ok
l=1

. Set the index of iteration
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2. Generate the partitionnextKM
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l
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�
incrementt by 1.
go to 2

3. Stop.

1. The quality of the final partition depends on a good choice of the initial
partition.

2. The algorithm may get trapped at a local minimum even for a very simple
one dimensional setX.

We address the first point in Sections 4.2.2 and 4.6. The second point is illustrated
by the following example.



76 Dhillon, Kogan, and Nicholas

EXAMPLE 4.2.1 Let X = fx1;x2;x3g with x1 = 0, x2 = 2=3, and

x3 = 1. Consider the initial partition�(0)1 = fx1;x2g, �(0)2 = fx3g with

Q2

n
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1 ; �

(0)
2
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Note that an application of the batchk–means algorithm does not change the ini-

tial partition
n
�
(0)
1 ; �

(0)
2

o
. At the same time it is clear that the partitionf� 01; �

0

2g

(�01 = fx1g, �
0

2 = fx2;x3g) with Q2 f�
0

1; �
0

2g = 2=36 is superior to the initial
partition.

A different version of thek�means algorithm, incrementalk�means cluster-
ing, is discussed next. This version remedies the problem illustrated in Example
4.2.1.

The decision of whether a vectorx 2 �i should be moved from cluster�i to
cluster�j is made by the batchk–means algorithm based on the sign of

� = �kx�m(�i)k
2
+ kx�m(�j)k

2
: (4.3)

If � is negative, then the vectorx is moved by the batchk–means algorithm. The
exact change in the value of the objective function (i.e., the difference between
the “new” and the “old” values of the objective function) caused by the move is

�exact = �
ni

ni � 1
kx�m(�i)k

2
+

nj

nj + 1
kx�m(�j)k

2
; (4.4)

wherenj = j�j j, ni = j�ij are the number of vectors in clusters�j and�i
respectively (see e.g. [Kog01a]). The more negative� exact is the larger the drop
in the value of the objective function. The difference between the expressions

���exact =
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kx�m(�i)k
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kx�m(�j)k

2
� 0
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is negligible when the clusters�i and�j are large. However� � �exact may
become significant for small clusters. For example, forx = x2 in Example 4.2.1
one has� = 0, and�exact < 0. This is why batchk�means misses the “better”
partitionf�01; �

0

2g. The incrementalk�means clustering algorithm eliminates this
problem. Before presenting the algorithm, we need a few additional definitions.

DEFINITION 4.2.1 A first variation of a partitionf� lg
k

l=1 is a partitionf�0lg
k

l=1

obtained fromf�lg
k

l=1 by removing a single vectorx from a cluster�i of f�lg
k

l=1

and assigning this vector to an existing cluster�j of f�lg
k

l=1.

Note that the partitionf�lg
k

l=1 is a first variation of itself. Next we look for the
“steepest descent” first variation, i.e., a first variation that leads to the maximal
decrease of the objective function. The formal definition follows:
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Incremental k�means clustering algorithm (also see [DHS01b], Section 10.8).
For a user supplied tolerancetol < 0 do the following:

1. Start with an arbitrary partitioning
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3. Stop.

EXAMPLE 4.2.2 Let the vector set and the initial partition be given by Example
4.2.1. A single iteration of incrementalk–means generates the optimal partition
�
(1)
1 = fx1g, �(1)2 = fx2;x3g as shown in the following figure.
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While computationally more accurate, incrementalk�means is slower than batch
k�means. Each iteration of incrementalk�means changes cluster affiliation of a
single vector only. The examples suggest the following “merger” of the two algo-
rithms: Unlike the means algorithm of [Kog01b] the algorithm described above
keeps the number of clustersk fixed throughout the iterations. Otherwise the
above algorithm enjoys advantages of the means algorithm:

1. The means algorithm always outperforms batchk�means in cluster quality
(see [Kog01b]).

2. All numerical computations associated with Step 3 of the means algorithm
have been already performed at Step 2 (see (4.3) and (4.4)). The im-
provement over batchk�means comes, therefore, at virtually no additional
computational expense.

For simplicity we shall henceforth refer to Algorithm 4.2.1 as the means
algorithm.

The k�means algorithm is known to be sensitive to the choice of an initial
partition. A clustering algorithm that may be used for generating good initial
partitions is presented next.

4.2.2 Principal Direction Divisive Partitioning

A memory efficient and fast clustering algorithm was introduced recently by D.
Boley [Bol98]. The method is not based on any distance or similarity measure,
and takes advantage of sparsity of the “word by document” matrix.

The algorithm proceeds by dividing the entire collection into two clusters by
using principal directions. Each of these two clusters will be divided into two sub-
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Simplified version of the means clustering algorithm (see [Kog01b]).
For user supplied tolerancestol1 < 0 andtol2 < 0 do the following:
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4. Stop.

clusters using the same process recursively. The subdivision of a cluster is stopped
when the cluster satisfies a certain “quality” criterion (for example, the cluster’s
variance does not exceed a predefined threshold).

Clustering of a set of vectors inRn is, in general, a difficult task. There is,
however, an exception. Whenn = 1, and all the vectors belong to a one dimen-
sional line, clustering becomes relatively easy. In many cases a good partition of
a one–dimensional setY into two subsetsY1 andY2 amounts to a selection of a
number, say�, so that

Y1 = fy : y 2 Y; y � �g ; andY2 = fy : y 2 Y; y > �g (4.6)

(in [Bol98], for example,� is the mean).

The basic idea of Boley’s Principal Direction Divisive Partitioning algorithm
(PDDP) is the following:

1. Given a set of vectorsX in Rn determine the line Ł that approximatesX
in the “best possible way”.

2. ProjectX onto Ł, and denote the projection of the setX byY (note thatY
is just a set of scalars). Denote the projection of a vectorx by y.
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3. PartitionY into two subsetsY1 andY2 as described by (4.6).

4. Generate the induced partitionfX1;X2g ofX as follows:

X1 = fx : y 2 Y1g ; andX2 = fx : y 2 Y2g : (4.7)

D. Boley has suggested the line that maximizes variance of the projections as the
best one dimensional approximation of ann dimensional set. The direction of
the line is defined by the eigenvector of the covariance matrixC corresponding
to the largest eigenvalue. SinceC is symmetric and positive semidefinite all the
eigenvalues�i, i = 1; 2; : : : ; n of the matrix are real and non-negative, i.e.,�1 �

�2 � � � � � �n � 0: Furthermore, while the “scatter” value of the document set
is �1 + �2 + � � �+ �n, the scatter value of the one dimensional projection is only
�1 (see [Bol98]). The quantity

�1

�1 + �2 + � � �+ �n
(4.8)

may, therefore, be considered as the fraction of information preserved under the

projection (in contrast with the “lost” information
�2 + � � �+ �n

�1 + �2 + � � �+ �n
). Inspite

of the fact that the numerator of (4.8) contains only one eigenvalue of a large
matrix the algorithm generates remarkable results (see e.g. [Bol98], [BGG+99a],
[BGG+99b]). For instance, examples provided in [Kog01b] show that an applica-
tion of thek�means clustering algorithm to a partition generated by PDDP leads
to only about5% improvement in the objective function value.

In the next section, we describe the data set and corresponding feature selection
problem considered in this study.

4.3 Data and term quality

Our data set is a merger of the three document collections (available from
http://www.cs.utk.edu/ lsi/):

� DC0 (Medlars Collection 1033 medical abstracts)

� DC1 (CISI Collection 1460 information science abstracts)

� DC2 (Cranfield Collection (1398 aerodynamics abstracts)

The Cranfield collection tackled by Dhillon and Modha contained two empty doc-
uments. These two documents have been removed from DC2. The other document
collections are identical.

We denote the overall collection of 3891 documents by DC. After stopword re-
moval (seeftp://ftp.cs.cornell.edu/pub/smart/english.stop),
and stemming (see [Por80]) the data set contains 15,864 unique terms (no
stemming was applied to the 24,574 unique words reported in [DM01]).
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Our first goal is to select “good” index terms. We argue that for recovering the
three document collections the term “blood” is much more useful than the term
“case”. Indeed, while the term “case” occurs in 253 Medlars documents, 72 CISI
documents, and 365 Cranfield documents, the term “blood” occurs in 142 Med-
lars documents, 0 CISI documents, and 0 Cranfield documents. With each termt

we associate a three dimensional “direction” vectord(t) = (d0(t); d1(t); d2(t)),
so thatdi(t) is the number of documents in a collection DCi containing the term
t. So, for example,d(“case”) = (253; 72; 365), andd(“blood”) = (142; 0; 0).
In addition to “blood”, terms like “layer” (d(“layer”) = (6; 0; 358)), or “retriev”
(d(“retriev”) = (0; 262; 0)) seem to be much more useful than the terms “case”,
“studi” and “found” with d(“studi”) = (356; 341; 238), and d(“found”) =

(211; 93; 322), respectively.

When only the “combined” collection DC of 3891 documents is available the
above described construction of direction vectors is not possible. In Sections 4.4
and 4.5, we present algorithms that attempt to select “useful” terms when the
direction vectord(t) is not available.

For each selection algorithm described in this chapter we introduce a quality
functionalq, so that the quality of a termt is given byq(t). Higher values ofq(t)
correspond to “better” termst. To exploit statistics of term occurrence through-
out the corpus we remove terms that occur in less thanr sentences across the
collection, and denote the remaining terms by slice(r) (r should be collection de-
pendent, the experiments in this chapter are performed withr = 20). The firstl
best quality terms that belong to slice(r) define the dimension of the vector space
model.

In the next two sections, we present two different term selection techniques
along with corresponding document clustering results.

4.4 Term variance quality

We denote the frequency of a termt in the documentd j by fj . Following the
ideas of Salton and McGill [SM83] we measure the quality of the termt by

q0(t) =

n0X
j=1

f2j �
1

n0

2
4 n0X
j=1

fj

3
5
2

; (4.9)

wheren0 is the total number of documents in the collection (note thatq 0(t) is
proportional to the term frequency variance). Tables 4.1 and 4.2 present 15 “best”,
and 15 “worst” terms for slice(20) in our collection of 3891 documents.

To evaluate the impact of feature selection byq0 on clustering we conduct the
following experiment. The best quality 600 terms are selected, and unit norm
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term q0(t) d0(t) d1(t) d2(t)

flow 7687.795 35 34 714
librari 7107.937 0 523 0
pressur 5554.151 57 12 533
number 5476.418 92 204 568
cell 5023.158 210 2 2
inform 4358.370 28 614 44
bodi 3817.281 84 23 276
system 3741.070 82 494 84
wing 3409.713 1 0 216
effect 3280.777 244 159 539
method 3239.389 121 252 454
layer 3211.331 6 0 358
jet 3142.879 1 0 92
patient 3116.628 301 3 0
shock 3085.249 4 1 224

Table 4.1. 15 “best” terms in slice(20) according toq0

term q0(t) d0(t) d1(t) d2(t)

suppos 21.875 6 7 9
nevertheless 21.875 6 11 5
retain 21.875 9 4 9
art 21.875 0 20 2
compos 21.875 5 5 12
ago 21.875 2 18 2
elabor 21.875 3 16 3
obviou 21.897 4 9 6
speak 20.886 6 12 3
add 20.886 3 14 4
understood 20.886 2 14 5
pronounc 20.886 18 0 3
pertain 19.897 3 8 9
merit 19.897 1 9 10
provis 19.897 1 18 1

Table 4.2. 15 “worst” terms in slice(20) according toq0

vectors for the 3891 documents are built (we use thetfn scheme to construct
document vectors, for details see [DM01]). A two step procedure is employed to
partition the 3891 vectors into 3 clusters:
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1. the PDDP algorithm is applied to generate 3 clusters (the obtained clusters
are used as an initial partition in the next step),

2. the means algorithm is applied to the partition obtained in the previous step.

Note that there is noa priori connection between document collectioni and clus-
ter i. Hence, one can not expect the confusion matrix to have diagonal structure
unless rows (or columns) of the matrix are suitably permuted. A good clustering
procedure should be able to produce a confusion matrix with a single “dominant”
entry in each row. The confusion matrices for the three clusters provided in Tables
4.3 and 4.4 illustrate this remark.

DC0 DC1 DC2

cluster 0 272 9 1379
cluster 1 4 1285 11
cluster 2 757 166 8

empty documents
cluster 3 0 0 0

Table 4.3. PDDP generated initial confusion matrix with 470 misclassifieddocuments using
600 bestq0 terms

When the number of terms is relatively small some documents may contain no
selected terms, and their corresponding vectors are zeros. We always remove these
vectors ahead of clustering and assign the “empty” documents into a special clus-
ter. This cluster concludes the confusion matrix (and is empty in this experiment).

DC0 DC1 DC2

cluster 0 1 3 1365
cluster 1 8 1433 18
cluster 2 1024 24 15

empty documents
cluster 3 0 0 0

Table 4.4. Means generated final confusion matrix with 69 misclassified documents using
600 bestq0 terms

While the quality of the confusion matrix presented above is similar to that
reported in [DM01] (see Section 9.1), the dimension of our vector space model,
600, is about only 15% of the vector space dimension reported in [DM01].

The abstracts comprising the document collection DC are relatively short doc-
uments (from a half page to a page and a half long). It is not unusual to find terms
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that occur in many documents only once. Such terms score high by (4.9). At the
same time these terms may lack any specificity. Indeed, the term “studi” with
d(\studi") = (356; 341; 238) is ranked28th by q0, and the term “present” with
d(\present") = (236; 314; 506) is ranked35th. In order to penalize such terms,
we modify (4.9) and introduce the quality of termq 1(t) as the variance oft over
documents that contain the termat least once. That is

q1(t) =

n1X
j=1

f2j �
1

n1

2
4 n1X
j=1

fj

3
5
2

; (4.10)

wheren1 is the number of documents in whicht occurs at least once, andf j � 1,
j = 1; : : : ; n1. Tables 4.5 and 4.6 present the 15 “best”, and the 15 “worst”q 1
terms for slice(20) respectively.

term q1(t) d0(t) d1(t) d2(t)

librari 3147.074 0 523 0
flow 3146.048 35 34 714
number 2734.665 92 204 568
pressur 2528.225 57 12 533
cell 2225.177 210 2 2
inform 1851.231 28 614 44
bodi 1768.182 84 23 276
system 1518.877 82 494 84
shock 1490.113 4 1 224
jet 1463.569 1 0 92
theori 1341.363 23 117 452
method 1303.141 121 252 454
layer 1296.008 6 0 358
patient 1247.944 301 3 0
effect 1210.772 244 159 539

Table 4.5. 15 “best” terms in slice(20) according toq1

We select the best 600 terms and apply first the PDDP algorithm, and then the
means algorithm to the corresponding 3891 vectors. The resulting confusion ma-
trices are given in Tables 4.7 and 4.8. An increase in the number of selected terms
does lead to a modest improvement in the quality of confusion matrices. In what
follows, we summarize the improvement for term selections based onq 0 andq1.
Table 4.9 presents results for terms selected byq0. The first row of Table 4.9 lists
clustering algorithms, and the first column shows the number of selected terms.
The other columns indicate the number of misclassified documents. The displayed
results indicate that the algorithm “collapses” when the number of selected terms
drops below 600. Table 4.10 contains information relevant toq 1.
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term q1(t) d0(t) d1(t) d2(t)

add 0.000 3 14 4
retain 0.000 9 4 9
reproduc 0.000 7 12 5
provis 0.000 1 18 1
pronounc 0.000 18 0 3
diminish 0.000 16 5 14
suppos 0.000 6 7 9
doubt 0.000 4 12 10
speak 0.000 6 12 3
context 0.000 7 45 1
understood 0.000 2 14 5
pertain 0.000 3 8 9
bring 0.000 8 30 8
ago 0.000 2 18 2
occasion 0.000 18 11 1

Table 4.6. 15 “worst” terms in slice(20) according toq1

DC0 DC1 DC2

cluster 0 461 10 1380
cluster 1 3 803 0
cluster 2 569 647 18

“empty” documents
cluster 3 0 0 0

Table 4.7. PDDP generated initial confusion matrix with 1061 misclassified documents
using 600 bestq1 terms

DC0 DC1 DC2

cluster 0 0 3 1360
cluster 1 6 1416 13
cluster 2 1027 41 25

empty documents
cluster 3 0 0 0

Table 4.8. Means generated final confusion matrix with 88 misclassified documents using
600 bestq1 terms

The tables indicate that with 1,300 selected terms (i.e., only about 30% of
the 4,099 terms reported in [DM01]) the number of “misclassified” documents
is slightly lower than the number reported in [DM01].
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documents misclassified by

# of terms pddp means

500 1062 989
600 470 69
700 388 63
1000 236 55
1300 181 53

Table 4.9. Number of misclassified documents for term selection based onq0

documents misclassified by

# of terms pddp means

500 1055 94
600 1061 88
700 617 74
1000 410 64
1300 232 55

Table 4.10. Number of “misclassified” documents for term selection based onq1

In the next section, we introduce a measure of distance between terms. The dis-
tance is based on term co–occurrence in sentences across the document collection.
The quality of a termt presented next is based on distribution of terms “similar”
to t and co–occurring witht in sentences across the document collection.

4.5 Same context terms

The second approach to the term selection problem is based on co–occurrence
of “similar” terms in “the same context”. Our departure point is the definition
(attributed to Leibniz): two expressions are synonymous if the substitution of one
for the other never changes the truth value of a sentence in which the substitution
is made.

We follow ideas of Grefenstette [G.94]: “you can begin to know the meaning
of a word (or term) by the company it keeps” and “words or terms that occur
in ‘the same context’ are ‘equivalent’”, and Sch¨utze and Pedersen [SP95]: “the
assumption is that words with similar meanings will occur with similar neighbors
if enough text material is available.” Profiles introduced below formalize these
notions.
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4.5.1 Term profiles

Our construction is the following:

1. LetT = ft1; : : : ; tmg be an alphabetically sorted list of unique terms that
occur in the document collection DC.

2. For each termt inT denote the set of sentences in DC containingt by s(t).
The size of the set is denoted byjs(t)j, andsmax = max

t2T

js(t)j.

3. For each termt 2 T the profileP(t) is defined next:

DEFINITION 4.5.1 The profileP(t) of the termt is a set of terms from the
list T that co–occur in sentences together with the termt, i.e.,

P(t) = ft0 : t0 2 s(t)g:

ProfileP(t) contains corpus dependent information concerning the termt

and “the company it keeps”. There are number of ways to compute term
similarity based on the respective profiles [Kog02]. A way to express the
similarity is described below.

4. Letfs1; : : : ; sng be the set of all sentences contained in the document col-
lection DC. The “term by sentence” matrixS is anm � n matrix whose
entrySij is the number of times the termti occurs in the sentencesj . The
term ti profile vectorP(ti) = (P1; : : : ; Pm)T is the i–th column of the
symmetric matrixSST . Thej–th coordinate of the vector,Pj =

�
SST

�
ij

,
is the number of times the termsti andtj co-occur in sentences across the
document collection DC. SincePi 6= 0, the vectorP(ti) can be normalized.

5. DEFINITION 4.5.2 Unit profile vectorP(t) of term t is defined to be
P(t)

kP(t)k
.

Words/terms with “similar meanings” (as per a given document collection) gen-
erate similar unit profile vectors (for details see [Kog02]). We next provide a
formula for term quality based on term profile.

4.5.2 Term profile quality

The term profile qualityqp(t) introduced in this section is based on the
distribution of terms similar tot in the profileP(t).

For eacht0 2 P(t) compute the dot productc 0 = P(t)TP(t0). We now sort the
profileP(t) with respect to the dot productsc 0, so that ifP(t) = ft0; t1; : : : ; tng,
(t0 = t), then1 = c0 � c1 � � � � � cn � 0. We denote the frequency of the
termti in the profileP(t) by fi and define the term profile qualityqp(t0) by a
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somewhat contrived formula (justification is given below):

qp(t0) =

�
js(t0)j

smax

�0:2
1

f0 + ke(f)

kX
i=1

"
fici �

 
1�

s
je(f)� fij

ke(f)

!#
; (4.11)

wheree(f) = (1=k)

kX
i=1

fi, and in this experimentk = 2. We note the following

concerning the expression for the profile qualityqp:

1. due to the small power, 0.2, the term

�
js(t0)j

smax

�0:2
penalizes very frequent

collection terms,

2. the normalizing term
1

f0 + ke(f)
attempts to suppress the importance of

very frequent profile terms similar tot0,

3. the termfici reflects the measure of similarity betweent0 andti,

4. the term1 �

s
je(f)� fij

ke(f)
imposes a penalty on a term’s deviation from

the expected frequency.

Table 4.11 and Table 4.12 present 15 “best”, and 15 “worst” terms for slice(20).
For clustering purposes we selected 1,000 best quality index terms. Although

term qp(t) d0(t) d1(t) d2(t)

laminar 0.264 0 0 231
layer 0.205 6 0 358
number 0.204 92 204 568
septal 0.202 25 0 0
free-stream 0.195 0 0 97
boundari 0.195 0 7 413
nephrectomi 0.168 23 0 0
unilater 0.161 27 0 0
defect 0.157 64 5 4
reynold 0.152 0 1 197
mach 0.141 0 0 384
nomin 0.136 2 2 17
moment 0.135 4 4 89
autom 0.128 0 46 0
biliari 0.126 17 0 0

Table 4.11. 15 “best” terms in slice(20) according toqp

each selected term is contained in at least 20 sentences, the selected 1,000 unit
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term qp(t) d0(t) d1(t) d2(t)

determin 0.001 108 116 299
larg 0.001 80 175 201
approxim 0.001 31 46 377
found 0.001 211 93 322
analysi 0.001 42 184 276
includ 0.001 75 169 225
rate 0.001 111 49 145
paper 0.001 31 265 200
experi 0.001 105 133 152
result 0.000 278 288 692
effect 0.000 244 159 539
studi 0.000 356 341 238
gener 0.000 76 311 329
develop 0.000 176 366 264
case 0.000 253 72 365

Table 4.12. 15 “worst” terms in slice(20) according toqp

profile vectorsP(t) of dimension 15,864 (which is the total number of the unique
terms, see Section 4.3) are sparse. The average number of non-zero entries in a
unit profile vector is 617, i.e., less than 4% of 15,864-the dimension of the vector
space.

Next we apply the means algorithm to partition 1,000 term vectors into 3 term
clustersT0,T1 andT2. The partition of the document collection DC is based on
the term clusters. For each documentd we construct a three dimensional vector
(t0(d); t1(d); t2(d)), whereti(d) is the number of terms from term clusterT i

contained in the document. The documentd belongs to document clusteri if

ti(d) � tj(d); j = 0; 1; 2:

The confusion matrix for this partition of 3,891 documents with 105 misclassi-
fied documents is given in Table 4.13. A 30% increase in the number of index

DC0 DC1 DC2

cluster 0 23 32 1386
cluster 1 975 3 1
cluster 2 35 1424 11

empty documents
cluster 3 0 1 0

Table 4.13. Means generated final confusion matrix with 105 misclassified documents
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terms leads to the decrease in the number of misclassified documents to 94, and
eliminates empty documents.

The clustering algorithms discussed so far deal with general vector sets in
Rn. In the next section we present a clustering algorithm specifically designed
to handle unit norm document vectors.

4.6 Spherical Principal Directions Divisive Partitioning

In this section we mimic the simple and elegant idea due to Boley and approximate
a set of unit vectorsX � Rn by a one dimensional great circle ofSn�1. A great
circle is represented by an intersection ofSn�1 and a two dimensional subspace
P ofRn. The proposed algorithm is the following: If, following ideas of [Bol98],

Spherical Principal Directions Divisive Partitioning (sPDDP) clustering al-
gorithm.

1. Given a set of unit vectorsX in Rn determine the two dimensional plane
P that approximatesX in the “best possible way”.

2. ProjectX onto P. Denote the projection of the setX by Y, and the
projection of a vectorx by y (note thaty is two dimensional).

3. If y 6= 0 “push” y 2 Y to the great circle, and denote the corresponding

vector byz =
y

kyk
. Denote the constructed set byZ.

4. PartitionZ into two clustersZ1 andZ2. Assign projectionsy with kyk = 0

toZ1.

5. Generate the induced partitionfX1;X2g ofX as follows:

X1 = fx : z 2 Z1g ; andX2 = fx : z 2 Z2g : (4.12)

the best two dimensional approximation of the document set is the planeP that
maximizes variance of the projections, thenP is defined by two eigenvectors of
the covariance matrixC corresponding to the largest eigenvalues� 1 and�2. The
“preserved” information under this projection is

�1 + �2

�1 + �2 + � � �+ �n
: (4.13)

Note that the quantity given by (4.13) may be almost twice as much as the pre-
served information under the projection on the one dimensional line given by
(4.8). As we show later in this section this may lead to a significant improvement
over results provided by PDDP.
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4.6.1 Two cluster partition of vectors on the unit circle

We now describe in detail Step 4 of Algorithm 4.6. Specifically we are concerned
with the following problem: Given a set of unit vectorsZ = fz1; : : : ; zmg � R

2

partitionZ into two “optimal” clusters�o
1 and�o2 .

A straightforward imitation of Boley’s construction leads to the following so-
lution: If z = z1 + � � � + zm 6= 0, then the line defined byz cuts the plane into
two half–planes. The subset ofZ that belongs to the “left” half–plane is denoted
by Z�, and the subset ofZ that belongs to the “right” half–plane is denoted by
Z+. If z is zero, then, in order to generate the partition, we choose an arbitrary
line passing through the origin.

Lack of robustness is, probably, the most prominent drawback of the suggested
partitioning. Indeed, letfz1; : : : ; zmg be a set of unit vectors concentrated around,
say, the vectore1 = (1; 0)T . If the setZ contains vectorsfz1; : : : ; zmg and their
negativesf�z1; : : : ;�zmg, thenz = 0. This z does not do much to recover
“good” clusters (although�1 = fz1; : : : ; zmg, and�2 = f�z1; : : : ;�zmg looks
like a reasonable partition, see figure below).
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Things get worse whene1 is assigned to the vector setZ, i.e., Z =

fz1; : : : ; zm;�z1; : : : ;�zm; e1g. Now z = e1, and regardless of how “densely”
the vectorsfz1; : : : ; zmg are concentrated arounde1 the clustersZ+ andZ� most
probably contain vectors from both setsfz1; : : : ; zmg andf�z1; : : : ;�zmg. This
poor partition is illustrated by the figure below.
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"separating" line

To define an optimal partition we measure the quality of a partitionf� 1; �2g by
the “spherical” objective function

Qs (f�1; �2g) =







X
z2�1

z






+






X
z2�2

z






 (4.14)

introduced by Dhillon and Modha [DM01]. Denote an optimal partition, that is
one that maximizes (4.14), byf�o

1 ; �
o
2g. It can be seen that for each optimal par-

tition f�o1 ; �
o
2g there is a nonzero vectorxo so that the clusters�o1 and�o2 are

separated by the line passing through the origin and defined byx o (see [DM01]).

Since each unit vectorz 2 R2 can be uniquely represented bye i� with 0 � � <

2� the associated clustering problem is essentially one dimensional. We denote
zj by ei�j , and assume (without any loss of generality), that

0 � �1 � �2 � � � � � �m < 2�:

As in the case of clustering points on a line, it is tempting to assume that for some
j a line passing through the origin and midway betweenz j andzj+1 recovers the
optimal partition. We show by the following example that this is not necessarily
the case.

EXAMPLE 4.6.1 Let z1 = (1; 0)T , z2 = (cos (2�=3� �) ; sin (2�=3� �))
T ,

z3 = �z1, and z4 = (cos (�2�=3 + �) ; sin (�2�=3 + �))
T . It is easy to see

that when� = 0 the optimal partition isf�o
1 ; �

o
kg = ffz1g; fz2; z3; z4gg with

Qs (f�
o
1 ; �

o
2g) = 3.
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While a small positive� (for example� = �=36) does not change the optimal par-
tition, the four “midpoint” lines generate clusters containing two vectors each
(a partition i is generated by a line passing through the origin and the mid-
point betweenzi andzi+1). These partitions do not contain the optimal partition
f�o1; �

o
2g. We next present the four midpoint line partitions with� = �=36.
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To analyze the failure of Example 4.6.1, and to propose a remedy we introduce
the formal definition of the “left” and “right” half–planes generated by a vector
x, and describe a procedure that computes the optimal “separator”x o.

� For a nonzero vectorx 2 R2 we denote byx? the vector obtained fromx
by rotating it clockwise by an angle of900, i.e.,

x? =

�
0 1

�1 0

�
x:

� For a nonzero vectorx 2 R2, and a set of vectorsZ = fz1: : : : ; zmg � R
2

define two subsets ofZ — the “positive”Z+(x) = Z+, and the “negative”
Z�(x) = Z� as follows:

Z+=fz : z 2 Z; z
Tx? � 0g; andZ�=fz : z 2 Z; zTx? < 0g: (4.15)

� For two unit vectorsz0 = ei�
0

andz00 = ei�
00

we denote the “midway”

vectorei
�0+�00

2 by mid (z0; z00).

As the “optimal” separating line in Example 4.6.1 is rotated clockwise to
mid (z2; z1) it crossesz4 changing cluster affiliation of this vector (see figures
below).
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This could have been prevented if instead of rotating the “optimal” separating
line all the way tomid (z2; z1) one would rotate it tomid (z2;�z4). The “opti-
mal” separating line and the line passing throughmid (z2;�z4) and the origin
generate identical partitions (see Table 4.14). In general, if the setZ = fz 1 =
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Table 4.14. Optimal partition

ei�1 ; : : : ; zm = ei�mg is symmetric with respect to the origin, (i.e., for each
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zi 2 Z there existszl 2 Z such thatzi = �zl), then for

x0 = ei�
0

; x00 = ei�
00

; with �j < �0 � �00 < �j+1:

the partitions

fZ+ (x0) ;Z� (x0)g ; and fZ+ (x00) ;Z� (x00)g

are identical. This observation suggests the following simple procedure for
recovering the optimal partitionf�o

1 ; �
o
2g:

1. LetW = fw1; : : : ;wm;wm+1; : : : ;w2mg be a set of two dimensional
vectors defined as follows:

wi = zi for i = 1; : : : ;m; andwi = �zi for i = m+ 1; : : : ; 2m:

2. If needed reassign indices so that

wj = ei�j ; and0 � �1 � �2 � � � � � �2m < 2�:

3. With each subscriptj associate a partitionf�j
1; �

j
2g of Z as follows:

(a) setx =
wj +wj+1

2
(b) set�j1 = Z+(x), and�j2 = Z�(x).

Note that:

(a) The indicesj and j + m generate identical partitions. We, there-
fore, have to consider at mostm distinct partitions generated by
j = 1; : : : ;m.

(b) The optimal partition that maximizes (4.14) is among the generated
ones.

4. With each partitionf�j
1; �

j
2g associate the value of the objective function

Qj
s = Qs

�
f�

j
1; �

j
2g

�
. LetQk

s = max
j=1;:::;m

Qj
s, then the desired partition of

Z is f�o1; �
o
2g = f�k1 ; �

k
2g:

4.6.2 Clustering with sPDDP

In what follows, we display clustering results for the document collection DC
described in Section 4.3. To compare the results with those presented in Section
4.4, we select the 600 bestq0 quality terms (see Equation (4.9)) to build document
vectors. The confusion matrix for the three cluster partition generated by sPDDP
is given in Table 4.15 below. We remark that the confusion matrix is a significant
improvement over the result presented in Table 4.3. A subsequent application
of the means algorithm to the partition generated by sPDDP leads to a minor
improvement of the result both in terms of confusion matrices, as well as in terms
of the objective functionQ2 (see Table 4.16).
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DC0 DC1 DC2

cluster 0 1000 3 1
cluster 1 8 10 1376
cluster 2 25 1447 21

empty documents
cluster 3 0 0 0

Table 4.15. sPDDP generated initial confusion matrix with 68 misclassified documents,
and the partition qualityQ2 = 3630:97

DC0 DC1 DC2

cluster 0 1023 21 10
cluster 1 1 3 1370
cluster 2 9 1436 18

empty documents
cluster 3 0 0 0

Table 4.16. Means generated final confusion matrix with 62 misclassified documents, the
partition qualityQ2 = 3630:38.

Table 4.17 summarizes clustering results for the sPDDP algorithm combined with
the means clustering algorithm for different choices of index terms (all term se-
lections are based on theq0 criterion). Note that while the combination of the

documents misclassified by

# of terms pddp means

300 228 100
400 88 80
500 76 62
600 68 62

Table 4.17. Number of misclassified documents for term selection based onq0

PDDP and the means algorithms “collapses” when the number of selected terms
drops below 600 (see Table 4.9), the combination of the sPDDP and the means
algorithms performs reasonably well even when the number of selected terms is
only 300.

Clustering results for different choices of index terms based on theq 1 criterion
are similar to those presented above. The results are summarized in Table 4.18.
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documents misclassified by

# of terms pddp means

300 224 101
400 91 86
500 74 71
600 71 68

Table 4.18. Number of misclassified documents for term selection based onq1

4.7 Future Research

This chapter presents preliminary results concerning two information retrieval
related problems:

1. feature selection, and

2. document clustering.

We plan to further investigate profile based term selection techniques as well as
techniques based on term distribution across documents [GK02], and to run term
selection experiments on larger document collections.

Clustering experiments with seven different objective functions reported by
Zhao and Karypis [ZK02] indicate that the objective function based on cosine
similarity (and used in [DM01]) “leads to the best solutions irrespective of the
number of clusters for most of the data sets.” We intend to combine the Spherical
Principal Direction Divisive Partitioning algorithm with the modification of the
sphericalk–means algorithm recently reported by [DGK02].

The Spherical Principal Directions Divisive Partitioning algorithm introduced
in the chapter utilizes the unit norm constraint imposed on document vectors.
In many data mining applications, vectors representing data are normalized. For
example:

1. In bioinformatics applications, fingerprint data is transformed to have mean
zero and variance one, a fixedl2 norm, or a fixedl1 norm [SS02].

2. In contemporaryk�means type frameworks for word clustering, a word is
represented by a discrete probability distribution, i.e., by a vector ofl 1 unit
norm [DMK02], [BB02], [ST01].

3. Then�gram technique leads to a vector space model where document
vectors havel1 unit norm [Dam95]. The technique is proved to be useful
in information retrieval applications [PN96], as well as in bioinformatics
[GKSR+02].
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We plan to derive and investigate clustering algorithms utilizing special con-
straints (among themlp constraints mentioned above) imposed upon vector data
sets.

While this chapter deals with a vector space model based on word occurrence
across documents, additional research directions include clustering of vectors
whose components are the frequencies of their distinct constituentn�grams
[Dam95]. Then�gram representation of a document is sparse, simple, and lan-
guage independent. The sparsity of the vectors lends itself to processing with
numerical linear algebra tools, although the matrices themselves may be much
larger. We believe that best clustering results may be achieved by combining a
number of different techniques.
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