
View-Dependent Simplification for
Glyph-Based Visualizations of Large Datasets

STEPHEN R. SAUCIER <stephen.saucier@umbc.edu>
University of Maryland Baltimore County

Abstract—View-dependent simplification and similar
dynamic simplification algorithms are relatively recent
developments for the simplification of polygonal environ-
ments. Such algorithms operate by classifying the verti-
ces in a hierarchical fashion and dynamically generating
polygons based not only on the original vertices but also
the current viewpoint. Unimportant areas can be greatly
simplified while those that are of immediate interest are
rendered with a high degree of detail.
 Traditionally, little consideration has been given to the
idea of applying view-dependent simplification to glyph-
based visualizations. Often many glyphs overlap, resulting
in very complex areas that do not provide much additional
information. Here it is the outlier glyphs that are of pri-
mary interest; as the glyphs are an arbitrary representa-
tion of the data points, it is not necessary to preserve the
geometry of each glyph exactly as long as the spatial rela-
tionships of the data points are preserved—a perfect appli-
cation for view-dependent simplification.
 Preliminary results applying view-dependent simplifica-
tion techniques to glyph-based visualization of document
data produced compelling results, providing a large reduc-
tion in polygons while still maintaining enough detail to
preserve the important areas of the original.

Keywords—View-Dependent Simplification, Level of Detail,
Glyph.

I. INTRODUCTION

Polygons have been used as a basis for representing
geometry in the field of computer graphics for some
time. The popularity of this representation is the

result of many factors; a few of the more important rea-
sons are that they are easy to describe (only three points
are required to draw a triangle) and that intersections with
triangles are easy to calculate. As a result, rendering poly-
gons is fast and inexpensive. Polygons serve as a good way
of representing data; almost any other type of geometric
description can be converted to polygons and maintain a

high degree of accuracy. However, the tendency with poly-
gons is to try to include as much detail as possible, and as
a result, the number of polygons that need to be rendered
often is greater than the available video hardware can sup-
port.

In the field of data visualization, polygons serve as the
underlying representation of the geometry, but it is not
the polygons themselves that are of immediate concern;
it is the higher-level abstractions (which happen to gener-
ate the required polygons transparently for efficient render-
ing of the representative geometry). One such abstraction
which is commonly used for representing data in this way is
with glyphs. Glyphs are simple geometric objects (usually
a primitive shape such as a sphere or cube) that are used to
represent the data. Glyphs have been used successfully in a
number of different ways, including information visualiza-
tion [13] as well as an efficient mechanism for rendering
volumes [14].

One of the recent methods of using glyphs is to visual-
ize document data obtained through information retrieval
techniques. In this sceme, the various attributes of the glyph
such as the color, size, or location can be given values based
on properties of the document. For instance, similarities
generated by the information retrieval engine for a variety
of queries can be used to assign a location to the glyph
along each of the primary coordinate axes [1]. Assuming
that the document pool is sufficiently large, the amount of
glyphs becomes large enough that the number of polygons
becomes an issue for the display hardware. Even though
each glyph has a simple geometry, the volume of glyphs
alone is such that the overall geometry is very complex.
However, as a high-degree of interactivity is needed to effec-
tively navigate and gain an understanding of the data, it is
clear that some sort of simplification is necessary.

While the quickest and easiest method to solve this prob-
lem is to simply apply a threshold to the data before generat-
ing the glyphs, thus masking away the documents that are
of lesser interest, this is not a desirable solution because it is
necessary to understand the overall distribution of the data,
and simply deleting less important glyphs makes this impos-
sible.

A simple improvement is to display co-located points
only once; however this does not provide enough of a gain
as even documents with a low relevance to a given query
will often not be completely irrelevant. This results in a
tight distribution of glyphs within a relatively small range
of values.

As a result, it is clear that some more advanced simplifi-
cation mechanism in necessary. It is necessary to preserve
the general structure of the glyphs as this information is
crucial to understanding the data; however, maintaining the
original amount of detail is not required since the glyph is
an arbitrary representation (assuming that some glyph attri-
butes such as size and orientation were not originally mean-
ingful).

II. RELEVANT SIMPLIFICATION CONCEPTS

In order to forge a compromise between the detail and
complexity present in many datasets and providing smooth
frame rates and a high degree of interactivity to the user,
there has been a desire to simplify the polygonal data into
a form which provides as much detail as possible in the cur-
rent view while making simplifications where possible.

Level-of-Detail

Historically, simplification has been achieved by creat-
ing several versions of the data with varying degrees of
resolution. These simplifications were most often made by
hand, and though time consuming, at run time the geom-
etry used could be selected based upon desired frame rates,
desired amount of detail, or other factors [5]. As a result,
this method has become known as level-of-detail. Because
the number of available resolutions was finite and all com-
putations were done beforehand, everything could be done
quickly at run time, when the processor cycles were at a
premium.

However, as the computational abilities of computers
increased, it was not always necessary to simplify the
geometry beforehand. In addition, it was desirable to have
smoother transitions between levels of detail, but it also
infeasible to create additional simplifications beforehand
(due to time, money, or disk space constraints), and as a
result, simplification methods that could operate at run-time
became more desirable.

View-Dependent Simplification

Without a lot of specific information about an arbitrary
dataset, it is difficult to determine what aspects of the geom-
etry can be simplified. In addition, using level-of-detail
approaches, discrete levels of resolution have to be created
beforehand, and with particularly large datasets, this can

create a number of problems. For example, with large, con-
tiguous regions, it is possible that certain areas could be sim-
plified, but others may be the area of focus, and full detail
may be desirable. However, traditional methods of select-
ing a precomputed simplification of the geometry does not
provide an adequate solution. With simplification methods
that work at run-time, it is possible to gradually and increas-
ingly simplify data as it becomes further away from the area
of interest. This results in visualizations that can be quickly
rendered while avoiding the problems with sudden changes
in resolution that plagued the level-of-detail approaches. In
addition, the view-dependent approach provides automated,
adaptive and efficient simplification, all without the need of
human intervention [2,12,15].

The most notable incarnation of view-dependent sim-
plification is known as hierarchical dynamic simplification
(HDS). This general mechanism of this method has become
more or less the standard way of implementing view-depen-
dent simplification, and as a result, view-dependent simpli-
fication has almost become synonymous with heirarchical
dynamic simplification.

HDS operates by storing the vertices of the entire scene
in a data structure known as a vertex tree [10,12]. The scene
is simplified by collapsing multiple vertices into one repre-
sentative vertex. As a result, many triangles become degen-
erate (in the form of lines or points), and as a result they can
be removed. Conversely, if additional levels of detail are
required, nodes in the tree will unfold creating additional
triangles which will then be displayed [9,12].

This method works well in general because very few
regions change at any particular instant whileinteracting
with a scene. The small number of polygons that do need to
be updated are called boundary nodes because they exist in
the vertex tree between the active and inactive nodes. As the
scene changes, nodes along the boundary unfold in areas
that require additional detail, and collapse in areas where
greater simplification is possible.

A similar approach to hieratchical dynamic simplifica-
tion is known as progressive meshes. This method builds
upon automatic triangle mesh simplification [8] by provid-
ing operation in a view-dependent fashion. The general con-
cepts are, for the most part, the same as HDS—each vertex
is stored in a tree—and an algorithm exists to determine
which vertices should be simplified [4,7,11].

In order to provide a generalized framework for run-time
simplification of polygons, implementations of view-depen-
dent simplification techniques predefine the fundamental
operations; however, it is possible to provide fast and effi-
cient operation tailored to individual needs because it is

possible to specify the method by which simplification deci-
sions are made for when nodes are to fold and unfold. There
are a few general methods that are generally used: a screen-
space error threshold, a silhouette test, and a triangle budget
[12].

Screen-Space Error Threshold: with view-dependent
simplification, the goal is to reduce geometric complexity
as much as possible without a visible reduction in quality.
As a result, it makes sense to reduce the number of poly-
gons in areas that do not occupy much screen space. This is
the exact strategy of simplification that screen-space error
threshold uses. Polygons that can be removed without caus-
ing a change in screen of more than a user-defined number
of pixels are collapsed.

Silhouette Preservation: one of the ways that the human
visual system is able to detect and recognize objects is
through their borders and contours. As a result, if object
edges can be detected and given a higher resolution than
the rest of the object, the perceived amount of quality in
the scene is increased. This method works nicely with the
screen-space error threshold, allowing a higher degree of
screen-space error in interior regions, while specifying a
much lower tolerance for error in the border regions.

Triangle Budget Simplification: Whereas screen-space
error threshold and silhouette preservation hope to maintain
a level of visual quality, often it is the case where there
is a limited amount of rendering resources, and it is more
important to sacrifice quality for the sake of frame-rates.
This can be achieved by specifying the maximum number
of triangles that are desired. The geometry is reduced to the
appropriate levels, and the algorithm does its best to mini-
mize the error that is introduced.

III. APPROACH

The major similarity with the existing implementations
of view-dependent simplification techniques is that they are
designed primarily to simplify large, complex objects such
as terrains [6] or computer-aided design (CAD) [3] models.

The idea of simplifying glyphs has been overlooked
because glyphs are intended to be simple geometric shapes
that represent data points, and as a result the glyphs them-
selves should not require simplification. However, as dis-
cussed previously, when large datasets are visualized using
glyph-based methods, it is often the case that there are areas
where large numbers of glyphs are clustered, and the over-
all number of polygons is very large [1,14]. Due to the fact
that many glyphs are located in clusters, a great deal of poly-
gons are located on interior surfaces, and serve no descrip-
tive purpose while resulting in a lengthy rendering process.

View-dependent simplification methods are a perfect
way of handling these situations, however, as they are
designed to reduce polygons dramatically in areas where
they are of less perceptual importance. Additionally, glyphs
can be simplified considerably since the shape is of second-
ary importance, and it is the location which is informative.
As a result, screen-space error can be considerably higher
than in most other polygonal models, and large amounts of
simplification should be possible.

Using view-dependent simplification techniques, there
are a number of reasons that we should be able to achieve
this goal. One of the side-effects of view-dependent simpli-
fication techniques is that they do not preserve topology;
that is, it is possible that polygons that are not originally
connected may become connected through the simplifica-
tion process, as demonstrated in figure 1. This side-effect

Figure 1. Demonstration of topology simplification on neighboring spheres.

ð

is a valuable resource in this situation, as this is exactly
the behavior that is desired. Clusters of glyphs are too
dense to provide any meaningful detail; as a result creat-
ing a generalized representation of the cluster can convey
the same information while greatly reducing the number
of polygons that are necessary to render. In order to better
understand what is going on here, the simplification of a
cluster of glyphs can be thought of as placing the glyphs
within a vacuum-sealed bag. The bag would form a rigid

“skin” around the somewhat tightly contained glyphs, and
as a result the skin would have the same shape as the origi-
nal glyphs, which could now be thrown away. However, as
the bag is only a “skin,” there is no interior—the simplifica-
tion has served to reduce the cluster to only the boundary
polygons.

The problem that presents itself when dealing with
view-dependent simplification of glyph-based visualiza-
tions is that in some cases it is possible to have the outlier
glyphs be simplified away. Bad choices for the simplifica-
tion algorithm can result in more triangles being reserved
for areas of dense geometry, since these areas are consid-
ered more important. Using a budget simplification method,
this was evident. The vertex tree has a single root node,
and as a result it is not possible to simplify each cluster
of glyphs independently. For the purposes of glyph-based
visualizations, sillhouette-preservation algorithms are prob-
ably the best choice, for these attempt to simplify the
scene as much as possible which still preserving the over-
all shape of objects, whereas budget-based methods are
concerned with meeting a particular level of simplification,
and not with preserving topology. Error-space metric algo-
rithms would also produce reasonable results; however, as
error has less meaning when considering that the original
geometry has no real meaning, so specifying a particular
error threshold would result in less simplification than is
possible in some areas, and perhaps too much in areas that
would be preferable to leave in high detail (such as indi-
vidual outlier glyphs or silhouette edges.

IV. RESULTS

Initial results from the experiments proved to be prom-
ising, however, due to time constraints as well as other
factors, it was not possible to meet the level of projected
progress. Early problems caused the development and test-
ing schedule to be moved back and did not leave enough
time for more detailed and rigorous tests. However, a
simple budget-based simplification method was tested and
demonstrated a number of promising results.

Firstly, glyphs located in close proximity were joined
when simplified, indeed to a point where two distinct
spheres did simplify as a single unit over varying degrees
of simplification (see figure 1).

Data that had larger amounts of polygons also showed
very promising results. A generic dataset was used to create
a glyph-based visualization of fair complexity. About
900,000 polygons were generated when using spheres
(figure 2) for the glyphs, and about 45,000 when using
cubes (figure 3).

Figure 2. Original visualization using spheres
(900,000 polygons).

Figure 3. Original visualization using cubes
(45,000 polygons).

The resulting data was simplified, using a simple visual
metric to determine when a noticable difference in the
visual quality became apparent. Using spheres (figure 4),
the level of simplification was far more impressive than
using cubes (figure 5), however, this was to be expected as
cubes are a much simpler geometry, and any reduction of
vertices results in a far more noticable change to the image.
In addition, under these rather modest amounts of simplifi-
cation, acceptable levels of detail were maintained while
allowing for improved fluidity in navigation and interac-
tion.

For these initial results, a simple budget-based simpli-
fication algorithm was used, and a number of limitations
were found as a result. Some of these limitations were
minor and to be expected, such as loss of detail along sill-
houette edges, but others were much more major, such as
lost outlier glyphs as well as areas that were not simplified
as much as could theoretically be achieved. This generally
occurred in interior regions (as can be expected from an
algorithm that tries to do its best to maintain the shape of
the original polygonal mesh while staying within its hard
upper-limit polygon budget.

V. FUTURE DIRECTIONS

There are certainly a number of ways that this path
could be further investigated. Certainly, an algorithm that
simplifies using a silhouette preservation approach should
be developed and used, as this should produce better
results, both visually and in terms of simplification that

should be achieved. More rigorous tests should also be
derived, as current metrics for acceptable simplification are
based entirely on non-scientific methods. Examples of pos-
sible metrics could include the requirement that all glyphs
must not be simplified to a point in which they disappear,
or a more complicatied screen-space variation tolerance
between the initial and final image. Alternatively, a scalar
value for each point could be used to determine the level of
simplification for each glyph, and in this way, glyphs gener-
ated from points of lesser scalar values would appear less
prominent in the final visualization.

 There are a number of other directions that would
also be desirable to persue in a longer-term. One very desir-
able step is to build an improved interface for interacting
with the simplified visualizations, as currently only wire-
frame views are possible. Finally, an implementation of
view-dependent simplification for the freely available visu-
alization toolkit (vtk) would be desirable, as these tech-
niqes could then be applied in a number of other ways and
by a diverse number of users.

VI. CONCLUSIONS

View-Dependent Simplification methods proved to be
helpful when used with glyph-based visualizations. Glyphs
were simplified into generalized abstractions, allowing for
greater understanding of the data as well as providing
an increased level of interactivity and improved naviga-
tion. Glyph-based visualizations, while not traditionally
the target of view-dependent simplification techniques, are
the perfect candidates for this type of simplification. This is

Figure 4. Simplified sphere visualization
(10,000 polygons).

Figure 5. Simplified cube visualization
(1,000 polygons).

because glyphs are an abstraction to begin with, so manipu-
lation of the individual glyphs does not reduce the under-
standing of the data and indeed has a number of benefits
as well. While view-independent techniques would work
to some extent as would preprocessing of the data, view-
dependent simplification allows for the greatest degree of
simplification while still providing the necessary informa-
tion to make glyph-based visualizations of document data

both useful, easier to interpret, and faster to render.

REFERENCES

[1] Atkison, T. et al. “Case Study: Visualization and Information
Retrieval Techniques for Network Intrusion Detection.”
VisSym ‘01 Joint Eurographics/IEEE TCCG Symposium on
Visualization (2001).

[2] El-Sana, J. and Varshney, A. “Generalized View-Dependent
Simplification.” Proceedings of EUROGRAPHICS ‘99 (1999),
C83-C94. Eurographics Association/Blackwell Publishers.

[3] Erikson, C. et al. “HLODs for Faster Display of Large Static
and Dynamic Environments.” Proceedings on 2001 Sympo-
sium on Interactive 3D graphics (2001), 111-120. ACM Press/
Addison-Wesley Publishing Co.

[4] Fei, G. and Wu, E. “A Real-Time Generation Algorithm for
Progressive Meshes in Dynamic Environments.” Proceedings
of the ACM symposium on Virtual reality software and tech-
nology (1999), 178-179. ACM Press/Addison-Wesley Pub-
lishing Co.

[5] Funkhouser, T., and Séquin, C. “Adaptive display algorithm
for interactive frame rates during visualization of complex
virtual environments. Proceedings of the 20th annual confer-
ence on computer graphics & interactive techniques (1993),
247–254. ACM Press/Addison-Wesley Publishing Co.

[6] Hoppe H. “Smooth View-Dependent Level-of-Detail Control
and its Application to Terrain Rendering.” Proceedings of
IEEE Visualization ‘98 (1998), 35-42. IEEE Computer Soci-
ety Press.

[7] Hoppe, H. “View-Dependent Refinement of Progressive
Meshes.” Proceedings of the 24th annual conference on com-
puter graphics & interactive techniques (1997), 189-198,
ACM Press/Addison-Wesley Publishing Co.

[8] Kobbelt, L. et al. “Interactive Multi-Resolution Modeling on
Arbitrary Meshes.” Proceedings of the 25th annual confer-
ence on computer Graphics (1998), 105-114. ACM Press/
Addison-Wesley Publishing Co.

[9] Lindstrom, P. and Turk, G. “Fast and Memory Efficient Polyg-
onal Simplification.” Proceedings of IEEE Visualization ‘98
(1998), 279-286. IEEE Computer Society Press.

[10] Luebke, D. “Hierarchical Structures for Dynamic Polygo-
nal Simplication.” Department of Computer Science, Uni-
versity of North Carolina at Chapel Hill, Technical Report
#TR96-006 (1996).

[11] Luebke, D. “A Survey of Polygonal Simplification Algo-
rithms.” University of North Carolina at Chapel Hill Depart-
ment of Computer Science Technical Report #TR97-045,
(1997).

[12] Leubke, D. and Erikson, C. “View Dependent Simplifica-
tion of Arbitrary Polygonal Environments.” Proceedings of
the 24th annual conference on computer graphics & interac-
tive techniques, (1997) 199-208, ACM Press/Addison-Wes-
ley Publishing Co.

[13] Rheingans, P. and desJardins, M. “Visualizing High-Dimen-
sional Predictive Model Quality.” Proceedings of IEEE Visu-
alization ‘00, (2000) 493-496. IEEE Computer Society Press.

[14] Shaw, C. et al. “Interactive Volumetric Information Visualiza-
tion for Document Corpus Management.” International Jour-
nal on Digital Libraries 2(2/3), (1999) 144-156.

[15] Xia, J and Varshney, A. “Dynamic View-Dependent Simplifi-
cation for Polygonal Models.” Proceedings of IEEE Visualiza-
tion ‘96, (1996) 327-334. IEEE Computer Society Press.

