CARROT II: Collaborative Agent-based Routing and Retrieval of
Text *

R. Scott Cost, Tim Finin, Srikanth Kallurkar, Hemali Majithia, Charles Nicholas,
Yongmei Shi, Ian Soboroff
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County
Baltimore, MD USA
email: {cost,finin,skallul,hemal nicholas,yshil,soboroff}@csee.umbc.edu

20 September 2001

Abstract

We describe CARROT II (C2), an agent-based archi-
tecture for distributed information retrieval and doc-
ument collection management. In C2, agents pro-
vide search services over local document collections
or information sources. A C2 system can consist of
an arbitrary number of agents, distributed across a
variety of platforms and locations, and integrating
widely varying information sources. C2 agents ad-
vertise content-derived metadata that describes their
local document store; this metadata is sent to other
C2 agents which agree to act as brokers for that col-
lection - every agent in the system has the ability to
serve as such a broker. A user query is sent to any
C2 agent, which can decide to answer the query it-
self from its local collection, or to send the query on
to other agents whose metadata indicate that they
would be able to answer the query, or send the query
on further. Search results from multiple agents are
merged and returned to the user. C2 can be used to
implement a wide variety of distributed information
services, such as common single-stage web

metasearch or Harvest-style brokering, as well as
more sophisticated collection selection and ranking
algorithms. C2 differs from similar systems in that

*This work supported in part by the United States Depart-
ment of Defense.

metadata takes the form of an unstructured feature
vector, and that any agent in the system can act
as a broker, so there is no centralized control. Fur-
thermore, the agent architecture uses a sophisticated
agent communication language for information ex-
change, opening the door to sophisticated coordina-
tion algorithms among C2 agents. Search abilities
are further enhanced with the integration of tools and
ideas from the Semantic Web effort.

1 Introduction

The integration of heterogeneous data sources is be-
coming increasingly important. One approach to
routing queries within such an environment is to pro-
vide a logical ‘front-end’, which wraps the sources
into one common framework. While this helps
to solve the integration aspect of the problem, it
presents an efficiency problem, in that all queries
must follow the same path through the front end.
We have developed a large-scale, distributed query
routing and information retrieval system that can
serve as a valuable testbed for a variety of impor-
tant research problems. Named CARROT II, as the
successor of an earlier project (Collaborative Agent-
based Routing and Retrieval of Text) [16, 14] (origi-
nally CAFE [15]), this system is composed of a flex-

ible hierarchy of query routing agents. These agents
communicate with one another using KQML [17] and
the Jackal platform [13], and may be distributed
across the Internet. While all agents in the system
are alike, they can each control widely varying infor-
mation systems. Currently, they populate the nodes
of our twelve-node Beowulf system. Agents inter-
act with information sources via a well-defined inter-
face. Queries presented to any agent in the system
are routed, based on the content of the query and
metadata about the contents of the servers, to the
appropriate destination. Agents themselves are uni-
form and extremely simple. The flexibility of this
system opens up a wide range of opportunities.

This system as implemented initially contains
wrappers that extend several existing IR systems
(e.g. MG [41], Telltale [29, 28]), as well as C2’s
own, modest IR system. These wrappers present a
very basic interface to the C2 system for operating
on documents and metadata. One initial goal of the
project has been the integration of heterogeneous IR
engines within a single search system. This will be
followed by the extension of the use of these wrap-
pers to cover a wide variety of information sources,
including more structured search systems, databases,
or even humans.

Agents are addressable via commands that are
communicated in KQML. This means that a C2 sys-
tem can easily be created, configured and accessed
by another information system, and so can be em-
ployed to extend the search capabilities of an existing
project.

Such an endeavor presents several challenges. One
of the most immediate problems that present is the
form, representation and manipulation of metadata.
Agents have metadata that represents the informa-
tion content ‘owned’ by the various sources attached
to the system, so the form and content of that meta-
data has an important impact on the systems abil-
ity to route queries effectively. It becomes an even
more difficult problem when you consider that in-
formation sources may be heterogeneous, and may
therefore have very dissimilar metadata representa-
tions. Another problem is how the metadata should
be used by agents to actually route queries. Finally,
since the system of agents will be dynamically recon-

figurable, it may be necessary to move metadata from
one node to another, or perhaps even combine it into
a higher order object. Such schemes could be used to
both affect query effectiveness and query throughput.

Related to the metadata question is the use of other
information sources in informing the query routing al-
gorithm. In addition to using local data about infor-
mation source content, it may be possible to use infor-
mation about past queries, the user or user commu-
nity, just to name some examples, to enhance search
performance. There are potential issues of learning
here. C2 agents are constructed with an open inter-
face that allows them to dynamically integrate exter-
nal ‘experts’ into the decision making process.

From the perspective of agent system deployment,
we would like the nodes in the C2 system to be able
to coordinate closely with, and dynamically change
their associations with, other agents. This means the
ability to interact at a high level, in addition to effi-
ciently moving potentially large volumes of informa-
tion. We use the Jackal platform to support com-
munication among agents in C2 and to provide an
interface to the outside world. In addition to its sup-
port for agent communication with KQML, we use its
conversation management capabilities to specify and
implement higher-level behaviors for the various ne-
gotiation and management tasks required within the
agent system. This is supported by an ontology of
the query routing and information retrieval problem
domains.

Some interesting questions which have not been
discussed but are also of interest include the topol-
ogy of query routing systems, and the value of ben-
efits of node mobility, and user modeling. Also,
there is an interest in the management of standing
queries; if queries are posed which persist in the sys-
tem, how/where should they be managed, especially
if the system is dynamic. Also, if the routing algo-
rithm permits the spread of queries to multiple in-
formation sources, a results fusion problem presents
itself when the data is collected from those sources.

2 Related Work

In the past there have been attempts to introduce the
concepts of agent-based information retrieval. Sys-
tems like SavvySearch [23] demonstrated a simple
approach to querying web search engines and com-
bining their results in a single ranked order.

Historically, Harvest was the first system to
demonstrate the use of broker agents in distributed
search. The Harvest system [6, 9, 8] is a dis-
tributed, brokered system originally designed for
searching Web, FTP, and Gopher servers. In Har-
vest, “gatherer” agents collect metadata from infor-
mation providers and deliver it to one or more bro-
kers. Metadata objects are represented in Summary
Object Interchange Format (SOIF), an extensible
attribute-value-based description record; common at-
tributes include author, host information, keywords,
modification times, checksums, time-to-live, and file
size. These records are mainly constructed using an
information extraction system, but the records can
also contain hand-written abstracts, category assign-
ments, or the full text of a document [7]. Harvest
pioneered the ideas of brokering, metasearch, repli-
cation, and caching on the Internet.

2.1 Distributed Information Retrieval

Information Retrieval in a distributed environment
normally follows three steps [10]:

1. Information Source Selection: Select best infor-
mation source per query

2. Query Processing: Send query to source(s) and
return ranked list of documents

3. Results Fusion: Create single ranked list from
ranked lists of all sources.

For retrieval from text one of the methods for
information source selection is use of automatically
generated metadata from the content. Comparing
the query to metadata about the sources can reveal
the possible relevance of each source to the query.
CORI [11] and gGloss [19] are examples of such meta-
data in information source selection. The CORI

model is based on inference networks. CORI creates
a virtual document containing Document Frequency
(DF) and Inverse Collection Frequency (ICF). The
ICF indicates importance of the term across the col-
lections and is analogous to the Inverse Document
Frequency (IDF), which is a measure of term im-
portance in a single collection. gGloss takes another
approach to database selection. gGloss creates a
virtual document containing DF'(s) and Term Fre-
quency (TF), i.e. number of occurrences per doc-
ument of unique terms of the collection. French et
al. [18] showed that CORI performed better than
gGloss in terms of retrieval effectiveness, however
they could not provide a reason for CORI’s better
performance.

Gibbins and Hall [27] modeled query routing
topologies for Resource Discovery in mediator based
distributed information systems. Queries are routed
by a referral (of a server) by the mediator or by a dele-
gation of the query to the mediator. Liu [25] demon-
strated query routing using processes of query refine-
ment and source selection, which interleaved query
and database source profiles to obtain a subset of
good databases. User query profiles contained query
scope and query capacity descriptions while source
capability profiles contained content and capability
descriptions. The sources were selected through seri-
ally pruning until a subset of sources (based on source
description) that most match the query is obtained.

The final step in answering a query is fusing the
the ranked list from the queried sources to obtain a
single ranked list. Voorhees et.al. [36] showed the
use of query training and query clustering to first
query appropriate data sources and then merge the
results. The query training approach used a dice bi-
ased by the number of documents still to be merged,
whereas query clustering applied a factor to the re-
sults based on the importance of the source it was
from and then rank based on the new scores. Aslam
and Montague [1] showed that results fusion based
on ranks alone can be as good as regular fusion tech-
niques and that relevance scores are not required.

In general, there is a performance gain by distribut-
ing information, but distributed retrieval lags behind
centralized retrieval in terms of retrieval effectiveness,
i.e. percentage of relevant documents returned for a

query. However Powell et al. [30] showed that a dis-
tributed search can outperform a centralized search
under certain conditions.

2.2 Semantic Web

The current web is primarily composed of pages with
information in the form of natural language text and
images intended for humans to view and understand.
Machines are used primarily to render this informa-
tion, laying it out on the screen or printed page. The
idea behind the semantic web is to augment these
pages with mark up that captures some of the mean-
ing of the the content on pages and encodes it in a
form that is suitable for machine understanding. This
requires a new kind of markup languages, one that
supports defining shared data models or ontologies
for a domain and allows page authors to make state-
ments using this ontology. The markup languages
currently being used to explore this idea include RDF
and DAML+OIL. Both languages are built on a foun-
dation of XML and DAML+OIL is further layered on
RDF.

The goal of DAML4OIL is to enable the transfor-
mation of the currently human-oriented web, which
is largely used as a text and multimedia repository
only, into a Semantic Web as envisioned by Berners-
Lee [3, 2]. This process involves the augmenta-
tion of web pages with additional information and
data that are expressed in a way that facilitates ma-
chine understanding [20, 22]. DAML+OIL is built
upon the capabilities of an already existing syntactic
language, the Extendable Markup Language (XML)
[40], and of the Resource Description Framework and
Resource Description Framework Schema (RDF/S)
[37, 39, 38, 34]. These are XML applications that
provide a number of preliminary semantic facilities
required in the realization of the Semantic Web vi-
sion.

XML was developed by the World Wide Web Con-
sortium (W3C) as a standard for alternative data en-
coding on the Internet that was primarily intended
for machine processing. The XML standard provides
the necessary means to declare and use simple data
structures, which are stored in XML documents and
which are machine-readable. Subsequently, the in-

formation made available in these documents can be
processed or translated into additional XML docu-
ments to provide the appropriate form for human un-
derstanding, such as text-to-voice, graphics or HTML
conversion. However, since XML is defined only at
the syntactic level, machines cannot be relied upon
to unambiguously determine the correct meaning of
the XML tags used in a given XML document. Con-
sequently, XML is not suitable as a desired language
for representing complex knowledge.

As a result, the W3C Consortium has developed
RDF/S with the goal of addressing the XML defi-
ciencies by adding formal semantics on the top of
XML. These two standards provide the representa-
tion frameworks for describing relationships among
resources in terms of named properties and values,
which are similar to representation frameworks of se-
mantic networks and rudimentary frame languages
such as RDF Schema. Yet, both standards are still
very restricted as a knowledge representation lan-
guage due to the lack of support for variables, general
quantification, rules, etc.

DAML+OIL is an attempt to build upon XML and
RDF/S to produce a language that is better suited for
building the Semantic Web. It follows the same path
for representing data and information in a document
as XML, and provides similar rules and definitions
to RDF/S. In addition, DAML+OIL also provides
rules for describing further constraints and relation-
ships among resources, including cardinality, domain
and range restrictions, as well as union, disjunction,
inverse and transitive rules. DAML+OIL is, there-
fore, an effort to develop a universal Semantic Web
markup language that is sufficiently rich to provide
machines not only with the capability to read data
but also with the capability to interpret and infer
over the data. DAML+OIL will enable the develop-
ment of intelligent agents and applications that can
autonomously retrieve and manipulate information
on the Internet and from the Semantic Web of to-
mMorrow.

DAML+4OIL is still an evolving language and may
be joined by other expressive markup languages with
well defined semantic foundations. Early in 2001,
the W3C established an official Semantic Web activ-

ity! as the successor to the W3C Metadata Activity.
It’s goals are to continue the development of existing
standards (e.g., RDF), to work with communities us-
ing semantic markup (e.g., the Dublin Core) and to
explore and develop new languages and technologies
to realize the semantic web vision.

3 Research Issues

There are a number of different issues which affect
the design and operation of a system such as C2.
Among the more significant are the form, creation
and use of metadata, which provides a basis for all
query routing decisions, the actual algorithms used
for query routing, and the methods used for fusing
results obtained from diverse sources. These issues
and others are discussed in some detail below.

3.1 Metadata

Effective use of metadata is essential to the C2 sys-
tem. Currently, C2 uses a vector-based representa-
tion of metadata which describes the contents of the
local corpus (see [16]). Metadata, as well as corpus
documents, are managed by the underlying IR en-
gine (in C2, currently this is MG). This metadata is
first order only, and is to be distinguished from in-
formation characterizing the set of collections known
to a given agent (forward knowledge), or higher or-
der metadata. C2 metadata is derived from the dis-
tributed search work of Callan and Croft et al [11].
For the collection selection problem, or, determin-
ing the collection(s) (we use the terms collection and
the agents that own them interchangeably) most suit-
able for a query, the issue of scalability determines
the type of information stored in the metadata. For
example, given a C2 system of 1000 agents, in or-
der for each of the agents to have information about
all the other agents in the system, each agent would
have to receive and store 999 metadata vectors from
other agents. This will not scale for either a homoge-
neous or a heterogeneous collection. One way to solve
this would be to derive a higher order metadata that
represents chunks of the network. Designated agents

1See http://www.w3.org/2001/sw/

would house such metadata. Agents would store the
metadata vectors of only those agents that comprise
that chunk. The higher order metadata would then
be used to determine the top n chunks and route the
query to them. This technique is recursive in nature
as the selected chunks would determine the top n
agents contained in them and field them the queries.

The form of metadata used supports interoperabil-
ity. A C2 system in essence should be able to field
queries to any agent that has been deemed suitable
based on the document information by looking at
the metadata. This should not be hampered by the
underlying information source, may it be a N-gram
based IR engine, a Search engine on the global inter-
net or a RDF or DAML+OIL [12] based system.

In its simplest case a C2 would comprise of a
single agent responsible for all the documents. As
we expand the system and setup C2 agents on nu-
merous sites document distribution plays an impor-
tant role in retrieval effectiveness. As described, the
documents a C2 agent houses can be heterogeneous
both in content and size. The space requirements
for indexing metadata about a heterogeneous cor-
pus is comparable to that of the documents. Homo-
geneity in a corpora provides more compact meta-
data as fewer terms can describe documents similar
in content. Homogeneity in the documents can be ob-
tained by creating logical sub-collections. Over time
the agents cooperate and move similar looking docu-
ments into content based sub-collections, the content
determined by the metadata. Homogeneity is a very
important attribute for a dynamic system like C2 to
obtain higher retrieval effectiveness.

As we extend the system to integrate more varied
and more dynamic information sources, we will face
a challenge in incorporating them into our metadata
representation and creation scheme. For example,
how do we create the metadata representation, as a
term-frequency vector, of all of the documents on the
internet. There are a number of approaches that sug-
gest themselves. One such would be to create manu-
ally a set of queries which represent your desired view
of the information source. By posing those queries to
the source, we get a set, of ‘representative documents’,
which can be indexed and described by C2 metadata.
This approach can be enhanced with techniques such

as query expansion.

3.2 Query Routing

The form of metadata in turn determines the dis-
tribution of the documents and routing of queries.
Routing of queries to the appropriate corpus agent is
the primary task of C2 [25, 33]. Depending on the
approach used, queries may be sent to one or multiple
sources at each step. The latter is increasingly likely
as sources become more and more varied, and their
contributions to the final result differ significantly.
One other thought which could be explored is the
notion of search, or exploring various avenues inde-
pendently or in sequence, until a satisfactory results
set is obtained.

As results are obtained from the various corpus
agents in the system, they must somehow be fused
into one consistent view.

3.3 Results Fusion

In typical distributed retrieval situations, document
scores may vary depending on the collection. It is
essential to merge the results obtained from each
of these collections into an accurate single order-
ing. The results fusion or results merging problem
has been an important research issues for some time
[35, 26, 42, 24]. A solution to the results fusion prob-
lem in a C2 system would have to take into account
the fact that a C2 system uses disparate IR systems,
that is the techniques used to determine the similari-
ties between the documents and queries can vary. In
most C2 scenarios one can expect that the document
collections to be disjoint, i.e. the agents do not have
documents in common. Also the document distribu-
tion can be non-uniform in terms of the document
size and number of documents.

Additionally, in integrating heterogeneous infor-
mation sources, we face the problem of fusing dis-
parate types of results. For example, a classic IR
system might return a ranked list of documents,
while another might return data about the query, un-
ordered results, etc. It may be necessary to select
from among a variety of result types, fuse them intel-
ligently, or return a multi-modal response which in-

corporates all or some. For example, in some scenar-
ios the results returned may take the form of a multi-
part ‘portfolio’, with raw, statistical, high-level, or
perhaps visual components.

4 Architecture

A C2 system is essentially a collection of coordinated,
distributed agents managing a set of possibly hetero-
geneous IR resources. These agents each perform the
basic tasks of collection selection and query routing,
query processing, and data fusion. In order to effect
this coordination, some amount of underlying struc-
ture is required.

There are three components to the C2 architec-
ture. The central work of C2 is performed primarily
by a distributed collection of C2 agents. There is
also a network of infrastructure agents which facili-
tate communication and control of the system. Fi-
nally, a small set of support agents facilitates access
to the system, and coordinates its activities. Each of
these components is described in detail below.

4.1 C2 Agents

The C2 agent is the cornerstone of the C2 system.
Its role is simple; manage a certain corpus, accept
queries, and either answer them itself, or forward
them to other C2 agents in the system. In order to do
this, each C2 agent can create and distribute meta-
data describing its own corpus to other C2 agents.
All C2 agents are identical, although the IR systems
they manage may vary dramatically.

4.1.1 Control Aspect

The C2 agent is Java agent. It is responsible for one
node in the system, which means one information
source, such as an instance of MG. It must process
all incoming and outgoing queries and results mes-
sages. In addition, it must manage the nodes meta-
data store, and negotiate with other nodes for the
exchange of metadata.

To communicate with other agents in the sys-
tem, C2 agents use Jackal as a communication tool.

‘ comus

Collection Manager Individual Carrot2

l l Node Architecture

=

\C T, T

S SR S S o

g N D A g O e O e A
’Hj ’Hg {Hg LHQ Ly
Dat?; = S S S

Collection
CARROT2 Agent System

Figure 1: Individual C2 nodes.

Jackal provides a communication infrastructure for
the agents to communicate in KQML.

The C2 agents must also interface with the lo-
cal information source. In our current instantiation,
this is a classic IR engine, such as MG. A standard
interface provides methods for manipulating docu-
ments and metadata and handling queries. The agent
maintains a catalog of metadata which it manages
with MG. The catalog contains information about
the metadata objects stored.

4.2 IR Aspect

A C2 agent interfaces with an information source
which may be an ordinary IR package, or a database
manager.

The C2 system currently has a wrapper that inter-
faces with the WONDIR? (in-house) IR engine. It can
however be extended to support other types of Infor-
mation sources. As mentioned earlier, metadata is
derived from the document collection. The metadata
takes the form of a vector of the unique “N-grams”
of the collection and a sum of their number of occur-
rences across all documents in the collection. Hence
unlike Harvest, C2 metadata describes the agent’s
collection of documents, not a single document. C2
uses such metadata for source selection per query.
The motivation for such a form of metadata comes

2Word or N-gram based Document Indexing and Retrieval

Masler\

Nodes

Platforms
Clusters

B N
\‘()UH”HM ,\,u

M W ,Jh it TJ/I\

AT~
‘M}\]lw,wf](

/[1\\ U ?\u

G "H
’LA/((\

Carrot2 Agents

Carrot2 System Architecture

Figure 2: C2 Architecture: Infrastructure hierarchy,
terminating in a collection of C2 nodes.

from relative ease of use, low cost of generation and
the ability to aggregate metadata, such that a single
vector may contain metadata about multiple agents.

The C2 metadata is different from the CORI vir-
tual document in that CORI uses document fre-
quency, i.e. the number of documents the term has
occurred in the collection. C2 uses term frequency,
i.e. the sum of the number of occurrences of the
unique terms over all documents. In many if not
most collections, a large percentage of terms have
occurrences of 0 or 1. By storing the sum of the
terms C2 metadata adds more weight to terms that
appear more often in the collection either in more
documents or in fewer documents with larger occur-
rences per document. CORI would favor terms that
occurred only in more documents.

The same query operation can now be performed
on both documents and metadata. A query opera-
tion returns a similarity score using TF x I DF' based
cosine similarity [32]. Querying a collection returns
a ranked list of the documents sorted by their simi-
larity scores. For querying metadata collection IDF
is replaced by the IC'F (see Section 2). On average
from empirical observations the metadata is 8-10% of
the size of the document collection. The agent that
creates the metadata attaches its signature informa-
tion to the vector.

4.3 C2 Infrastructure Agents

In order to support the successful inter-operation
of potentially very many C2 agents, we have con-
structed a hierarchical infrastructure (See Figure 2).

At present, this infrastructure is largely dormant
while C2 is in operation, serving primarily to facili-
tate the orderly startup and shutdown of the system,
and provide communications support.

The infrastructure is hierarchical, and is controlled
by a single Master Agent, which may be located any-
where on the network. At startup, the Master Agent
is instructed as to the number of agents required,
and some factors regarding their desired distribution.
These include the number of physical nodes to be
used, as well as the degree of resource sharing at var-
ious levels.

The Master Agent starts a Node Agent on each
participating machine, and delegates to it the task
of creating a subset of the required agents. The
node will be divided into Platforms, or independent
Java Virtual Machines, each governed by a Platform
Agent. The Node Agent creates an appropriate num-
ber of Platforms, and again delegates the creation of
a set of agents.

Within each Platform, the Platform Agent creates
a set of Cluster agents. The purpose of the Cluster
Agent is to consolidate some of the ‘heavier’ resources
that will be used by the C2 agents. Primarily, this
means communication resources. A Cluster Agent
maintains a single instance of Jackal. Each Cluster
Agent creates a series of C2 agents; these run as sub-
threads of the Cluster Agent. Because most agents
will be dormant at any one time, we could allow a C2
agent to be assigned more than one collection, creat-
ing a set of ‘virtual’ agents, but we have not explored
this to date.

4.4 C2 Support Agents

While the agents in the C2 system work largely inde-
pendently, a small set of support agents serve to co-
ordinate the system’s activities. These are the Agent
Name Server, Master Agent, Logger Agent and Col-
lection Manager.

A Master Agent manages the operation of the sys-
tem through the hierarchy of infrastructure agents.
This could be operated by a user, or act as an inter-
face to another client system.

An Agent Name Server provides basic communica-
tion facilitation among the agents. Through the use

of Jackal, C2 employs a hierarchical naming scheme,
and the burden of that is distributed through a hier-
archy of name servers.

A Logger Agent monitors log traffic, and allows the
system to assemble information about the details of
operation. This information can then be used to feed
monitors or visualization tools.

Finally, a Collection Manager facilitates the distri-
bution of data and metadata. The Collection Man-
ager is arguably on of the most important agents in
the system. It determines which collection of docu-
ments or information source will be assigned to each
agent, how each agent will distribute its metadata,
and what set of agents will be visible outside the sys-
tem.

5 C2 Operation

The instantiation and operation of a C2 system has a
number of distinct phases. Most of these phases occur
during startup, and significantly impact the behavior
of the system.

5.1 Partitioning

Before a C2 system can be fielded, a decision must be
made about how the target collection will be parti-
tioned. There are a number of factors that may come
into play here. Some may reflect the physical loca-
tion of the collection or collection components, or the
optimal physical distribution of documents. Others
may involve the clustering of collection components
into topical or other semantically relevant groupings.

Once established, the collection partition has a sig-
nificant impact on the distribution of agents and col-
lection assignment.

5.2 Distribution of Agents

The number of C2 agents to be created is determined
by the partitioning scheme. We next need to de-
termine how to distribute and arrange these agents
across available physical platforms. This is done au-
tomatically by the C2 infrastructure, and is influ-
enced by a number of system level factors.

5.3 Collection Assignment

Once they are ready, C2 agents are assigned sub-
collections by the Collection Manager. This assign-
ment is based on the original partitioning scheme. A
major factor in the decision to do assignment this was
the anticipation of a dynamic environment in which
agents enter and leave the system, and in which col-
lections are added, deleted or modified as well. It
is also desirable to allow for the exchange of corpus
elements from agent to agent in order to effect load
balancing and metadata refinement/clustering.

5.4 Metadata Distribution

The distribution of Metadata has a profound im-
pact on the system’s ability to route queries effec-
tively, and determines the ‘shape’ of the C2 system.
There are an endless number of metadata distribution
schemes that can be used. For example, each agent
could broadcast it’s metadata to every other agent in
the system. Under this scheme, any agent receiving a
query would have complete (and identical) knowledge
of the system, and be able in theory to find the opti-
mal target for that query. Once the system reaches a
certain size, however, this scheme is no longer prac-
tical, for a number of reasons. Other schemes in-
volve sending metadata to certain designated ‘bro-
kers’, or using more mathematical, quorum-based dis-
tributions. It should be clear that the distribution
scheme chosen is very closely tied to the algorithm
used to route queries, and to the choice of agents we
expose externally.

Agents receive instructions on metadata distribu-
tion from the Collection Manager.

Metadata Distribution can take place in three dif-
ferent modes: global, local, or flood. In the global
mode the metadata is sent to one global broker agent.
In the local mode the metadata is sent to one agent on
each node. In the flood mode the each agent knows
the number of agents in the system and sends meta-
data to each of them. There is mapping of the agent
numbers to names. For link-based referral, the agent
looks at the documents it is loading, and compiles a
list of the URLSs referred to in the documents. Then it
sends a request to the collection manager, asking for

the names of the agents that hold those documents.

5.5 Query Processing

Once the system is running, the Collection Manager
becomes the primary or initial interface for outside
clients. A client first contacts the Collection Manager
to get the name or names of C2 agents that it may
query. The names in this set will be determined by
above decisions. The client should then target queries
at randomly selected agents from the given set. For
example, in the classic C2 mode, the names of all
C2 agents in the system will be given, and the client
will randomly chose agents from that list to accept
queries. It is also possible to model more restricted
or brokered architectures by limiting the list to only
one or a few agents, which would then feed queries to
the remainder of the system.

In response to an incoming query, an agent must
decide whether the query should be answered locally,
forwarded to other agents, or a combination of the
two. The first thing it will do is compare the query to
its local metadata collection, to determine the best
destination. Based on the results, it may send the
query to the single best source of information, or it
may chose to send it to several. On of those sources
may be its own local IR engine. Once answers are
computed and received, the results are forwarded
back to the originator of the query. If more than
one information source is targeted, the agent faces
the problem of fusing the information it receives into
one coherent response.

Queries may be routed through a number of differ-
ent agents before finally being resolved; this depends
on the scheme used for metadata distribution and
the routing algorithm (See Figure 3). For example,
the simplest scheme is to have each agent broadcast
its metadata to every other agent in the system. The
corresponding routing algorithm would be to route to
the best information source. Since all agents have the
same metadata collection and employ the same algo-
rithm, a query will be forwarded at most once before
being resolved. For schemes which employ a more
efficient distribution of metadata, or possibly higher
order metadata, queries may pass through many C2
agents before finally being resolved.

>

\ / \ /
()

Query Spread

*Bi Directional Arrows show the Queries and their responses

Figure 3: Queries routed through C2 nodes.

6 Example Scenario

Having described the architecture of the C2 system,
we present a hypothetical scenario to illustrate it’s
use. In this case, we show the the integration of some
classic IR systems, world wide web search/crawler
engines, and an expert systems.

Consider the nodes in the C2 system shown in Fig-
ure 4. Each node represents a C2 agent. There
are three IR agents: an MG node, a Telltale node
and a WONDIR node. In addition, there is a web
search node (wrapping AltaVista), and a web crawler,
both of which have been extended to make use of
DAMLAOIL semantic markup. Also, the system
contains one high-level knowledge base/reasoning
system. The MG, Telltale and WONDIR nodes man-
age local, disjoint corpora of text documents.

In our sample scenario, an external client would
like to pose a query which is largely text, with some
embedded DAML+OIL markup. Having obtained a
list of available entry points from the collection man-
ager, it randomly selects the crawler node, and sub-
mits the query. Note that it does not matter which
node initially handles the query. Based on the raw
text portion of the query, the crawler node decides
that it can be best handled by the MG node. Be-
cause the Telltale node was also a very close match,

10

Qe hgar

Litof Docmzaat

Figure 4: Hypothetical scenario involving classic IR
and web-based information sources.

however, it chooses to send the query to both. In
addition, recognizing the semantic markup present
in the query, it chooses to forward the query to the
DAML+OIL-enhanced web search engine as well.

In a more complex scenario, the queries could have
been extended further, but we will assume that they
are answered by the nodes listed above, and the re-
sults are returned to the crawler node. Since MG
and Telltale are similar systems in some ways, it is
possible for the agent to fuse the results obtained
from these two into one ranked document list. The
Web agent is a very different system, however. The
crawler agent assembles a multi-part response to the
client, which contains both the ranked list of docu-
ments obtained from the IR engines, and a ranked
list of relevant URLs obtained from the web agent.

The architecture of the the C2 system brings up
various issues which have not been addressed-for ex-
ample, how to start a system of heterogeneous C2
agents. Another important aspect is that of the meta-
data pool which governs the decision involved in rout-
ing the query. Due to this nature of propagation of
the query, we can describe the C2 system as a classic
example of a distributed information retrieval system
over the world wide web.

7 Future Work

Having constructed the core architecture, with sup-
port for several classic IR engines, we plan to move
work forward primarily in three different but related
directions. The first involves improving the basic sys-
tem itself; exploring ways to make the system more
robust, flexible, and easier to use. The second will
involving experimenting with the variety of architec-
tures that C2 makes possible. That is, varying the
routing algorithms, distribution models, extending
our current notion of metadata, etc. Finally, we will
explore ways in which the system can be extended to
incorporate or interact with other technologies, and
in particular,ideas and standards from the Semantic
Web effort [22, 21, 3].

8 Conclusion

In this paper, we have described our work with the
C2 agent-based architecture for distributed informa-
tion retrieval and document collection management.
Because of it’s flexible design, C2 can be used to im-
plement a wide variety of distributed information ser-
vices, such as common single-stage web metasearch
or Harvest-style brokering, as well as more sophis-
ticated collection selection and ranking algorithms.
This flexibility enables it to facilitate the integration
of a variety of information sources, including clas-
sic IR systems, Semantic Web-based search engines,
structured databases and more. It is our hope that
use of this platform will prove to be a powerful and
effective approach to query answering in a distributed
and possibly heterogeneous environment, and also fa-
cilitate fruitful research in many of the areas high-
lighted above, including metadata, query routing al-
gorithms and data fusion.

References

[1] J. A. Aslam and M. Montague. Models for
metasearch. In ACM SIGIR, pages 276-284,
2001.

11

[2] T. Berners-Lee and M. Fischetti. Weaving the
web: The original design and ultimate destiny
of the world wide web by its inventor. Harper,
San Francisco, 2001.

T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, May 2001.

D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, B. Zhao, and J. Kubi-
atowicz. Oceanstore: An extremely wide-area
storage system.

K. D. Bollacker, S. Lawrence, and C. L. Giles.
Citeseer: An autonomous web agent for auto-
matic retrieval and identification of interesting
publications. In Proceedings of the Second In-

ternational Conference on Autonomous Agents
(Agents ’98), Minneapolis, 1998. ACM Press.

C. M. Bowman, P. B. Danzig, D. R. Hardy,
U. Manber, and M. F. Schwartz. Harvest: A
scalable, customizable discovery and access sys-
tem. Technical Report CU-CS-732-94, Depart-
ment of Computer Science, University of Col-
orado, Boulder, 1994.

C. M. Bowman, P. B. Danzig, D. R. Hardy,
U. Manber, and M. F. Schwartz. The harvest
information discovery and access system. In Pro-

ceedings of the Second International Conference
on the World-Wide Web, pages 763-771, 1994.

C. M. Bowman, P. B. Danzig, D. R. Hardy,
U. Manber, and M. F. Schwartz. The Harvest
information discovery and access system. Com-
puter Networks and ISDN Systems, 28(1-2):119—
125, 1995.

C. M. Bowman, C. Dharap, M. Baruah, B. Ca-
margo, and S. Potti. A File System for In-
formation Management. In Proceedings of the
ISMM International Conference on Intelligent
Information Management Systems, March 1994.

J. Callan. Advances in Information Re-
trieval, chapter Distributed Information Re-
trieval, pages 127-150. Kluwer Academic Pub-
lishers, 2000.

[4]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks.
In E. A. Fox, P. Ingwersen, and R. Fidel, editors,
Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 21—
28, Seattle, Washington, 1995. ACM Press.

R. S. Cost, T. Finin, A. Joshi, Y. Peng,
C. Nicholas, H. Chen, F. P. Lalana Kagal,
Y. Zou, and S. Tolia. ITTALKS: A case study
in the Semantic Web and DAML. In Interna-
tional Semantic Web Workshop (SWWS) — In-
frastructure and Applications for the Semantic
Web, 2001.

R. S. Cost, T. Finin, Y. Labrou, X. Luan,
Y. Peng, 1. Soboroff, J. Mayfield, and
A. Boughannam. Jackal: A Java-based tool
for agent development. In J. Baxter and
C. Brian Logan, editors, Working Notes of
the Workshop on Tools for Developing Agents,
AAAT 98, number WS-98-10 in AAAT Technical
Reports, pages 73—-82, Minneapolis, Minnesota,
July 1998. AAAT, AAAIT Press.

R. S. Cost, I. Soboroff, J. Lakhani, T. Finin,
E. Miller, and C. Nicholas. TKQML: A script-
ing tool for building agents. In M. Wooldridge,
M. Singh, and A. Rao, editors, Intelligent Agents
Volume IV — Proceedings of the 1997 Work-
shop on Agent Theories, Architectures and Lan-
guages, volume 1365 of Lecture Notes in Ar-
tificial Intelligence, pages 336-340. Springer-
Verlag, Berlin, 1997.

G. Crowder and C. Nicholas. Resource selection
in CAFE: An architecture for network informa-
tion retrieval. In Proceedings of the Network In-
formation Retrieval Workshop, SIGIR 96, Au-
gust 1996.

G. Crowder and C. Nicholas. Metadata for dis-
tributed text retrieval. In Proceedings of the Net-
work Information Retrieval Workshop, SIGIR
97, 1997.

12

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

T. Finin, Y. Labrou, and J. Mayfield. KQML as
an agent communication language. In J. Brad-
shaw, editor, Software Agents. MIT Press, 1997.

J. C. French, A. L. Powell, J. P. Callan, C. L.
Viles, T. Emmitt, K. J. Prey, and Y. Mou. Com-
paring the performance of database selection al-
gorithms. In SIGIR, pages 238245, 1999.

L. Gravano and H. Garcia-Molina. Generalizing
gloss to vector-space databases and broker hi-
erarchies. In In Proceedings of the 21st VLDB
Conference, Zurich, Switzerland, 1995.

J. Heflin, J. Hendler, and S. Luke. SHOE: A pro-
totype language for the semantic web. Linkping
Electronic Articles in Computer and Informa-
tion Science, ISSN 1401-9841, 6, 2001.

J. Hendler. Agents and the semantic web. IEEFE
Intelligent Systems, 16(2):30-37, March/April
2001.

J. Hendler and D. McGuinness. The DARPA
agent markup language. IEEE Intelligent Sys-
tems, 15(6):72-73, November /December 2000.

A.E. Howe and D. Dreilinger. SAVVYSEARCH:
A metasearch engine that learns which search
engines to query. Al Magazine, 18(2):19-25,
1997.

M. E. C. Leah S. Larkey and J. Callan. Collec-
tion selection and results merging with topically
organized u.s. patents and trec data. In Con-

ference of Information and Knowledge Manage-
ment, 2000.

L. Liu. Query Routing in Large Scale Digital
Library Systems. ICDE, IEEE Press’99, 1997.

C.-C. K. C. Luis Gravano and H. Garcia-Molina.
STARTS: A Stanford proposal for internet Meta-
Searching. ACM SIGMOD 97, 1997.

W. H. Nicholas Gibbins. Scalability issues for
ruery routing service discovery. In Second Work-
shop on Infrastructure for Agents, MAS and

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Scalable MAS at the Fourth International Con-
ference on Autonomous Agents, pages 209-217,
2001.

C. Pearce and E. Miller. Advances in Intelli-
gent Hypertext, chapter The TELLTALE Dy-
namic Hypertext Environment Approaches to
Scalability. Lecture Notes in Computer Science.
Springer-Verlag, 1996.

C. Pearce and C. Nicholas. TELLTALE: Exper-
iments in a dynamic hypertext environment for
degraded and multilingual data. Journal of the
American Society for Information Science, June
1994.

A. L. Powell, J. C. French, J. Callan, M. Connell,
and C. L. Viles. The impact of database selection
on distributed searching. In SIGIR, pages 232-
239, 2000.

M. Rabinovich, I. Rabinovich, R. Rajaraman,
and A. Aggarwal. A dynamic object repli-
cation and migration protocol for an internet
hosting service. In International Conference on
Distributed Computing Systems, pages 101-113,
1999.

G. Salton, C. Yang, and A. Wong. A vector space
model for automatic indexing. Communication
of the ACM, pages 613-620, 1975.

M. A. Sheldon, A. Duda, R. Weiss, and D. K.
Gifford. Discover: A resource discovery system
based on content routing. In 3rd International
Conference on WWW, 1996.

S. Staab, M. Erdmann, and A. Maedche. On-
tologies in rdf(s). Linkping FElectronic Articles
in Computer and Information Science, 6, 2001.
ISSN 1401-9841.

E. M. Voorhees, N. K. Gupta, and B. Johnson-
Laird. The collection fusion problem. In Text
REtrieval Conference, 1994.

E. M. Voorhees, N. K. Gupta, and B. Johnson-
Laird. Learning collection fusion strategies. In

13

[37]

[38]

[39]

[40]

[41]

[42]

Proceedings of the Eighteenth Annual Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, Fusion
Strategies, pages 172-179, 1995.

W3C Working Group. W3C resource descrip-
tion framework (rdf), October 1998. site:
http://www.w3c.org/RDF.

W3C Working Group. W3C resource descrip-
tion framework model and syntax specification,
February 1999.

W3C Working Group. W3C resource descrip-
tion framework schema (rdfs), March 1999. site:
http://www.w3.org/TR/rdf-schema/.

W3C Working Group.
language (xml), October
http://www.w3.org/XML.

extensible markup
2000. site:

I. H. Witten, A. Moffat, and T. C. Bell. Manag-
ing Gigabytes: Compressing and Indexing Doc-
uments and Images. Van Nostrand Reinhold,
1994.

R. R. Yager and A. Rybalov. On the fusion
of documents from multiple collection informa-
tion retrieval systems. Journal of the American
Society for Information Science, 49(13):1177,
November 1998.

