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1 Beowulf Architectures  

1.1 Introduction 

Beowulf is a multi-computer architecture which can be used for parallel 

computations. A Beowulf cluster is a computer system conforming to the Beowulf 

architecture, which consists of one master node and one or more compute nodes. The 

nodes are connected together via Ethernet or some other network, and are typically built 

using commodity hardware components, such as any PC capable of running Linux and 

standard Ethernet adapters. The nodes usually do not contain any custom hardware 

components and are trivially reproducible. The master node controls the entire cluster and 

serves parallel jobs and their required files to the compute nodes. The master node is 

typically the cluster’s administration console and its gateway to the outside world. In 

most cases the compute nodes in a Beowulf cluster are "dumb", they are configured and 

controlled by the master node. Typically, these compute nodes do not have keyboards or 

monitors and are accessed remotely from the master node. Simply put, Beowulf is a 

technology of clustering Linux computers together to form a parallel, virtual 

supercomputer, a Beowulf cluster. While Linux-based Beowulf clusters provide a cost 

effective hardware alternative to the supercomputers of the past for high performance 

computing applications, the original software implementations for Linux Beowulfs were 

not without their problems [1]. 

1.1.1 Beowulf System Software 

[2] reports the components of Beowulf system software. 

� BPROC: Beowulf Distributed Process Space  

This packages allows a process ID space to span multiple nodes in a cluster 

environment and also provides mechanisms for starting processes on other nodes. (This 

package is for Linux 2.2.x kernels.)  
�
�Network Device Drivers  

We have long contributed to the development of the Linux networking code. Many 

of the Linux ethernet device drivers, and most of the device drivers for cost-effective 
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high-performance network adapters were written by Donald Becker at CESDIS. A large 

portion of his time goes into maintaining and enhancing the performance of these device 

drivers. Fast Ethernet has long been a cluster staple, while Gigabit Ethernet has recently 

been tested.  

� Beowulf Ethernet Channel Bonding  

One of the goals of the goals of the Beowulf project is to demonstrate scalable I/O 

using commodity subsystems. For scaling network I/O we devised a method to join 

multiple low-cost networks into a single logical network with higher bandwidth.  

� PVM-TCL  

A set of extensions to TCL that allow you to manipulate the PVM virtual machine 

directly. NOTE: This currently does not extend the message-passing calls to TCL, just 

the PVM configuration ones. One could, however, implement them from the base 

provided here.  

� Virtual Memory Pre-Pager  

A loadable kernel module for Linux 2.0 that implements a non-blocking page read 

in system call. With the proper run-time support, this new system call can dramatically 

reduce the run-time of "out-of-core" programs (programs that have data sets larger than 

the available physical memory) by allowing multiple pages to be read from disk prior to 

their actual use.  
�
�PPro Performance Counter Patches  

Kernel patches (for 2.0.36, 2.2.2 and 2.2.9) and a small library to add kernel support 

for the performance counters found in the Pentium Pro and Pentium II.  

� LM78 Hardware Monitor Driver  

A loadable kernel module for Linux 2.0 and 2.1 that provides a /proc interface for 

the LM78 Hardware Monitor. (Note: This driver speaks to the hardware monitors via the 

ISA interface. This driver does not support boards that only have the serial interface on 

the hardware monitor connected.)  

� Intel PR440FX Netbooting Tools  

Tools to assist with netbooting from built in network interface on the Intel 

PR440FX and possibly other AMI Bios motherboards.  
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1.1.2 Scyld Beowulf System Software 

The following is a list of the major software components distributed with the Scyld 

Beowulf Cluster Operating System [1]. 
_ �

bproc - the Beowulf process migration technology; an integral part of Scyld 

Beowulf _ 

�
beosetup - a GUI interface for configuring the cluster_ 

�
beostatus - a GUI interface for monitoring cluster status_ 

�
beostat - a text-based tool for monitoring cluster status_ 

� beoboot - a set of utilities for booting the compute nodes_ 

� beofdisk - a utility for remote partitioning of hard disks on the compute nodes_ 

� beoserv - the beoboot server; it responds to compute nodes and serves the boot 

image_ 

� bpmaster - the bproc master daemon; it only runs on the master node_ 

�
bpslave - the bproc compute daemon; it runs on each of the compute nodes_ 

�
bpstat - a bproc client; it maintains status information for all nodes in the cluster_ 

�
bpctl - a bproc client; a command line mechanism for controlling the nodes_ 

� bpsh - a bproc client; a replacement utility for "rsh" (remote shell)_ 

� bpcp - a bproc client; a mechanism for copying files between nodes_ 

�
beompi - the Message Passing Interface; optimized for use with Scyld Beowulf _ 

�
beopvm - the Parallel Virtual Machine; optimized for use with Scyld Beowulf _ 

	
mpprun - a parallel job creation package for Scyld Beowulf _ 



perf - support for platform specific hardware performance counters 

1.2 BPROC (Beowulf Distributed Process Space) 

Scyld Beowulf is able to provide a single system image through its use of BProc, 

the Beowulf cluster process management kernel enhancement. BProc enables the 

processes running on cluster compute nodes to be visible and manageable on the master 

node. Processes start on the master node and are migrated to the appropriate compute 

node by BProc. Process parent-child relationships and UNIX job control information are 

both maintained with migrated tasks. Because cluster compute nodes are not required to 
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contain resident applications, their hard disks are available for application data and cache. 

This approach eliminates both the need to have full installations on the compute nodes 

and the version skew problem common with previous generation cluster software.  

Shortly, BPROC provides a mechanism to start processes on remote hosts while keeping 

them visible in the process tree on the front end of a cluster.  

Bproc aims to provide a single process space within the tightly controlled environment of 

a beowulf cluster. Bproc doesn't address resource allocation or load balancing at all. 

Bproc should avoid most if not all of the performance penalties associated with Mosix 

style migration. 

1.2.1 Goal 

The goal of Bproc is to provide key elements needed for a single system image on 

Beowulf cluster. Currently Beowulf style clusters still look like a collection of PC's on a 

network. Once logged into the front end of the cluster, the only way to start processes on 

other nodes in the system is via rsh. MPI and PVM hide this detail from the user but users 

but it's still there when either of them starts up. Cleaning up after jobs is often made 

tedious by this as well, especially when the jobs are misbehaving. 

The bproc distributed PID space (bproc) addresses these issues by providing a 

mechanism to start processes on remote nodes without ever logging into another node 

and by making all the remote processes visible in the process table of the cluster's front-

end node. The hope is that this will eliminate the need for people to be able to login on 

the nodes of a cluster.  

Bproc can play a role of “Global Naming Scheme” in the mobile agent architecture. It 

can provide the environment of weak mobility in mobile software architectures. 

1.2.2 Overview 

BPROC introduces a distributed process ID (PID) space. This allows a node to run 

processes which appear in its process tree even though the processes are physically 

present on other nodes. The remote processes also appear to be part of the PID space of 

the front end node and not the node which they are running on. The node which is 

distributing its pid space is called the master and other nodes running processes for the 
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master are the slaves. Each PID space has exactly one master and zero or more slaves. 

Each PID space corresponds to a real PID space on some machine. Therefore, each 

machine can be the master of only one PID space. A single machine can be a slave in 

more than one PID space.  

1.2.3 Ghost processes 

Remote Node
Operating System #1

Front-End Node
Operating System

Ghost Process #1
(Kernel Thread)

Real Process #1
(Kernel Thread)

bproc_rexec/bproc_move/bproc_rfork/bproc_execmove

Signal

Signal

Generate New PID
Child
Proces

s

Fork

Transmit/Receive Signal

User View

Remote Node
Operating System #2

Real Process #2
(Kernel Thread)

Signal

Child
Proces

s

Fork
Generate New PID

Transmit/Receive Signal

bproc_rexec/bproc_move/
bproc_rfork/bproc_execmove

Ghost Process #2
(Kernel Thread)

Master Daemon
Slave Daemon

Slave Daemon

MPI

 

Figure 1. Brpoc Architecture 

Remote processes on are represented on the master node by "ghost" processes. 

These are kernel threads like any other kernel thread on the system (i.e. nfsiod, kswapd, 

etc). They have no memory space, open files, or file system context but they can wake up 

for signals or other events and do things in kernel space. Using these threads, the existing 

signal handling code and process management code remains unchanged. Ghosts perform 

these basic functions:  
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� Signals they receive are forwarded to the real processes they represent. Since they 

are kernel threads, even SIGKILL and SIGSTOP can be caught and forwarded 

without destroying or stopping the ghost..  

� When the remote process exits it will forward its exit code back to the ghost and the 

ghost will also exit with the same code. This allows other processes to wait() and 

receive meaningful exit status for remote processes.  

� When a remote process wants to fork, it will need to obtain a PID for the new child 

process from the master node. This is obtained by asking the ghost process to fork 

and return the PID of the new child ghost process. (This also keeps the parent-child 

relationships in sync.)  

� When a remote process waits on a child, the ghost will do the same. This prevents 

accumulation of ghost zombies and keeps the process trees in sync.  

1.3 MPI (Message Passing Interface) 

MPI is a library specification for writing message-passing programs for parallel 

computers, clusters and heterogeneous networks e.g., a Beowulf where parallel 

programming requires the MPI library run on a cluster.  The MPI provides library of 

message-passing programs written in C, C++ or Fortran across a various heterogeneous 

parallel architectures. 

The MPI becomes a de facto standard for portable message-passing parallel 

programs standardized by the MPI Forum and available on all massively-parallel 

supercomputers.  The MPI forum designs the base set of routines that ones can 

implement efficiently, practical, portable, efficient, and flexible.   The current version of 

MPI is MPI-2 which is open to public at http://www.mcs.anl.gov/mpi .  The vendors that 

implements MPI include IBM, Intel, TMC, Meiko, Cray, Convex and Ncube. 

The MPI contains point-to-point message passing, collective communication, 

support for process groups, support for communication contexts, support for application 

topologies, environmental inquiry routines, profiling interface and error control.  The 

MPI is primarily for SPMD/MIMD parallel architectures but there is no mechanism for 

loading code onto processors, or assigning processes to processors or creating/destroying 
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processes. Besides, the MPI does not provide remote memory transfers, multithreading 

and virtual shared memory but it is designed to be thread-safe.   

In MPI, a process is defined in a group and a rank (a unique integer for labeling 

each process in the group).  Process groups can be created and destroyed.  A message 

label is specified by a context and a corresponding tag.  In a point-to-point 

communication, it is a communication between pairs of processes.  The Message 

selectivity is by rank and tag.   In Collective communication, it involves all processes in 

the scope of the communication specified by the communicator.  The collective 

communication routines do not take message tag arguments.  

The feature of MPI includes six basic functions and 125 extension functions.  The 

six basic functions are  

 

� MPI_Init – start MPI. 

� MPI_Finalize – exit MPI. 

� MPI_Comm_size – the number of processes. 

� MPI_Comm_rank – a number between zero and size-1. 
�

MPI_Bcast – this routine sends data from one process to all others. 
�

MPI_Reduce – this routine combines data from all processes and returning the result 

to a single process. 

 

The implemented software versions of MPI include MPICH [3] and LAM [4].  

They are widely deployed in the researches.   

 

The MPICH is an open-source, portable implementation of the Message-Passing 

Interface Standard libraries.  It contains a complete implementation of version 1.2 of the 

MPI Standard and also significant parts of MPI-2, particularly in the area of parallel I/O.  

MPICH is developed under Mathematics and Computer Science Division Argonne 

National Laboratory.  The current version is 1.2.3 (January 2002) [3].  The MPICH is 

available in all UNIX and Window NT/2000 platforms. 

The LAM (Local Area Multicomputer) is an MPI programming environment and 

development system for heterogeneous computers on a network. With LAM, a dedicated 
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cluster or an existing network computing infrastructure can act as one parallel computer 

solving one problem.  LAM features extensive debugging support in the application 

development cycle and peak performance for production applications. LAM features a 

full implementation of the MPI communication standard [4]. The LAM is developed at 

the Ohio Supercomputer, the University of Notre Dame. 

1.4 Current projects related to Beowulf 

The hybrid cluster computing is the computing based on the platform of hybrid 

clusters, which is the computer cluster consisting of both the stationary and mobile 

computers, interconnected by wireless and wired networks [5]. It implements a prototype 

for the hybrid cluster computer with Java mobile objects and the mobile IP. It studies the 

performance on the trade-off between the communication load and the computational 

load. 

Mobile agents (MA) are of growing interest as base for distributed and parallel 

applications to achieve an efficient utilization of cluster systems. The MAs are mobile 

and autonomous SW units that can execute tasks given to the system and allocate 

independently all the needed resources. However, with growth of cluster sizes, the 

probability of a failure of system components increases. Holger Pals, Stefan Petri, and 

Claus Grewe [6] conducted the Fault Tolerance for Mobile Agents in Clusters 

(FANTOMAS). It focused on the failure of one or more system components and the loss 

of mobile agents. The FANTOMAS concept has been derived to offer a user transparent 

fault tolerance that can be activated on request, according to the needs of the task. 

Another paper introduces a new SW system model for improving the performance 

of parallel and distributed applications adaptively and on a real-time base, using 

intelligent agents as adaptive controllers [7]. These intelligent agents are responsible for 

collecting and analyzing the performance parameters and metrics, and deciding on the 

required modification. 

[8] develops the Scalable Computing Environment (SCE).  The SCE is the Software 

(SW) tool with a cluster builder tool, complex system mgmt tool (SCMS), scalable real-

time monitoring, web based monitoring SW (KCAP), parallel Unix command, and batch 

scheduler (SQMS). 
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Mobile agent techniques for autonomous data process and information discovery on 

the Synthetic Aperture Radar Atlas (SARA) digital library enable automatic and dynamic 

configuration of distributed parallel computing and support on-demand processing of 

such a remote-sensing archive efficiently [9]. It provides the architecture design and 

implementation status of the prototype system. 

Another attempt to implement the MAs system on Beowulf Cluster has been 

reported at the Electrical Engineering Conference (EECON-22) in 1999. It has deployed 

on the SMILE Beowulf Cluster environment [10]. 
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2 Distributed Software Tools for Process Migration 

��Problem Definition  

Given a mobile agent application in which each agent has to visit multiple resources 

in order to complete a task, find a schedule for giving agents access to resources that 

optimizes the system throughput 

 

� Introduction 

Mobile-agent, multi-agent, multi-resource scheduling has some similarities with 

scheduling in traditional computing environments, but there are major differences. Many 

assumptions used in traditional scheduling algorithms become unrealistic in the context 

of mobile agent systems, which are characterized by large data-transfer delay, diversified 

network links and a wide spectrum of machine speeds. Scheduling algorithms for a 

mobile-agent system must work in a heterogeneous environment where 

(1) the number of machines is limited; 

(2) the task graph structure is general; 

(3) the data transfer delay is general; and 

(4) the task duplication is not allowed. 

This problem is NP-complete. 
�
�A hierarchical scheduling framework in heterogeneous environment. 

� Algorithms for scheduling multi-task 

The objective is to optimize the system throughput. The algorithms work in 

heterogeneous networks in that they assume different host speeds and different data 

transfer and communication delays between host pairs. They developed both centralized 

and distributed algorithms. The centralized algorithm has a provable performance bound 

and is used as a module in the distributed scheduler. 

2.1 CONDOR 

Condor is sophisticated and unique distributed job scheduler developed by the 

condor research project at the University of Wisconsin-Madison Department of Computer 

Sciences. Condor exists to address problems of resource allocation over very large 
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numbers of systems owned by different people. It includes some process migration 

capabilities as well [12]. 

2.1.1 Features of Condor 

� Checkpoint and migration. 

Where programs can be linked with Condor libaries, users of Condor may be 

assured that their jobs will eventually complete, even in the ever changing environment 

that Condor utilizes. As a machine running a job submitted to Condor becomes 

unavailable, the job can be checkpointed. The job may continue after migrating   to 

another machine. Condor's periodic checkpoint feature periodically checkpoints a job 

even in lieu of migration in order to safeguard the accumulated computation time on a job 

from being lost in the event of a system failure such as the machine being shutdown or a 

crash.  
�

Remote system calls.  

  Despite running jobs on remote machines, the Condor standard universe execution 

mode preserves the local execution environment via remote system calls. Users do not 

have to worry about making data files available to remote workstations or even obtaining 

a login account on remote workstations before Condor executes their programs there. The 

program behaves under Condor as if it were running as the user that submitted the job on 

the workstation where it was originally submitted, no matter on which machine it really 

ends up executing on.  

� No Changes Necessary to User's Source Code.  

No special programming is required to use Condor. Condor is able to run non-

interactive programs. The checkpoint and migration of programs by Condor is transparent 

and automatic, as is the use of remote system calls. If these facilities are desired, the user 

only re-links the program. The code is neither recompiled nor changed.  

� Pools of machines can be hooked together.  

Flocking is a feature of Condor that allows jobs submitted within a first pool of 

Condor machines to execute on a second pool. The mechanism is flexible, following 

requests from the job submission, while allowing the second pool, or a subset of 
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machines within the second pool to set policies over the conditions under which jobs are 

executed.  

� Jobs can be ordered.  

The ordering of job execution required by dependencies among jobs in a set is 

easily handled. The set of jobs is specified using a directed acyclic graph, where each job 

is a node in the graph. Jobs are submitted to Condor following the dependencies given by 

the graph.  

� Sensitive to the desires of machine owners.  

The owner of a machine has complete priority over the use of the machine. An 

owner is generally happy to let others compute on the machine while it is idle, but wants 

it back promptly upon returning. The owner does not want to take special action to regain 

control. Condor handles this automatically.  

� ClassAds.  

The ClassAd mechanism in Condor provides an extremely flexible, expressive 

framework for matchmaking resource requests with resource offers. Users can easily 

request both job requirements and job desires. For example, a user can require that a job 

run on a machine with 64 Mbytes of RAM, but state a preference for 128 Mbytes, if 

available. A workstation owner can state a preference that the workstation runs jobs from 

a specified set of users. The owner can also require that there be no interactive 

workstation activity detectable at certain hours before Condor could start a job. Job 

requirements/preferences and resource availability constraints can be described in terms 

of powerful expressions, resulting in Condor's adaptation to nearly any desired policy.  

 

Figure 2: An Example of ClassAd 

2.1.2 Condor Architecture 
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A Condor pool is comprised of a single machine that serves as the central manager, 

and an arbitrary number of other machines that have joined the pool. Conceptually, the 

pool is a collection of resources (machines) and resource requests (jobs). The role of 

Condor is to match waiting requests with available resources. Every part of Condor sends 

periodic updates to the central manager, the centralized repository of information about 

the state of the pool. Periodically, the central manager assesses the current state of the 

pool and tries to match pending requests with the appropriate resources. 
�

Central Manager  

There can be only one central manager for your pool. The machine is the collector 

This machine plays a very important part in the Condor pool and should be reliable. If 

this machine crashes, no further matchmaking can be performed within the Condor 

system (although all current matches remain in effect until they are broken by either party 

involved in the match). Therefore, choose for central manager a machine that is likely to 

be online all the time, or at least one that will be rebooted quickly if something goes 

wrong. The central manager will ideally have a good network connection to all the 

machines in your pool, since they all send updates over the network to the central 

manager. All queries go to the central manager.  
�

Execute  

Any machine in your pool (including your Central Manager) can be configured for 

whether or not it should execute Condor jobs. Obviously, some of your machines will 

have to serve this function or your pool won't be very useful. Being an execute machine 

doesn't require many resources at all. About the only resource that might matter is disk 

space, since if the remote job dumps core, that file is first dumped to the local disk of the 

execute machine before being sent back to the submit machine for the owner of the job. 

However, if there isn't much disk space, Condor will simply limit the size of the core file 

that a remote job will drop. In general the more resources a machine has (swap space, real 

memory, CPU speed, etc.) the larger the resource requests it can serve. However, if there 

are requests that don't require many resources, any machine in your pool could serve 

them.  

� Submit  
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Any machine in your pool (including your Central Manager) can be configured for 

whether or not it should allow Condor jobs to be submitted. The resource requirements 

for a submit machine are actually much greater than the resource requirements for an 

execute machine. First of all, every job that you submit that is currently running on a 

remote machine generates another process on your submit machine. So, if you have lots 

of jobs running, you will need a fair amount of swap space and/or real memory. In 

addition all the checkpoint files from your jobs are stored on the local disk of the machine 

you submit from. Therefore, if your jobs have a large memory image and you submit a lot 

of them, you will need a lot of disk space to hold these files. This disk space requirement 

can be somewhat alleviated with a checkpoint server (described below), however the 

binaries of the jobs you submit are still stored on the submit machine.  
�

Checkpoint Server  

One machine in your pool can be configured as a checkpoint server.     This is 

optional, and is not part of the standard Condor binary distribution. The checkpoint server 

is a centralized machine that stores all the checkpoint files for the jobs submitted in your 

pool. This machine should have lots of disk space and a good network connection to the 

rest of your pool, as the traffic can be quite heavy. Now that you know the various roles a 

machine can play in a Condor pool, we will describe the actual daemons within Condor 

that implement these functions.  

2.1.3 Condor Daemons  

The following list describes all the daemons and programs that could be started 

under Condor and what they do: 

� condor_master  

This daemon is responsible for keeping all the rest of the Condor daemons running 

on each machine in your pool. It spawns the other daemons, and periodically checks to 

see if there are new binaries installed for any of them. If there are, the master will restart 

the affected daemons. In addition, if any daemon crashes, the master will send e-mail to 

the Condor Administrator of your pool and restart the daemon. The condor_master also 

supports various administrative commands that let you start, stop or reconfigure daemons 



 

 15

remotely. The condor_master will run on every machine in your Condor pool, regardless 

of what functions each machine are performing.  
�

condor_startd  

This daemon represents a given resource (namely, a machine capable of running 

jobs) to the Condor pool. It advertises certain attributes about that resource that are used 

to match it with pending resource requests. The startd will run on any machine in your 

pool that you wish to be able to execute jobs. It is responsible for enforcing the policy 

that resource owners configure which determines under what conditions remote jobs will 

be started, suspended, resumed, vacated, or killed. When the startd is ready to execute a 

Condor job, it spawns the condor_starter, described below.  
�

condor_starter  

This program is the entity that actually spawns the remote Condor job on a given 

machine. It sets up the execution environment and monitors the job once it is running. 

When a job completes, the starter notices this, sends back any status information to the 

submitting machine, and exits.  

� condor_schedd  

This daemon represents resources requests to the Condor pool. Any machine that 

you wish to allow users to submit jobs from needs to have a condor_schedd running. 

When users submit jobs, they go to the schedd, where they are stored in the job queue, 

which the schedd manages. Various tools to view and manipulate the job queue (such as 

condor_submit, condor_q, or condor_rm) all must connect to the schedd to do their work. 

If the schedd is down on a given machine, none of these commands will work.  

The schedd advertises the number of waiting jobs in its job queue and is responsible 

for claiming available resources to serve those requests. Once a schedd has been matched 

with a given resource, the schedd spawns a condor_shadow (described below) to serve 

that particular request.  
�

condor_shadow  

This program runs on the machine where a given request was submitted and acts as 

the resource manager for the request. Jobs that are linked for Condor's standard universe, 

which perform remote system calls, do so via the condor_shadow. Any system call 

performed on the remote execute machine is sent over the network, back to the 
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condor_shadow which actually performs the system call (such as file I/O) on the submit 

machine, and the result is sent back over the network to the remote job. In addition, the 

shadow is responsible for making decisions about the request (such as where checkpoint 

files should be stored, how certain files should be accessed, etc).  

��condor_collector  

This daemon is responsible for collecting all the information about the status of a 

Condor pool. All other daemons (except the negotiator) periodically send ClassAd 

updates to the collector. These ClassAds contain all the information about the state of the 

daemons, the resources they represent or resource requests in the pool (such as jobs that 

have been submitted to a given schedd). The condor_status command can be used to 

query the collector for specific information about various parts of Condor. In addition, 

the Condor daemons themselves query the collector for important information, such as 

what address to use for sending commands to a remote machine.  
�

condor_negotiator  

This daemon is responsible for all the match-making within the Condor system. 

Periodically, the negotiator begins a negotiation cycle, where it queries the collector for 

the current state of all the resources in the pool. It contacts each schedd that has waiting 

resource requests in priority order, and tries to match available resources with those 

requests. The negotiator is responsible for enforcing user priorities in the system, where 

the more resources a given user has claimed, the less priority they have to acquire more 

resources. If a user with a better priority has jobs that are waiting to run, and resources 

are claimed by a user with a worse priority, the negotiator can preempt that resource and 

match it with the user with better priority.  

� condor_kbdd  

This daemon is only needed on Digital Unix and IRIX. On these platforms, the 

condor_startd cannot determine console (keyboard or mouse) activity directly from the 

system.  

� condor_ckpt_server  

This is the checkpoint server. It services requests to store and retrieve checkpoint 

files. If your pool is configured to use a checkpoint server but that machine (or the server 
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itself is down) Condor will revert to sending the checkpoint files for a given job back to 

the submit machine.  

 

Figure 3: Condor Architecture 

2.1.4 Submitting Different Types of Jobs: Alternative Universes 

A Universe in condor defines an execution environment. Condor supports the 

following Universes: 

� Vanilla 

� MPI: The MPI Universe allows parallel program written with MPI to be managed 

by Condor 

� PVM 
�

Globus 
�

Scheduler: DAGMan Scheduler 
�

Standard:  

• Transparent process checkpoint and restart 

• Transparent process migration 

• Remote system calls 

• Configurable file I/O buffering 
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2.2 MAUI 

Maui is a batch scheduler capable of administrative control over resources, such as 

processors, memory and disk, and workload.  It allows a high degree of configuration in 

the areas of job prioritization, scheduling, allocation, fairness, fairshare, QOS levels, 

backfill and reservation policies.  The Maui is an advance cluster schedule suited for high 

performance computing (HPC) platforms including PC clustering like Beowulf.   The 

Maui itself is not a resource manager but it makes decisions by querying and controlling 

a resource management system such as OpenPBS, PBSPro, Loadleveler, SGE, etc.  For 

example, the Maui may query jobs and nodes information from the PBS server and direct 

PBS to manage job in response with specified Maui policies, priorities, and reservations.   

In the PBS users’  view, the Maui is a set of external commands which provide additional 

information and capabilities intended to improve the user's ability to run jobs “when”,  

“where” , and “how” they want.  It term of quality of service, Maui allows a user to 

request improved job turnaround time, access to additional resources, or exemptions to 

particular policies automatically 

2.2.1 Brief history 

The Maui scheduler was originally developed to be dependent on the IBM SP 

Load-Leveler API.  As interest in the Maui scheduler for Linux, IRIX, HP-UX and 

Windows NT grew it was necessary either to write the interfaces to existing Resource 

Managers, or the develop a Resource Manager (RM) specifically for the Maui Scheduler.  

In 1998, a Maui High Performance Computing Center team started to develop a generic 

resource manager called Wiki, from what was the Wiki RM.  The Linux Resource 

Manager development began at the Albuquerque High Performance Computing Center 

and is know as the Linux Resource Manager.  The Maui Scheduler is an advanced 

reservation based High Performance Computing batch scheduler supported on SP, O2K, 

and Linux clusters.  It can be used to extend the functionality and improve the efficiency 

of sites utilizing the PBS and Loadleveler batch system.   

2.2.2 Maui Features 
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 �
�Backfill  

Backfill is one of scheduling approaches that allows user to run some jobs out of 

the queue order as long as they do not delay the highest priority jobs in the queue.  Each 

job must be defined the estimate running time called wallclock limit.  It is an estimation 

of the elapsed time from start to finish of the job.  Since the scheduler may be configured 

to kill jobs which exceed their wallclock limits, it is often wise to slightly overestimate 

this limit.  With this information, it allows Maui to determine whether or not a high 

priority job will be delayed. The more accurate the wallclock limit, the more 'holes' Maui 

can find to start the desired job early.  

The backfill increase the utilization and throughput because it schedules job to the 

available resource for immediate use while decreasing the average job queue time.  The 

command showbf in the Maui is to show a backfill window i.e., showing the available 

resources for immediate use.  Users are able to configure a job that will be able to run as 

soon as it is submitted by utilizing only available resources.  
�

Advance Reservations  

Maui provides the advance reservations by reservation-specific access control list 

(ACL) to specify the reserved resource and users who can use them.  Also it allows setup 

of timeframe for certain resources to be used in particular site.  Maui will attempt to 

locate the best possible combination of available resources whether these are reserved or 

unreserved without forcing the job to utilize the resources.  For example, in the figure 

below, note that job X, which meets access criteria for both reservation A and B, 

allocates a portion of its resources from each reservation and the remainder from 

resources outside of both reservations.  

 
 
 
 
 
 
 

  

 

A 
 
 
  Job X 
 
     B 

A 
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Maui can configure jobs to be run within accessible reservations on a job-by-job 

basis or by the QoS constraints depending on the policy. 
�

Quality of Service (QOS)  

   The Maui QOS features allow a site to grant special privileges to particular users 

including the access to additional resources, exemptions from certain policies, the access 

to special capabilities, and improved job prioritization.   

� Statistics  

The Maui statistics features allow users to track the data that determine how well 

and how often their jobs are running.  The showstats command provides detailed statistics 

per user, per group, and per account basis.  Besides, the command showgrid displays 

various tables of scheduling or system performance.  Therefore, user can determine what 

types of jobs the gain the highest performance and tune the jobs to optimal turnaround 

time. 

��Diagnosis  

The command checkjob in Maui allow users to view a detailed status report for each 

submitted job.  This command shows all job attribute and state information and analyze if 

the job can run or not.  If the job is unable to run, it will provide the reasons.  Besides, the 

Maui logs viewed by system administrator can reveal the detail why the job did not start. 
�
�Workload Information  

In order to manage the workload, Maui provides an extensive array of job 

prioritization options for each site.  Maui allows sites to control exactly how jobs run 

through the job queue.  Maui provides the showq command to show queued jobs, a 

relevant listing of both active and idle jobs.  

2.3 MOSIX 

Bproc aims to provide a single system image similar to Mosix but does not attempt 

to do Mosix style transparent process migration. Bproc will allow a process to migrate 

from one node to another but this migration is not transparent or automatic. On the other 

hand, bproc should avoid most if not all of the performance penalties associated with 

Mosix style migration. �
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MOSIX is a software module for supporting scalable cluster computing with Linux. 

The core of MOSIX are kernel-level, adaptive load-balancing algorithms that are 

designed to respond to variations in resource usage among the nodes by migrating 

processes from one node to another (strong mobility), preemptively and transparently. 

MOSIX allows a cluster of PCs to work cooperatively as if part of a single system [13]. 

There are two versions: a kernel patch (K-MOSIX) that can be applied to a specific Linux 

kernel, and a user-level package (U-MOSIX) that can be used with different Unix 

platforms.  

Both versions are based on the same principles, and are geared to achieve even 

work distribution and load balancing. K-MOSIX provides load-balancing by transparent 

process migration. The application developer need only fork new processes. U-MOSIX 

provides even load distribution using several of the algorithms of K-MOSIX.  

[13] claims that MOSIX can support configurations with large numbers of 

computers, with minimal scaling overheads to impair the performance. A low-end 

includes several PCs by Ethernet, while a larger may include a large number of 

workstations (SMP and non-SMP) and servers by higher speed LAN such as Gigabit-

Ethernet. 

[14] is an procedural article to guide the user for installing and configuring MOSIX. 

During the configuration, the terminology such as “Migration”  is used in MOSIX that 

gives the insight of MOSIX’s process mobility to other nodes. It continues with 

installation MOSIX on the Development Machine and installation testing.  

Another attempt to deploy MOSIX is pursued and reported by Jelmer Vernooij [15]. 

It tried to use Mosix with Linux Terminal Server Project (LTSP). The reason is given as 

such that LTSP is to run remote X (Linux) without needing disks and MOSIX has the 

capability to migrate processes to machines with a lower load. The procedure to install 

MOSIX is detailed with some practical tips, gained at the project. 

 [16] presents one example of how clusters of MOSIX extension Linux systems 

were used to eliminate a performance bottleneck and to reduce the cost of building 

software. It concludes that this approach is beneficial to create high performance and 

distributed build environments form commodity hardware and open source software. 
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Barak and La’adan [17] experienced the resource sharing that is geared for 

performance scalability in a scalable computing cluster (CC), MOSIX over fast Ethernet 

and the Myrinet LANs. Parallel applications can be executed by allowing MOSIX to 

assign and reassign the processes to the best possible nodes. It demonstrated the low-cost, 

scalable CC from commodity components, such as PC’s, UNIX and PVM. 

2.4 SPRITE 

Sprite was a UNIX-like distributed operating system developed at Berkeley from 

1984 [18]. Processes run on a number of different machines, and had a number of 

interesting features, such as load-balancing, a high-speed, aggressively-caching, 

distributed file-system, and a fast log-structured local file-system.  

Sprite [19] provides transparent process migration to allow load sharing. It provides 

a UNIX like system call interface. Each process appears to run on a single host node, but 

physically to execute on a different machine. [20] presents the implementation of a 

SPRITE system to provide the transparent process migration of processes. The simulated 

results reside in migration, load sharing over distributed systems. [21] estimates the 

performance measurements, especially on a multiprocessor Sprite kernel. Variety of 

macro- and micro-benchmarks were taken in place for this matter. 

 

K. Shirriff [22] implemented of memory sharing and file mapping of 4.2 BSD Unix 

to Sprite with user-level control over paging. In the report, he stated two limited sharing 

capabilities: code and heap segments while having separate stacks. Mach model is similar 

in this matter of execution in a single address space. In addition, some of his effort has 

exhibited in collecting the reference of Sprite papers [23]. 

Despite the kernel level dynamic load balancing in a cluster system such as Sprite, 

[24] suggests to provide a high-level and portable implementation of migratable Java 

threads over Java Virtual Machine. 

2.5 Comparison of Implementations 

In this section we will explore some of the similarities and differences in the design 

decisions among several systems that support process migration. Specifically, we will 
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examine MOSIX, developed at the Hebrew University of Jerusalem, Israel; Condor, 

developed at the University of Wisconsin-Madison; and Sprite, developed at the 

University of California at Berkeley. Condor, MOSIX, and Sprite appear similar on the 

surface in that they all have implemented a process migration. Underneath, however, 

each of the three systems is trying to solve a different problem. The design decisions that 

went into the systems are necessarily different, because the designs were based on 

different assumptions. Each of these decisions is discussed in more detail below. 

2.5.1 MOSIX 

MOSIX might be best described as an attempt to create a low-cost equivalent of a 

scalable, SMP (multi-CPU) server. In an SMP system such as the Digital Alpha Server or 

SGI Challenge, multiple CPUs are tightly coupled, and the operating system can do very 

fine-grained load balancing across those CPUs. In an SMP, any job can be scheduled to 

any processor with virtually no overhead. MOSIX, similarly, attempts to implement very 

low-overhead process migration so that the multicomputer, taken as a whole, might be 

capable of fine-grained load balancing akin to an SMP. The MOSIX designers have 

expended a great deal of effort implementing very fast network protocols, optimizing 

network device drivers, and doing other analyses to push the performance of their 

network as far as possible.  

Also in line with the SMP model, MOSIX goes to great lengths to maintain the 

same semantics of a centralized OS from the point of view of both processes and users. 

Even when a process migrates, signal semantics remain the same, IPC channels such as 

pipes and TCP/IP sockets can still be used, and the process still appears to be on its 

“home node”  according to programs such as ps .  

As a result, the MOSIX implementation typically takes the form of a “pool of 

processors”--a large number of CPUs dedicated to acting as migration targets for high-

throughput scientific computing. Although MOSIX can be used to borrow idle cycles 

from unused desktop workstations, that mode of operation is not its primary focus. 

2.5.2 CONDOR 
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In contrast, Condor's primary motivation for process migration seems to be to 

provide a graceful way for processes that were using idle CPU cycles on a foreign 

machine to be evicted from that machine when it is no longer idle. They made many 

simplifying assumptions; for  example, that the remotely-executing processes will be 

running in a vacuum, not requir ing contact with other  processes via IPC channels. 

Their  migration strategy does not provide a fully transparent migration model; 

processes ``know''  that they are running on a foreign machine, and the home 

machine has no record of the process' existence. These assumptions, while more 

limiting than the MOSIX model, do buy a fair amount of simplicity: Condor 's designers 

were able to implement its process migration without modifying the kernel.  

2.5.3 SPRITE 

In motivation, Sprite seems to be a cross between Condor and MOSIX. Like 

MOSIX, Sprite strives for a very pure migration model--one in which the semantics of 

the process are almost exactly the same as if the process had been running locally. IPC 

channels, signal semantics, and error transparency are all important to the Sprite design. 

However, their migration policy is much more akin to Condor's. Similar to Condor, they 

seem primarily motivated by the desire to gracefully evict processes from machines 

which are no longer idle. When processes are first created with exec(), they are migrated 

to idle workstations if possible; later, they are migrated again only if the workstation 

owner returns and evicts the process. Unlike MOSIX, Sprite has no desire to dynamically 

re-balance the load on systems once processes have been assigned to processors. 

2.5.4 Specific Design Decisions  

In this section, we will explore some of the specific design decisions of the three 

systems in more detail.  

2.5.4.1 User Space vs. Kernel Implementation 

Sprite and MOSIX both involve extensive modifications to their respective kernels 

to support process migration. Amazingly, Condor  is a process migration scheme that 

is implemented in user-space. Although no source code changes are necessary, users 
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do need to link their  programs with Condor 's process migration library. The library 

intercepts cer tain system calls in cases where it needs to record state about the 

system call. The library also sets up a signal handler  so that it can respond to signals 

from daemons running on the machines, telling it to checkpoint itself and terminate.  

2.5.4.2 Centralized vs. Distributed Control 

Condor  and Spr ite both rely on a centralized controller , which limits those 

systems' scalability and introduces a single point of failure for  the entire system. In 

contrast, MOSIX nodes are all autonomous, and each uses a novel probabilistic 

information distribution algorithm to gather information from a randomly selected (small) 

subset of the other nodes in the system. This makes MOSIX much more scalable, and its 

completely decentralized control makes it more robust in the face of failures.  

2.5.4.3 File system Model 

Condor  does not assume that file systems available on a process' home 

machine are also available on the target machine when a process migrates. Instead, 

it forwards all file system requests back to the home machine, which fulfills the 

request and forwards the results back to the migration target. In contrast, Sprite has a 

special cluster-wide network file system; it can assume that the same file system is 

available on every migration target. Sprite forwards the state of open files to the target 

machines and file system requests are carried out locally. Similar to Sprite, MOSIX 

assumes that the same file system will be globally available, but MOSIX uses standard 

NFS.  

2.5.4.4 Fully Transparent Execution Location 

MOSIX and Sprite support what might be called ``full transparency'': in these 

systems, the process still appears to be running on the home node regardless of its actual 

execution location. The process itself always thinks that it's running on its home node, 

even if it migrated and is actually running on some other node. This has several important 

side effects. For example, IPC channels such TCP/IP connections, named pipes, and the 

like, are maintained in MOSIX and Sprite despite migration of processes on either end of 

the IPC channel. Data is received at the communications endpoint--i.e., a process' home 
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node--where it is then forwarded to the node on which the process is actually running. In 

contrast, Condor  does not support such a strong transparency model; a Condor  

process that migrates appears to be running on the migration target. For  this 

reason, migration of processes that are involved in IPC is not allowed.  

2.5.4.5 Migration Policies 

As mentioned earlier, MOSIX attempts to dynamically balance the load 

continuously throughout the lifetime of all running processes, in an attempt to maximize 

the overall CPU utilization of the cluster. Sprite schedules a process to an idle processor 

once, when the process is born, and migrates that process back to its home node if the 

foreign node's owner returns. Once an eviction has occurred, Sprite does not re-migrate 

the evicted process to another idle processor. Condor falls somewhere in between these 

two. Like Sprite, Condor  assigns a process to an idle node when the jobs is created. 

However, unlike Sprite, Condor attempts to find another idle node for the process every 

time it gets evicted. Absent of evictions, Condor  does not attempt to dynamically re-

balance the load as MOSIX does.  

2.5.4.6 Check pointing Capability 

The mechanics of Condor 's process migration implementation are such that 

the complete state of the process is wr itten to disk when a migration occurs. After  

the process state is wr itten to disk, the process is terminated, the state transferred to 

a new machine, and the process reconstructed. This implementation has a useful 

side effects. For  example, the process state file can be saved. Saving it has the effect 

of ``check pointing' '  the process, so that it can be restar ted from a previous point in 

case of a hardware failure or  other  abnormal termination. The frozen process can 

also be queued; who is to say that the frozen process has to be restar ted 

immediately? The state file, with its process in stasis, can be kept indefinitely--

perhaps waiting for  another  idle processor  to become available before restar ting. 

The MOSIX and Sprite implementations are generally memory-to-memory and preclude 

these interesting possibilities.  

Table: Comparison of process migration schemes 
 MOSIX CONDOR SPRITE 
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Area Implementation Kernel User Space Kernel 
Control Algorithms Distributed Centralized Centralized 
Files ystem Model State of open files 

transferred; all 
nodes have same 

view of file system 

Requests forward to 
home node; results 

back to remote node 

State of open files 
transferred; all 

nodes have same 
view of file system 

Full Transparency 
(IPC, Signals, etc.) 

Yes No Yes 

Migration Policy Continuous; 
Dynamic 

Assign on eviction Assign once return 
if evicted 

Checking pointing 
Capability 

No Yes No 
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�

3 Virtual File Systems 

The distributed file system allows Beowulf to access inter-node file system.  It 

makes users look like they are accessing the local file system.  Basically it is capable of 

network transparency, location transparency and location independence.  Beowulf 

clusters almost always use the Network File System (NFS) protocol to provide distributed 

file system services.  However, NFS has a problem with scalability unlike the Andrew 

File System (AFS).  The AFS is proved to be able to reduce CPU usage and network 

traffic.  Also it overcomes the scaling problems.  Recently AFS is available for Linux and 

has emerged in the Beowulf community.  An alternative for the distributed file system is 

a virtual file system (VFS).  One implemented open source version of VFS that operates 

on the Beowulf is the PVFS.  It can be installed without any modifications to the 

hardware or kernel.  The term virtual in the PVFS implies that file data is actually stored 

on multiple file systems on local disks, not by PVFS itself. The term parallel means that 

data is stored on multiple independent PCs, or cluster nodes, and that multiple clients can 

access this data simultaneously and transparently.  PVFS maintains a consistent file name 

space across the machine [24]. 

In the user’s view, the UNIX file commands such as ls, cp and rm can be used on 

PVFS files and directories.  Also the PVFS supports the UNIX I/O interface and allows 

existing UNIX I/O programs to use PVFS files without recompiling.  Since PVFS spreads 

data out across multiple cluster nodes, called I/O nodes, user can access data from various 

paths.  This is to reduce bottleneck in case of one access path.  Moreover, to reduce the 

kernel overhead, the PVFS clients directly contact PVFS servers rather than passing 

through the local kernel.  Besides, the PVFS library can be utilized by applications or by 

libraries, such as the ROMIO MPI-IO library, for high speed PVFS access. 
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PVFS System 

 

 The figure above shows the PVFS system on the cluster.  There are three types of 

nodes, the management node, the compute node and the I/O node.   

The computer nodes are the nodes of the clients that access the PVFS files.  Every 

node can be compute node depending on the configuration.  The native API (libpvfs) in 

the compute node provides user-space access to the PVFS servers.  This library handles 

the user-transparent scatter/gather operations necessary to move data between user 

buffers and PVFS servers.   

There is only one management node in the PVFS.  The management node serve as a 

metadata server.  It has a daemon program named “mgr”  running inside to manage the 

metadata of PVFS e.g., filename permissions, owners and its location in the directory.  

The client in the compute node will communicate through the library with the metadata 

server in the management node. 

The I/O node serves as an I/O server.  It has a daemon program name “ iod”  running 

inside to store and retrieve file data on its local disks.  The client in the compute node 

will contact I/O servers in I/O nodes directly. 

There are three interfaces through which PVFS may be accessed:  

• PVFS native API.  Not only the PVFS provides the UNIX-like interface, it also allows 

users to rearrange how files will be striped across the I/O nodes. 

• Linux kernel interface.  This allows applications to access PVFS file systems through the 

normal channels. 
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• ROMIO MPI-IO interface.  This ROMIO implements the MPI2 I/O calls in a portable 

library.   It allows parallel programmers using MPI to access PVFS files through the 

MPI-IO interface. [ht t p: / / www. mcs. anl . gov/ r omi o]  

It is possible to share a globalize information between the processes or agents via 

PVFS.  The PVFS libraries can be used either directly via the native PVFS calls or 

indirectly through the ROMIO MPI-IO interface or the MDBI interface.  
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4 Design Strong Mobility Environment 

4.1 Mobility 

The primary identifying characteristic of mobile agents is their ability to 

autonomously migrate from host to host. Thus, support for agent mobility is a 

fundamental requirement of the agent infrastructure. An agent which has “know-how”  

but lack of resources can request its host server to transport it to some remote destination 

equipped with resources. The agent server must then deactivate the agent, capture its 

state, and transmit it to the server at the remote host. The destination server must restore 

the agent state and reactivate it, thus completing the migration. The state of an agent 

includes all its data, as well as the execution state of its thread.  

At the lowest level, this is represented by its execution context and call-stack. If this 

can be captured and transmitted along with the agent, the destination server can reactivate 

the thread at precisely the point where it requested the migration. This can be useful for 

transparent load-balancing, or fault-tolerant programs. An alternative is to capture 

execution state at a higher level, in terms of application-defined agent data. The agent 

code can then direct the control flow appropriately when the state is restored at the 

destination. However, this only captures execution state at a coarse granularity (e.g. 

function-level), in contrast to the instruction-level state provided by the thread context.  

Agent systems execute agents using commonly available system or language 

environments, which do not usually provide thread-level state capture. Since mobile 

agents are autonomous, migration only occurs under explicit programmer control, and 

thus state capture at arbitrary points is usually unnecessary. 

There are two models for supporting agent mobility, in the weak mobility model, on 

migration, the agent’s state essentially consists of the agent's program-defined data 

structures or set of reference to resources that can be shared among multiple agents called 

data state.  Since there is no transferring of execution state, the execution has to start from 

the beginning on the destination host. If the fragment of code is transferred, it must be 

linked in the context of already running code in the destination host.  Whereas the strong 
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mobility model captures the agent's state at the level of the underlying thread or process, 

which consists of both data state and execute state.  The execution can be resumed from 

the point it stopped on the previous host.   �

With weak mobility, an agent's migration is possible only at specific points in the 

agent's code, and typically a migration is explicitly requested in the agent's code. It is 

generally felt that program-controlled migration under weak mobility suffices for 

majority of the applications.  

In agent migration, to keep the design simple and efficient, most agent 

programming systems do not support resumption of sessions, dealing with open files or 

communication channels, on migration. This avoids dependencies on remote nodes. 

Besides, under program-controlled mobility, one can properly close any open sessions 

before migration, and reopen them after migration. If an agent is multithreaded, then 

under the weak mobility model, the programmer needs to take special care when making 

explicit requests for migration in the agent's code. Problems can arise if one thread 

requests migration when other threads have not yet completed their tasks. In addition, one 

needs to prevent a situation when two threads issue migration requests to move to 

different hosts. Therefore, even when an agent programming system does not explicitly 

support a multithreaded model for its agents, the programmer must be cognizant of such 

implicitly created threads. Therefore, when requesting migration, it is the programmer's 

responsibility to ensure that all other threads have either terminated or reached a state 

when it is safe to terminate them and migrate the agent. 

The strong mobility model allows an agent to be migrated at any point in its 

execution. This model is certainly useful if agents need to be moved at unpredictable 

points in time for fault-tolerance or load-balancing. 

Another issue in agent mobility is the transfer of agent code. One possibility is for 

the agent to carry all its code as it migrates. This allows the agent to run on any server 

which can execute the code. Another possibility is not to transfer any code at all, but it 

requires that the agent's code must be pre-installed on the destination server. In a third 

approach, the agent does not carry any code but contains a reference to its code base -- a 

server that provides its code upon request. During the agent's execution, if it needs to use 
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some code that is not already installed on its current server, the server can contact the 

code base and download the required code. This is referred to as code-on-demand (COD). 

4.1.1 Weak Mobility 

As mentioned before, the weak mobility makes only data state (i.e., the values of 

the internal variables) and code move, while the strong one allows the entire execution 

state (i.e., the stack and program counter) of a mobile agent, code, and data state to move . 

In fact, mobility requires the implementation of mechanisms to support execution 

stopping, state collection, data transfer and execution resuming; all these kinds of 

facilities must be provided by the runtime system support. The term mobility is used to 

indicate a change of location performed by the entities of a system. It also needs to know 

the capability of roaming among nodes in a network-aware fashion to find the needed 

resources and services. Starting from simple data, the mobility has had an evolution that 

has led to move the execution control, the code and the execution environment. 

In weak mobility, after the movement, the agent is restarted and the values of its 

variables are restored, but its execution restarts from the beginning or from a given 

procedure (a method in case of objects). Usually, A new thread (or process) is created to 

execute the code. The newly created thread performs all the needed information to deliver 

the results to the source site. In addition, weak mobility has to explicitly synchronize in 

order to generate deadlocks and inconsistence state. In addition, the function of mobility 

need to encapsulate all the state involving a distributed computation, and can be easily 

traced, checkpointed, and possibly recovered locally, without any need for knowledge of 

global state. This function also is required in the strong mobility. 

The UNIX r shd daemon is one example of weak mobility in that it allows the 

shell script to be run on a remote host. 

4.1.2 Strong Mobility 

In strong mobility, not only code and data state are moved, but also the execution 

state, in order to restart the execution exactly from the point where it was stopped before 

movement. In strong mobility, the mobility of a complex entity occurs with the following 

steps. 
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1. The execution flow is stopped. 

2. The state of the migrating entity is collected. 

3. The code and state of the migrating entity are shipped to the destination 

node. 

4. The code and the state of the migrating entity are restored 

5. The execution is restarted. 

In strong mobility, not only code and data state are moved, but also the execution 

state, in order to restart the execution exactly from the point where it was stopped before 

movement. In strong mobility, the mobility of a complex entity occurs with the following 

steps. The execution state of a migrating agent is suspended, and its stack and program 

counter are sent to the destination site, together with the relevant data. At the destination 

site, the stack of the agent is reconstructed and the program counter is set appropriately.  

Strong mobility uses state saving techniques to provide transparent process 

migration or persistence functionalities. Furthermore, strong mobility has the ability to 

store and retrieve computations as variables (continuations) and passes these to the other 

agents (remote continuations). To support these things, transparent location function is 

required. Strong mobility also usually communicates in an asynchronous fashion which 

one agent sends messages to other agents and do not wait for the answers. As a fault 

tolerance, whenever one of the communication partners of a given agent dies, the agent 

will not stop working correctly even if it is waiting for some action of dead partner. 

The existing languages that support strong mobility are Telescript, Tycoon, Agent 

TCL and Emerald.  In Agent TCL, an executing TCL script can move from one host to 

another with single jump instruction. A jump freezes the program execution context and 

transmits it to a different host which resumes the script execution from the instruction 

that follow the jump. 

One of application areas used in strong mobility is load balancing. Load balancing 

requires that a running application be restored exactly as it was before the movement of 

agents because it must be transparent to the application itself. This seems to require a 

strong mobility mechanism, which grants that also the execution state is transferred and 

resumed at the destination node. 
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Features Strong Mobility Software Tools 

Code  Required BPROC / CONDOR 

Data State  Required BPROC / CONDOR 

Execution State  Required CONDOR 

Transparent migration Required 
CONDOR  

(Limited Support) 

Agent Migration 

(e.g., Itinerary schedule policy 

(Sequence / Selection / Split / 

Split-Join) ) 

Implicit 
BPROC / CONDOR 

(Limited Support) 

Inter-Agent Communication 

and Synchronization 
Required MPI 

Collective Agent 

Communication 
Optional MPI 

Agent Monitor and Control Optional 
CONDOR 

(Limited Support) 

Agent Fault Recovery Required 
CONDOR 

(Limited Support) 

Agent Identification Required 
BPROC 

(Limited Support) 

Security Required NONE 

4.2 Analysis of Existing Softwares 

In this section, we will describe the way to apply the existing softwares to the 

strong mobility presented in section 4.1. The existing softwares are Bproc, MPI, 

CONDOR, and PVFS that can run in the Beowulf system environment. 
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4.2.1 MPI 

The goal of MPI is to write our own parallel programs using the powerful and 

general message-passing model of parallel computation. Therefore, MPI can be only used 

on the clustering systems not general heterogenous systems connected to Internet. There 

are several implementation version of MPI such as MPICH and LAM 

(http://www.cs.nd.edu/lam).  

In parallel programs, there are two important questions. First, how many processes 

are participating in this computation? Second, Which one am I? MPI provides functions 

to answer these questions by providing the follows: 
�

MPI_Comm_size - reports the number of processes. 
�

MPI_Comm_rank - reports the rank, a number of between 0 and size –1, identifying 

the calling process. 

 

The MPI-1 standard doest not specify how to run an MPI program. In genereal, 

starting an MPI program is dependent on the implementation of MPI we are using, and 

might require various scripts, program arguments, and/or environment variables. mpiexec 

<args>  is part of MPI-2, as a recommendation, but not a requirement. However, we can 

write my MPI implementor. 

There is no mechanism for loading code onto processors, or assigning processes to 

processors or creating/destroying processes in MPI. Besides, the MPI does not provide 

remote memory transfers, multithreading and virtual shared memory but it is designed to 

be thread-safe. 

In MPI, a process is defined in a group and a rank (a unique integer for labeling 

each process in the group).  Process groups can be created and destroyed.  A message 

label is specified by a context and a corresponding tag.  In a point-to-point 

communication, it is a communication between pairs of processes.  The Message 

selectivity is by rank and tag.   In Collective communication, it involves all processes in 

the scope of the communication specified by the communicator.  The collective 

communication routines do not take message tag arguments.  
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The feature of MPI includes six basic functions and 125 extension functions.  The 

point-to-point communication functions are  
�

MPI_SEND 
�

MPI_RECV 

The collective communication functions are 

��MPI_Bcast – sends data from one process to all others. 

��MPI_Reduce - combines data from all processes and returning the result to a single 

process. 

4.2.1.1 Strong Mobility Features 

As described above, MPI is good solution for data transportation across 

heterogeneous systems. Therefore, MPI successfully satisfies Inter-Agent 

Communication and Collective Agent Communication in strong mobility features. On the 

other hand, we can use socket API based on TCP/IP as alternatives of MPI. The socket 

API is also another good candidate for agent communication method. However, the 

performance of socket API is much slower than that of MPI. 

 

Strong Mobility 

Features 
Requirement MPI Socket API  

Support 

 

Support 

 Inter-Agent 

Communication and 

Synchronization 

Strongly 

Required 
Functions: 

(MPI_SEND(), 

MPI_RECV()) 

Functions:  

(sendto()/recvfrom(), 

send()/recv()) 

Support Support 

Collective Agent 

Communication 
Optional Functions: 

(MPI_REDUCE(), 

MPI_BCAST()) 

Functions:  

(send()/recv() using 

multicast or 

broadcast address. 
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Limitation  

Applied only 

clustering systems 

within small local 

networks  

Applied all gobal 

networks based on 

TCP/IP protocol but 

performance is much 

slower 

System Platform  
Supported on 

Beowulf 

Supported on the 

systems with TCP/IP 

4.2.2 BPROC 

BPROC introduces a distributed process ID (PID) space. This allows a node to run 

processes which appear in its process tree even though the processes are physically 

present on other nodes. The remote processes also appear to be part of the PID space of 

the front end node and not the node which they are running on. The node which is 

distributing its pid space is called the master and other nodes running processes for the 

master are the slaves. Each PID space has exactly one master and zero or more slaves. 

Each PID space corresponds to a real PID space on some machine. Therefore, each 

machine can be the master of only one PID space. A single machine can be a slave in 

more than one PID space. 

4.2.2.1 PID Masquerading 

The PID masquerading modifications make it possible for a process to appear as 

though a process exists in a different PID space. Processes are still part of the single PID 

space that we're used to, but the PID related syscalls (getpid, getppid, kill, fork, wait) 

have been modified to treat their arguments differently and to give different responses for 

processes that have been tagged as masqueraded. PID masquerading also introduces a 

user space daemon to control some of the PID related operations normally done by the 

kernel. Each daemon will define a new "PID space" and can create new processes in that 

space. Operations such as new PID allocation are handled by this daemon. (In the case of 

a masqueraded process forking a new masqueraded PID will be needed for the child 

process. This request gets sent out to the user space daemon which will forward it to the 
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master node. The ghost process there will fork and return the child PID it gets back to the 

slave on the node. The child's new masqueraded PID is set to that PID.)  

The PID related syscalls will only operate on other masqueraded processes that are 

in the same PID space (that is they're under control of the same daemon.) Other non-

masqueraded processes on the local system become effectively invisible as a result. 

Signals (kill(2)) that cannot be delivered locally are bounced out to the user space 

daemon for delivery.  

This is used in conjunction with ghosts to make it appear as though a piece of the 

master node's PID space has been moved onto the slave node. When creating remote 

processes, there are really 2 processes created, a ghost on the master to represent the 

remote process and the real process on the slave node. The (masqueraded) process on the 

slave gets the same PID as the ghost on the master node. The daemon controlling the 

masqueraded process space in forwards requests from the real process back to the master 

node. This way any operations the real process performs (fork, kill, wait, etc) will 

performed in the context of the master node's process space. Most requests will be 

satisfied by the ghost thread.  

4.2.2.2 Starting processes 

There are two basic ways to start a process in this scheme. The simpler one is the 

rexec (remote execute) which takes the same arguments as execve plus a node number. 

This inteface also has roughly the same semantics as the execve system call. This doesn't 

involve transfering much data, but it does require that all binaries and any libraries they 

require be installed on remote nodes.  

The other interface which bproc provides is a "move" or "rfork" interface. This 

works by saving a process' memory region and recreating it on the remote node. This has 

the advantage that it can transport the binary and anything mmap'ed (such as the 

dynmaically linked libraries) to the remote node. This could allow a great reduction in the 

size of the software required to be installed on a node.  
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4.2.2.3 C Interface Library 

Programs using bproc should include the bproc header file sys/bproc.h and be 

linked with -lbproc. This package builds both static and dynamic versions of libbproc.  

4.2.2.3.1 System Information  

� void bproc_init(void) : This initializes the bproc library. It reads the current machine 

state from /var/run/bproc. (This machine state is only available on the master node.) 

It also reads an initial node mapping from $HOME/.bprocnodes if it exists.  

� int bproc_numnodes(void) : Returns the number of nodes in the system. This is the 

number of slave nodes (not including the front end). The nodes are numbered 0 

though n-1.  

� int bproc_nodeup(int node) : Returns true if node is up.  
�

int bproc_nodeaddr(int node, struct sockaddr *s, int size) : Saves the IP address of 

node in the structure pointed to by s. Note that bproc_init has to be called on the 

master node in order for this information to be available.  

4.2.2.3.2 Node mapping  

The library allows the user to create a node mapping that sits on top of the real node 

numbers. This allows the user to always see the nodes he is using as nodes 0 through n-1 

regardless of the physical nodes in use. Mappings are presented as an array of integers. 

The number in element zero is the real node number node zero will map on to and so on. 

bproc_init() reads an initial node mapping.  

��int bproc_set_node_map(int *map, int numnodes) : This sets the node mapping 

being used by libbproc. map is a pointer to an array which lists the real node 

numbers that node numbers 0 through numnodes should map onto.  
�

void bproc_clear_node_map(void) : This clears any node mapping that might be 

present. After this call, all node numbers will be treated as physical node numbers.  

4.2.2.3.3 Creating processes on remote nodes  

Bproc provides a number of mechanisms for creating processes on remote nodes. It 

is probably better to think of these mechanisms as moving processes from the front end to 
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the remote node. The rexec mechanism is like doing a move then exec with lower 

overhead. The rfork mechanism is implemented as an ordinary fork on the front end and 

then a move to the remote node before the system call returns. Execmove does an exec 

and then move before the exec returns to the new process.  

Movement to another machine on the system is voluntary and is not transparent. 

Once a process has been moved all its open files are lost except for STDOUT and 

STDERR. These two are replaced with a single socket. (Their output is combined.) There 

is an IO daemon what will forward between the other end of that connection and 

whatever the original STDOUT was connected to. No pseudo tty operations are done.  

The move is completely visible to the process after it has moved except for process 

ID space operations. Process ID space operations include fork(),wait,kill, etc. All file 

operations will operate on files local to the node that the process has been moved to. 

Memory that was shared on the front end will no longer be shared.  

Processes currently cannot move twice. The process movement API is only 

provided on the master node.  

Bug: Any child processes that a process had before moving will no longer be visible 

to it after moving. SIGCHLD's will be delivered when they exit but it will be impossible 

to pick up their exits status with wait().  
�

int bproc_rexec(int node, char *cmd, char **argv, char **envp) : This call is like 

execve in that it replaces the current process with a new one. The new process is 

created on node and the local process becomes the ghost representing it. All 

arguments are interpreted on the remote machine. The binary and all libraries it 

needs must be present on the remote machine. This function returns -1 on failure 

and does not return on success.  

� int bproc_move(int node, int flags) : This call will move the current process to the 

remote node number given by node. The flags argument determines the details of 

the memory space move. See the VMADump for details on the flags argument. 

Returns 0 on success, -1 on failure.  

� int bproc_rfork(int node, int flags) : The semantics of this function are designed to 

minic fork() except that the child process created will end up on the node given by 

the node argument. What happens behind the scenes is the process forks a child and 
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that child performs a bproc_move() to move itself to the remote node. By combining 

these two operations in a system call, we can prevent zombies and SIGCHLD's in 

the case that the fork is successful but the move is not. On success, this function 

returns the process ID of the new child process, on failure it returns -1.  

� int bproc_execmove(int node, char *cmd, char * *argv, char **envp) : This function 

allows migration of ordinary binaries by allowing you to exec a new process and 

move the new process before it "wakes up". Returns -1 on failure, does not return on 

success.  

4.2.2.3.4 VMADump: Dumping and restoring processes  

VMADump is a kernel module distributed with bproc which will dump a process's 

state to or from a file descriptor. VMADump is short for Virtual Memory Area Dumper. 

It will read or write to pipes, sockets, etc. as well as ordinary files. These functions are 

used internally by bproc to move processes around. The saved state includes:  

� All the processes memory regions. The date for all writable regions is saved. Read-

only regions that are mmap'ed from files (i.e. glibc code) can be stored as file 

references to reduce the size of dumps.  

� Other information about memory mmap'ed regions like where the bss and stacks 

here. This allows stacks to grow and setbrk (malloc) to work after restoring the 

memory space.  

� The process's registers including FPU state.  
�

The process's signal handlers.  

 

The following interface is provided for vmadump in libbproc:  
�

int bproc_vmadump(int fd, int flags) : This takes the current process and dumps it to 

the file fd. It returns the number of bytes written to fd. When the process is 

undumped, this function will return 0. The flags argument determines what memory 

regions will have their data dumped and which ones will be stored as file references. 

Writable memory regions are never stored as file references.  

VMAD_DUMP_LIBS : If given, read only mmaps from files in /lib and /usr/lib 

will not be stored as file references.  
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VMAD_DUMP_EXEC : If given, read only mmaps from the executable file will 

not be stored as file references.  

VMAD_DUMP_OTHER : If given, other read only mmaps not falling into the 

categories above will not be stored as file references.  

VMAD_DUMP_ALL : If given, no read only mmaps will be stored as file 

references. This is the safest option if in doubt. This is the logical OR of the other flags.  
�

int bproc_vmaundump(int fd) : This attempts to undump an image from fd. This 

function is not very error tolerant. If something goes wrong half way through 

undumping, it will return with a half-undumped process. If successful, the current 

process is replaced with the image from the dump. (much like exec)  

4.2.2.3.5 C Library Reference  

The following shows the C library reference for Bproc. 

bproc_access — determine whether a node can be accessed �

bproc_chgrp — change node ownership  

bproc_chmod — change the permissions on a node  

bproc_chown — change node ownership  

bproc_currnode — return the node the calling process is running on  

bproc_execmove — move a newly execed process to another node  

bproc_masteraddr — return the address of the master node  

bproc_move — move the calling process to another node  

bproc_nodeaddr — return the address of a node  

bproc_nodecachepurgefail — flush file cache failure list  

bproc_nodecachepurgeok — flush successful downloads from file cache  

bproc_nodechroot — ask a slave daemon to perform a chroot  

bproc_nodehalt — ask a slave daemon to halt the machine  

bproc_nodeinfo — get status information for single node  

bproc_nodelist — get status information for single node  

bproc_nodenumber — get the node number corresponding to an address  

bproc_nodepwroff — ask a slave daemon to power off the machine  

bproc_nodereboot — ask a slave daemon to reboot the machine  
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bproc_nodesetstatus — set status of a node  

bproc_nodestatus — get the status of a move the calling process to another node  

bproc_notifier — get BProc notifier file descriptor  

bproc_numnodes — get the number of nodes in the system  

bproc_pidnode — return the node that a process exists on  

bproc_proclist — get status information for single node  

bproc_requestfile — get status information for single node  

bproc_rfork — fork a child onto remote node  

bproc_version — get BProc version information 

  

4.2.2.4 Strong Mobility Features 

As described above, BPROC is the solution for golobal process ID and limited 

process scheduler and migration that move the process to the remote node at only one 

time. Therefore, MPI successfully satisfies Agent Identification and Collective Agent 

Communication in strong mobility features. On the other hand, we can use socket API 

based on TCP/IP as alternatives of MPI. The socket API is also another good candidate 

for agent communication method. However, the performance of socket API is much 

slower than that of MPI. 

Strong 

Mobility 

Features 

Requirement BPROC 

Support Agent 

Identification 
Required 

Functions: (bproc_proclist(), bproc_pidnode()) 

Limited Support Agent 

Migration 
Implicit 

Processes decide if, when and where they will migrate 

Support 

Code Required Functions: (bproc_rexec(),bproc_move(),bproc_rfork(), 

bproc_execmove()) 
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Support 

Data State Required 
Functions: (bproc_rexec(),bproc_move(),bproc_rfork(), 

bproc_execmove()) 

Limitation  

- Limited Agent Location: Processes decide if, when and 

where they will migrate 

- System image is not preserved. (Limited Weak Mobility) 

- Open files are lost. 

System 

Platform 
 Supported on Beowulf 

Others  MPI and Bproc can work together 

 

4.2.3 CONDOR 

There are several limitations on CONDOR 

4.2.3.1 Current Limitations 

Although Condor can schedule and run any type of process, Condor does have 

some limitations on jobs that it can transparently checkpoint and migrate:  
�
�Multi-process jobs are not allowed. This includes system calls such as fork(), exec(), 

and system().  

� Interprocess communication is not allowed. This includes pipes, semaphores, and 

shared memory. 

� Network communication must be brief. A job may make network connections using 

system calls such as socket(), but a network connection left open for long periods 

will delay checkpointing and migration.  

� Sending or receiving the SIGUSR2 or SIGTSTP signals is not allowed. Condor 

reserves these signals for its own use. Sending or receiving all other signals is 

allowed.  
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� Alarms, timers, and sleeping are not allowed. This includes system calls such as 

alarm(), getitimer(), and sleep().  

� Multiple kernel-level threads are not allowed. However, multiple user-level threads 

are allowed.  

� Memory mapped files are not allowed. This includes system calls such as mmap() 

and munmap().  

� File locks are allowed, but not retained between checkpoints.  
�

All files must be opened read-only or write-only. A file opened for both reading and 

writing will cause trouble if a job must be rolled back to an old checkpoint image. 

For compatibility reasons, a file opened for both reading and writing will result in a 

warning but not an error.  
�

A fair amount of disk space must be available on the submitting machine for storing 

a job's checkpoint images. A checkpoint image is approximately equal to the virtual 

memory consumed by a job while it runs. If disk space is short, a special checkpoint 

server can be designated for storing all the checkpoint images for a pool.  
�

On Digital Unix (OSF/1), HP-UX, and Linux, your job must be statically linked. 

Dynamic linking is allowed on all other platforms. (Note: these limitations only 

apply to jobs which Condor has been asked to transparently checkpoint. If job check 

pointing is not desired, the limitations above do not apply.)  

� Secur ity Implications: Condor does a significant amount of work to prevent 

security hazards, but loopholes are known to exist. Condor can be instructed to run 

user programs only as the UNIX user nobody, a user login which traditionally has 

very restricted access. But even with access solely as user nobody, a sufficiently 

malicious individual could do such things as fill up /tmp (which is world writable) 

and/or gain read access to world readable files. Furthermore, where the security of 

machines in the pool is a high concern, only machines where the UNIX user root on 

that machine can be trusted should be admitted into the pool. Condor provides the 

administrator with IP-based security mechanisms to enforce this.  

� Jobs Need to be Re-linked to get Check pointing and Remote System Calls: 

Although typically no source code changes are required, Condor requires that the 

jobs be re-linked with the Condor libraries to take advantage of check pointing and 
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remote system calls. This often precludes commercial software binaries from taking 

advantage of these services because commercial packages rarely make their object 

code available. Condor's other services are still available for these commercial 

packages.  

4.2.3.2 Condor Daemons  

The following list describes all the daemons and programs that could be started 

under Condor and what they do: 

� condor_master  

This daemon is responsible for keeping all the rest of the Condor daemons running 

on each machine in your pool.  
�

condor_startd  

This daemon represents a given resource (namely, a machine capable of running 

jobs) to the Condor pool. It advertises certain attributes about that resource that are used 

to match it with pending resource requests.  
�

condor_starter  

This program is the entity that actually spawns the remote Condor job on a given 

machine.  
�

condor_schedd  

This daemon represents resources requests to the Condor pool. Any machine that 

you wish to allow users to submit jobs from needs to have a condor_schedd running..  

� condor_shadow  

This program runs on the machine where a given request was submitted and acts as 

the resource manager for the request.  

� condor_collector  

This daemon is responsible for collecting all the information about the status of a 

Condor pool. 

� condor_negotiator  

This daemon is responsible for all the match-making within the Condor system. 

Periodically, the negotiator begins a negotiation cycle, where it queries the collector for 

the current state of all the resources in the pool.  



 

 48

� condor_kbdd  

This daemon is only needed on Digital Unix and IRIX. On these platforms, the 

condor_startd cannot determine console (keyboard or mouse) activity directly from the 

system.  

� condor_ckpt_server  

This is the checkpoint server. It services requests to store and retrieve checkpoint 

files.  

4.2.3.3 Submitting Different Types of Jobs: Alternative Universes 

A Universe in condor defines an execution environment. Condor supports the 

following Universes: 

� Vanilla 

� MPI: The MPI Universe allows parallel program written with MPI to be managed 

by Condor 

� PVM 
�

Globus 
�

Scheduler: DAGMan Scheduler 
�

Standard:  

• Transparent process checkpoint and restart 

• Transparent process migration 

• Remote system calls 

• Configurable file I/O buffering 

• Toconvert our program into a standard universe job, we must use 

condor_compile to relink it with the condor libraries. 

- Example:  

% cc main.o –o program 

% condor_compile cc main.o –0 program 
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4.2.3.4 Strong Mobility Features 

Strong Mobility Features Requirement CONDOR 

Support Code / Data State / 

Execution State  
Required 

Commands: (condor_checkpoint, condor_submit) 

Limited Support 
Transparent Migration Required 

Commands: (condor_reschedule, condor_submit) 

Limited Support 
Agent Migration Required 

Commands: (condor_findhost) 

Support 
Agent Fault Recovery Required 

Commands: (condor_checkpoint, condor_reconfig) 

Limited Support 
Agent Identification Required 

Commands: (condor_q) 

Limited Support 
Agent Monitor and Control Optional 

Commands: (condor_q, condor_status) 

Support 
Security Required 

X.509 Certificates for Authentication 

Limitation  

- See Section 4.2.3.1 Current Limitations 

- Multi-Universe Problem (e.g., need to check if 

“MPI”  and “check point”  can work together 

using different universe) – see Section Section 

4.2.3.3 

- No library interfaces for developer. Limitted 

support with command. 

System Platform  Supported on Beowulf 

Others  Need to check the real performance of CONDOR 
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4.2.4 MAUI 

Maui is not the right tool to emulate the strong mobility because it is a batch 

scheduling in the user level via external commands.  The MAUI itself is not a resource 

manager but it makes decisions by querying and controlling a resource management 

system such as PBS or Loadleveler. 

4.2.5 PVFS 

The PVFS is a good candidate tool to share the information or perform the file I/O 

by multiple processes which can access this file simultaneously and transparently.  Also 

the PVFS maintains a consistent file name space across the cluster. 

The PVFS libraries can be used either directly via the native PVFS calls or 

indirectly through the ROMIO MPI-IO interface or the MDBI interface.   

4.2.5.1 Direct access via PVFS function calls 

All normal UNIX I/O like read( ) or write( ) will work fine with PVFS without any 

changes. Files created this way will be striped according to the file system defaults set at 

compile time. To determine the physical distribution when the file is first created, the 

PVFS provides the function pvf s_open( ) with the parameters as shown below. 

pvf s_open( char  * pat hname,  i nt  f l ag,  mode_t  mode) ;  

pvf s_open( char  * pat hname,  i nt  f l ag,  mode_t  mode,  st r uct  

pvf s_f i l est at  * di st ) ;  

The pvfs_filestat structure is described below. 

st r uct  pvf s_f i l est at  {  
   i nt  base;    / *  The f i r s t  i od node t o be used * /  
   i nt  pcount ;  / *  The number  of  i od nodes f or  t he f i l e * /  
   i nt  ss i ze;   / *  s t r i pe s i ze * /  
   i nt  sof f ;    / *  NOT USED * /  
   i nt  bsi ze;   / *  NOT USED * /  
}

To obtain information on the physical distribution of a file, use pvf s_i oct l ( )  on 

an open file descriptor:  

pvf s_i oct l ( i nt  f d,  GETMETA,  st r uct  pvf s_f i l est at  * di st ) ;  
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Besides, the PVFS provides multi-dimensional block interface (MDBI) which is a 

slightly higher-level view of file data than the native PVFS interface. With the MDBI, 

file data is considered as an N dimensional array of records. This array is divided into 

``blocks'' of records by specifying the dimensions of the array and the size of the blocks 

in each dimension.  

 

There are five basic calls used for accessing files with MDBI:  

i nt  open_bl k( char  * pat h,  i nt  f l ags,  i nt  mode) ;   
i nt  set _bl k( i nt  f d,  i nt  D,  i nt  rs,  i nt  ne1,  i nt  nb1,  . . . ,  i nt  nen,  
i nt  nbb) ;   
i nt  r ead_bl k( i nt  f d,  char  * buf ,  i nt  index1,  . . . ,  i nt  indexn) ;   
i nt  wr i t e_bl k( i nt  f d,  char  * buf ,  i nt  index1,  . . . ,  i nt  indexn) ;   
i nt  c l ose_bl k( i nt  f d) ;   

4.2.5.2 Indirect access via ROMIO MPI-IO 

The ROMIO MPI-IO interface implements the MPI-2 I/O calls in a portable library.  It 

allows parallel programmers using MPI to access PVFS files through the MPI-IO interface.   The 

MPI-IP functions provide basic functions performed on (parallel) Files including File opening, 

File closing, File deleting, File resizing, File space-pre-allocating, File size/parameter querying 

and File Info setting/getting.  The example of functions and their parameter are shown below.  

The full detail is available in the MPI-2 (I/O chapter). 

• MPI_FILE_OPEN : open the file identified by the file name filename on all 

processes in the comm communicator group. 

MPI_FILE_OPEN(comm, filename, amode, info, fh)

IN comm communicator (handle)

IN filename name of file to open (string)

IN amode file access mode (integer)

IN info info object (handle)

OUT fh new file handle (handle)
 

• MPI_FILE_CLOSE : synchronizes file state then closes the file associated 

with fh. 

 

 
MPI_FILE_CLOSE(fh)

INOUT fh file handle (handle)
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• MPI_FILE_DELETE : delete the file identified by the file name filename. 

MPI_FILE_DELETE(filename, info)

IN filename name of file to delete (string)

IN info info object (handle)

 

The MPI-IO is able to implement in various styles e.g., Noncontiguous Accesses, 

Collective I/O, Nonblocking I/O, Split Collective I/O and Shared File Pointers. 
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