

Technical Memorandum

Strong Mobile Agent Architecture based on the

Beowulf System

Written and Prepared by

Sungwoo Tak

 Passakon Prathombutr

Donghoon Lee

E.K. Park

Jerrold Stach

 i

Table of Contents

1 Beowulf Architectures..1

1.1 Introduction...1
1.1.1 Beowulf System Software ...1
1.1.2 Scyld Beowulf System Software..3

1.2 BPROC (Beowulf Distributed Process Space)3
1.2.1 Goal...4
1.2.2 Overview ...4
1.2.3 Ghost processes ...5

1.3 MPI (Message Passing Interface) ..6
1.4 Current projects related to Beowulf ..8

2 Distributed Software Tools for Process Migration..10
2.1 CONDOR ...10

2.1.1 Features of Condor ...11
2.1.2 Condor Architecture ..12
2.1.3 Condor Daemons ..14
2.1.4 Submitting Different Types of Jobs: Alternative Universes............17

2.2 MAUI ..18
2.2.1 Brief history ...18
2.2.2 Maui Features ...18

2.3 MOSIX..20
2.4 SPRITE ..22
2.5 Comparison of Implementations...22

2.5.1 MOSIX...23
2.5.2 CONDOR ..23
2.5.3 SPRITE ...24
2.5.4 Specific Design Decisions ...24

3 Virtual File Systems...28
4 Design Strong Mobility Environment..31

4.1 Mobility ...31
4.1.1 Weak Mobility ..33
4.1.2 Strong Mobility...33

4.2 Analysis of Existing Softwares..35
4.2.1 MPI..36
4.2.2 BPROC ...38
4.2.3 CONDOR ..45
4.2.4 MAUI ...50
4.2.5 PVFS...50

References ...53

 1

1 Beowulf Architectures

1.1 Introduction

Beowulf is a multi-computer architecture which can be used for parallel

computations. A Beowulf cluster is a computer system conforming to the Beowulf

architecture, which consists of one master node and one or more compute nodes. The

nodes are connected together via Ethernet or some other network, and are typically built

using commodity hardware components, such as any PC capable of running Linux and

standard Ethernet adapters. The nodes usually do not contain any custom hardware

components and are trivially reproducible. The master node controls the entire cluster and

serves parallel jobs and their required files to the compute nodes. The master node is

typically the cluster’s administration console and its gateway to the outside world. In

most cases the compute nodes in a Beowulf cluster are "dumb", they are configured and

controlled by the master node. Typically, these compute nodes do not have keyboards or

monitors and are accessed remotely from the master node. Simply put, Beowulf is a

technology of clustering Linux computers together to form a parallel, virtual

supercomputer, a Beowulf cluster. While Linux-based Beowulf clusters provide a cost

effective hardware alternative to the supercomputers of the past for high performance

computing applications, the original software implementations for Linux Beowulfs were

not without their problems [1].

1.1.1 Beowulf System Software

[2] reports the components of Beowulf system software.

� BPROC: Beowulf Distributed Process Space

This packages allows a process ID space to span multiple nodes in a cluster

environment and also provides mechanisms for starting processes on other nodes. (This

package is for Linux 2.2.x kernels.)
�
�Network Device Drivers

We have long contributed to the development of the Linux networking code. Many

of the Linux ethernet device drivers, and most of the device drivers for cost-effective

 2

high-performance network adapters were written by Donald Becker at CESDIS. A large

portion of his time goes into maintaining and enhancing the performance of these device

drivers. Fast Ethernet has long been a cluster staple, while Gigabit Ethernet has recently

been tested.

� Beowulf Ethernet Channel Bonding

One of the goals of the goals of the Beowulf project is to demonstrate scalable I/O

using commodity subsystems. For scaling network I/O we devised a method to join

multiple low-cost networks into a single logical network with higher bandwidth.

� PVM-TCL

A set of extensions to TCL that allow you to manipulate the PVM virtual machine

directly. NOTE: This currently does not extend the message-passing calls to TCL, just

the PVM configuration ones. One could, however, implement them from the base

provided here.

� Virtual Memory Pre-Pager

A loadable kernel module for Linux 2.0 that implements a non-blocking page read

in system call. With the proper run-time support, this new system call can dramatically

reduce the run-time of "out-of-core" programs (programs that have data sets larger than

the available physical memory) by allowing multiple pages to be read from disk prior to

their actual use.
�
�PPro Performance Counter Patches

Kernel patches (for 2.0.36, 2.2.2 and 2.2.9) and a small library to add kernel support

for the performance counters found in the Pentium Pro and Pentium II.

� LM78 Hardware Monitor Driver

A loadable kernel module for Linux 2.0 and 2.1 that provides a /proc interface for

the LM78 Hardware Monitor. (Note: This driver speaks to the hardware monitors via the

ISA interface. This driver does not support boards that only have the serial interface on

the hardware monitor connected.)

� Intel PR440FX Netbooting Tools

Tools to assist with netbooting from built in network interface on the Intel

PR440FX and possibly other AMI Bios motherboards.

 3

1.1.2 Scyld Beowulf System Software

The following is a list of the major software components distributed with the Scyld

Beowulf Cluster Operating System [1].
_ �

bproc - the Beowulf process migration technology; an integral part of Scyld

Beowulf _

�
beosetup - a GUI interface for configuring the cluster_

�
beostatus - a GUI interface for monitoring cluster status_

�
beostat - a text-based tool for monitoring cluster status_

� beoboot - a set of utilities for booting the compute nodes_

� beofdisk - a utility for remote partitioning of hard disks on the compute nodes_

� beoserv - the beoboot server; it responds to compute nodes and serves the boot

image_

� bpmaster - the bproc master daemon; it only runs on the master node_

�
bpslave - the bproc compute daemon; it runs on each of the compute nodes_

�
bpstat - a bproc client; it maintains status information for all nodes in the cluster_

�
bpctl - a bproc client; a command line mechanism for controlling the nodes_

� bpsh - a bproc client; a replacement utility for "rsh" (remote shell)_

� bpcp - a bproc client; a mechanism for copying files between nodes_

�
beompi - the Message Passing Interface; optimized for use with Scyld Beowulf _

�
beopvm - the Parallel Virtual Machine; optimized for use with Scyld Beowulf _

	
mpprun - a parallel job creation package for Scyld Beowulf _

perf - support for platform specific hardware performance counters

1.2 BPROC (Beowulf Distributed Process Space)

Scyld Beowulf is able to provide a single system image through its use of BProc,

the Beowulf cluster process management kernel enhancement. BProc enables the

processes running on cluster compute nodes to be visible and manageable on the master

node. Processes start on the master node and are migrated to the appropriate compute

node by BProc. Process parent-child relationships and UNIX job control information are

both maintained with migrated tasks. Because cluster compute nodes are not required to

 4

contain resident applications, their hard disks are available for application data and cache.

This approach eliminates both the need to have full installations on the compute nodes

and the version skew problem common with previous generation cluster software.

Shortly, BPROC provides a mechanism to start processes on remote hosts while keeping

them visible in the process tree on the front end of a cluster.

Bproc aims to provide a single process space within the tightly controlled environment of

a beowulf cluster. Bproc doesn't address resource allocation or load balancing at all.

Bproc should avoid most if not all of the performance penalties associated with Mosix

style migration.

1.2.1 Goal

The goal of Bproc is to provide key elements needed for a single system image on

Beowulf cluster. Currently Beowulf style clusters still look like a collection of PC's on a

network. Once logged into the front end of the cluster, the only way to start processes on

other nodes in the system is via rsh. MPI and PVM hide this detail from the user but users

but it's still there when either of them starts up. Cleaning up after jobs is often made

tedious by this as well, especially when the jobs are misbehaving.

The bproc distributed PID space (bproc) addresses these issues by providing a

mechanism to start processes on remote nodes without ever logging into another node

and by making all the remote processes visible in the process table of the cluster's front-

end node. The hope is that this will eliminate the need for people to be able to login on

the nodes of a cluster.

Bproc can play a role of “Global Naming Scheme” in the mobile agent architecture. It

can provide the environment of weak mobility in mobile software architectures.

1.2.2 Overview

BPROC introduces a distributed process ID (PID) space. This allows a node to run

processes which appear in its process tree even though the processes are physically

present on other nodes. The remote processes also appear to be part of the PID space of

the front end node and not the node which they are running on. The node which is

distributing its pid space is called the master and other nodes running processes for the

 5

master are the slaves. Each PID space has exactly one master and zero or more slaves.

Each PID space corresponds to a real PID space on some machine. Therefore, each

machine can be the master of only one PID space. A single machine can be a slave in

more than one PID space.

1.2.3 Ghost processes

Remote Node
Operating System #1

Front-End Node
Operating System

Ghost Process #1
(Kernel Thread)

Real Process #1
(Kernel Thread)

bproc_rexec/bproc_move/bproc_rfork/bproc_execmove

Signal

Signal

Generate New PID
Child
Proces

s

Fork

Transmit/Receive Signal

User View

Remote Node
Operating System #2

Real Process #2
(Kernel Thread)

Signal

Child
Proces

s

Fork
Generate New PID

Transmit/Receive Signal

bproc_rexec/bproc_move/
bproc_rfork/bproc_execmove

Ghost Process #2
(Kernel Thread)

Master Daemon
Slave Daemon

Slave Daemon

MPI

Figure 1. Brpoc Architecture

Remote processes on are represented on the master node by "ghost" processes.

These are kernel threads like any other kernel thread on the system (i.e. nfsiod, kswapd,

etc). They have no memory space, open files, or file system context but they can wake up

for signals or other events and do things in kernel space. Using these threads, the existing

signal handling code and process management code remains unchanged. Ghosts perform

these basic functions:

 6

� Signals they receive are forwarded to the real processes they represent. Since they

are kernel threads, even SIGKILL and SIGSTOP can be caught and forwarded

without destroying or stopping the ghost..

� When the remote process exits it will forward its exit code back to the ghost and the

ghost will also exit with the same code. This allows other processes to wait() and

receive meaningful exit status for remote processes.

� When a remote process wants to fork, it will need to obtain a PID for the new child

process from the master node. This is obtained by asking the ghost process to fork

and return the PID of the new child ghost process. (This also keeps the parent-child

relationships in sync.)

� When a remote process waits on a child, the ghost will do the same. This prevents

accumulation of ghost zombies and keeps the process trees in sync.

1.3 MPI (Message Passing Interface)

MPI is a library specification for writing message-passing programs for parallel

computers, clusters and heterogeneous networks e.g., a Beowulf where parallel

programming requires the MPI library run on a cluster. The MPI provides library of

message-passing programs written in C, C++ or Fortran across a various heterogeneous

parallel architectures.

The MPI becomes a de facto standard for portable message-passing parallel

programs standardized by the MPI Forum and available on all massively-parallel

supercomputers. The MPI forum designs the base set of routines that ones can

implement efficiently, practical, portable, efficient, and flexible. The current version of

MPI is MPI-2 which is open to public at http://www.mcs.anl.gov/mpi . The vendors that

implements MPI include IBM, Intel, TMC, Meiko, Cray, Convex and Ncube.

The MPI contains point-to-point message passing, collective communication,

support for process groups, support for communication contexts, support for application

topologies, environmental inquiry routines, profiling interface and error control. The

MPI is primarily for SPMD/MIMD parallel architectures but there is no mechanism for

loading code onto processors, or assigning processes to processors or creating/destroying

 7

processes. Besides, the MPI does not provide remote memory transfers, multithreading

and virtual shared memory but it is designed to be thread-safe.

In MPI, a process is defined in a group and a rank (a unique integer for labeling

each process in the group). Process groups can be created and destroyed. A message

label is specified by a context and a corresponding tag. In a point-to-point

communication, it is a communication between pairs of processes. The Message

selectivity is by rank and tag. In Collective communication, it involves all processes in

the scope of the communication specified by the communicator. The collective

communication routines do not take message tag arguments.

The feature of MPI includes six basic functions and 125 extension functions. The

six basic functions are

� MPI_Init – start MPI.

� MPI_Finalize – exit MPI.

� MPI_Comm_size – the number of processes.

� MPI_Comm_rank – a number between zero and size-1.
�

MPI_Bcast – this routine sends data from one process to all others.
�

MPI_Reduce – this routine combines data from all processes and returning the result

to a single process.

The implemented software versions of MPI include MPICH [3] and LAM [4].

They are widely deployed in the researches.

The MPICH is an open-source, portable implementation of the Message-Passing

Interface Standard libraries. It contains a complete implementation of version 1.2 of the

MPI Standard and also significant parts of MPI-2, particularly in the area of parallel I/O.

MPICH is developed under Mathematics and Computer Science Division Argonne

National Laboratory. The current version is 1.2.3 (January 2002) [3]. The MPICH is

available in all UNIX and Window NT/2000 platforms.

The LAM (Local Area Multicomputer) is an MPI programming environment and

development system for heterogeneous computers on a network. With LAM, a dedicated

 8

cluster or an existing network computing infrastructure can act as one parallel computer

solving one problem. LAM features extensive debugging support in the application

development cycle and peak performance for production applications. LAM features a

full implementation of the MPI communication standard [4]. The LAM is developed at

the Ohio Supercomputer, the University of Notre Dame.

1.4 Current projects related to Beowulf

The hybrid cluster computing is the computing based on the platform of hybrid

clusters, which is the computer cluster consisting of both the stationary and mobile

computers, interconnected by wireless and wired networks [5]. It implements a prototype

for the hybrid cluster computer with Java mobile objects and the mobile IP. It studies the

performance on the trade-off between the communication load and the computational

load.

Mobile agents (MA) are of growing interest as base for distributed and parallel

applications to achieve an efficient utilization of cluster systems. The MAs are mobile

and autonomous SW units that can execute tasks given to the system and allocate

independently all the needed resources. However, with growth of cluster sizes, the

probability of a failure of system components increases. Holger Pals, Stefan Petri, and

Claus Grewe [6] conducted the Fault Tolerance for Mobile Agents in Clusters

(FANTOMAS). It focused on the failure of one or more system components and the loss

of mobile agents. The FANTOMAS concept has been derived to offer a user transparent

fault tolerance that can be activated on request, according to the needs of the task.

Another paper introduces a new SW system model for improving the performance

of parallel and distributed applications adaptively and on a real-time base, using

intelligent agents as adaptive controllers [7]. These intelligent agents are responsible for

collecting and analyzing the performance parameters and metrics, and deciding on the

required modification.

[8] develops the Scalable Computing Environment (SCE). The SCE is the Software

(SW) tool with a cluster builder tool, complex system mgmt tool (SCMS), scalable real-

time monitoring, web based monitoring SW (KCAP), parallel Unix command, and batch

scheduler (SQMS).

 9

Mobile agent techniques for autonomous data process and information discovery on

the Synthetic Aperture Radar Atlas (SARA) digital library enable automatic and dynamic

configuration of distributed parallel computing and support on-demand processing of

such a remote-sensing archive efficiently [9]. It provides the architecture design and

implementation status of the prototype system.

Another attempt to implement the MAs system on Beowulf Cluster has been

reported at the Electrical Engineering Conference (EECON-22) in 1999. It has deployed

on the SMILE Beowulf Cluster environment [10].

 10

2 Distributed Software Tools for Process Migration

��Problem Definition

Given a mobile agent application in which each agent has to visit multiple resources

in order to complete a task, find a schedule for giving agents access to resources that

optimizes the system throughput

� Introduction

Mobile-agent, multi-agent, multi-resource scheduling has some similarities with

scheduling in traditional computing environments, but there are major differences. Many

assumptions used in traditional scheduling algorithms become unrealistic in the context

of mobile agent systems, which are characterized by large data-transfer delay, diversified

network links and a wide spectrum of machine speeds. Scheduling algorithms for a

mobile-agent system must work in a heterogeneous environment where

(1) the number of machines is limited;

(2) the task graph structure is general;

(3) the data transfer delay is general; and

(4) the task duplication is not allowed.

This problem is NP-complete.
�
�A hierarchical scheduling framework in heterogeneous environment.

� Algorithms for scheduling multi-task

The objective is to optimize the system throughput. The algorithms work in

heterogeneous networks in that they assume different host speeds and different data

transfer and communication delays between host pairs. They developed both centralized

and distributed algorithms. The centralized algorithm has a provable performance bound

and is used as a module in the distributed scheduler.

2.1 CONDOR

Condor is sophisticated and unique distributed job scheduler developed by the

condor research project at the University of Wisconsin-Madison Department of Computer

Sciences. Condor exists to address problems of resource allocation over very large

 11

numbers of systems owned by different people. It includes some process migration

capabilities as well [12].

2.1.1 Features of Condor

� Checkpoint and migration.

Where programs can be linked with Condor libaries, users of Condor may be

assured that their jobs will eventually complete, even in the ever changing environment

that Condor utilizes. As a machine running a job submitted to Condor becomes

unavailable, the job can be checkpointed. The job may continue after migrating to

another machine. Condor's periodic checkpoint feature periodically checkpoints a job

even in lieu of migration in order to safeguard the accumulated computation time on a job

from being lost in the event of a system failure such as the machine being shutdown or a

crash.
�

Remote system calls.

 Despite running jobs on remote machines, the Condor standard universe execution

mode preserves the local execution environment via remote system calls. Users do not

have to worry about making data files available to remote workstations or even obtaining

a login account on remote workstations before Condor executes their programs there. The

program behaves under Condor as if it were running as the user that submitted the job on

the workstation where it was originally submitted, no matter on which machine it really

ends up executing on.

� No Changes Necessary to User's Source Code.

No special programming is required to use Condor. Condor is able to run non-

interactive programs. The checkpoint and migration of programs by Condor is transparent

and automatic, as is the use of remote system calls. If these facilities are desired, the user

only re-links the program. The code is neither recompiled nor changed.

� Pools of machines can be hooked together.

Flocking is a feature of Condor that allows jobs submitted within a first pool of

Condor machines to execute on a second pool. The mechanism is flexible, following

requests from the job submission, while allowing the second pool, or a subset of

 12

machines within the second pool to set policies over the conditions under which jobs are

executed.

� Jobs can be ordered.

The ordering of job execution required by dependencies among jobs in a set is

easily handled. The set of jobs is specified using a directed acyclic graph, where each job

is a node in the graph. Jobs are submitted to Condor following the dependencies given by

the graph.

� Sensitive to the desires of machine owners.

The owner of a machine has complete priority over the use of the machine. An

owner is generally happy to let others compute on the machine while it is idle, but wants

it back promptly upon returning. The owner does not want to take special action to regain

control. Condor handles this automatically.

� ClassAds.

The ClassAd mechanism in Condor provides an extremely flexible, expressive

framework for matchmaking resource requests with resource offers. Users can easily

request both job requirements and job desires. For example, a user can require that a job

run on a machine with 64 Mbytes of RAM, but state a preference for 128 Mbytes, if

available. A workstation owner can state a preference that the workstation runs jobs from

a specified set of users. The owner can also require that there be no interactive

workstation activity detectable at certain hours before Condor could start a job. Job

requirements/preferences and resource availability constraints can be described in terms

of powerful expressions, resulting in Condor's adaptation to nearly any desired policy.

Figure 2: An Example of ClassAd

2.1.2 Condor Architecture

 13

A Condor pool is comprised of a single machine that serves as the central manager,

and an arbitrary number of other machines that have joined the pool. Conceptually, the

pool is a collection of resources (machines) and resource requests (jobs). The role of

Condor is to match waiting requests with available resources. Every part of Condor sends

periodic updates to the central manager, the centralized repository of information about

the state of the pool. Periodically, the central manager assesses the current state of the

pool and tries to match pending requests with the appropriate resources.
�

Central Manager

There can be only one central manager for your pool. The machine is the collector

This machine plays a very important part in the Condor pool and should be reliable. If

this machine crashes, no further matchmaking can be performed within the Condor

system (although all current matches remain in effect until they are broken by either party

involved in the match). Therefore, choose for central manager a machine that is likely to

be online all the time, or at least one that will be rebooted quickly if something goes

wrong. The central manager will ideally have a good network connection to all the

machines in your pool, since they all send updates over the network to the central

manager. All queries go to the central manager.
�

Execute

Any machine in your pool (including your Central Manager) can be configured for

whether or not it should execute Condor jobs. Obviously, some of your machines will

have to serve this function or your pool won't be very useful. Being an execute machine

doesn't require many resources at all. About the only resource that might matter is disk

space, since if the remote job dumps core, that file is first dumped to the local disk of the

execute machine before being sent back to the submit machine for the owner of the job.

However, if there isn't much disk space, Condor will simply limit the size of the core file

that a remote job will drop. In general the more resources a machine has (swap space, real

memory, CPU speed, etc.) the larger the resource requests it can serve. However, if there

are requests that don't require many resources, any machine in your pool could serve

them.

� Submit

 14

Any machine in your pool (including your Central Manager) can be configured for

whether or not it should allow Condor jobs to be submitted. The resource requirements

for a submit machine are actually much greater than the resource requirements for an

execute machine. First of all, every job that you submit that is currently running on a

remote machine generates another process on your submit machine. So, if you have lots

of jobs running, you will need a fair amount of swap space and/or real memory. In

addition all the checkpoint files from your jobs are stored on the local disk of the machine

you submit from. Therefore, if your jobs have a large memory image and you submit a lot

of them, you will need a lot of disk space to hold these files. This disk space requirement

can be somewhat alleviated with a checkpoint server (described below), however the

binaries of the jobs you submit are still stored on the submit machine.
�

Checkpoint Server

One machine in your pool can be configured as a checkpoint server. This is

optional, and is not part of the standard Condor binary distribution. The checkpoint server

is a centralized machine that stores all the checkpoint files for the jobs submitted in your

pool. This machine should have lots of disk space and a good network connection to the

rest of your pool, as the traffic can be quite heavy. Now that you know the various roles a

machine can play in a Condor pool, we will describe the actual daemons within Condor

that implement these functions.

2.1.3 Condor Daemons

The following list describes all the daemons and programs that could be started

under Condor and what they do:

� condor_master

This daemon is responsible for keeping all the rest of the Condor daemons running

on each machine in your pool. It spawns the other daemons, and periodically checks to

see if there are new binaries installed for any of them. If there are, the master will restart

the affected daemons. In addition, if any daemon crashes, the master will send e-mail to

the Condor Administrator of your pool and restart the daemon. The condor_master also

supports various administrative commands that let you start, stop or reconfigure daemons

 15

remotely. The condor_master will run on every machine in your Condor pool, regardless

of what functions each machine are performing.
�

condor_startd

This daemon represents a given resource (namely, a machine capable of running

jobs) to the Condor pool. It advertises certain attributes about that resource that are used

to match it with pending resource requests. The startd will run on any machine in your

pool that you wish to be able to execute jobs. It is responsible for enforcing the policy

that resource owners configure which determines under what conditions remote jobs will

be started, suspended, resumed, vacated, or killed. When the startd is ready to execute a

Condor job, it spawns the condor_starter, described below.
�

condor_starter

This program is the entity that actually spawns the remote Condor job on a given

machine. It sets up the execution environment and monitors the job once it is running.

When a job completes, the starter notices this, sends back any status information to the

submitting machine, and exits.

� condor_schedd

This daemon represents resources requests to the Condor pool. Any machine that

you wish to allow users to submit jobs from needs to have a condor_schedd running.

When users submit jobs, they go to the schedd, where they are stored in the job queue,

which the schedd manages. Various tools to view and manipulate the job queue (such as

condor_submit, condor_q, or condor_rm) all must connect to the schedd to do their work.

If the schedd is down on a given machine, none of these commands will work.

The schedd advertises the number of waiting jobs in its job queue and is responsible

for claiming available resources to serve those requests. Once a schedd has been matched

with a given resource, the schedd spawns a condor_shadow (described below) to serve

that particular request.
�

condor_shadow

This program runs on the machine where a given request was submitted and acts as

the resource manager for the request. Jobs that are linked for Condor's standard universe,

which perform remote system calls, do so via the condor_shadow. Any system call

performed on the remote execute machine is sent over the network, back to the

 16

condor_shadow which actually performs the system call (such as file I/O) on the submit

machine, and the result is sent back over the network to the remote job. In addition, the

shadow is responsible for making decisions about the request (such as where checkpoint

files should be stored, how certain files should be accessed, etc).

��condor_collector

This daemon is responsible for collecting all the information about the status of a

Condor pool. All other daemons (except the negotiator) periodically send ClassAd

updates to the collector. These ClassAds contain all the information about the state of the

daemons, the resources they represent or resource requests in the pool (such as jobs that

have been submitted to a given schedd). The condor_status command can be used to

query the collector for specific information about various parts of Condor. In addition,

the Condor daemons themselves query the collector for important information, such as

what address to use for sending commands to a remote machine.
�

condor_negotiator

This daemon is responsible for all the match-making within the Condor system.

Periodically, the negotiator begins a negotiation cycle, where it queries the collector for

the current state of all the resources in the pool. It contacts each schedd that has waiting

resource requests in priority order, and tries to match available resources with those

requests. The negotiator is responsible for enforcing user priorities in the system, where

the more resources a given user has claimed, the less priority they have to acquire more

resources. If a user with a better priority has jobs that are waiting to run, and resources

are claimed by a user with a worse priority, the negotiator can preempt that resource and

match it with the user with better priority.

� condor_kbdd

This daemon is only needed on Digital Unix and IRIX. On these platforms, the

condor_startd cannot determine console (keyboard or mouse) activity directly from the

system.

� condor_ckpt_server

This is the checkpoint server. It services requests to store and retrieve checkpoint

files. If your pool is configured to use a checkpoint server but that machine (or the server

 17

itself is down) Condor will revert to sending the checkpoint files for a given job back to

the submit machine.

Figure 3: Condor Architecture

2.1.4 Submitting Different Types of Jobs: Alternative Universes

A Universe in condor defines an execution environment. Condor supports the

following Universes:

� Vanilla

� MPI: The MPI Universe allows parallel program written with MPI to be managed

by Condor

� PVM
�

Globus
�

Scheduler: DAGMan Scheduler
�

Standard:

• Transparent process checkpoint and restart

• Transparent process migration

• Remote system calls

• Configurable file I/O buffering

 18

2.2 MAUI

Maui is a batch scheduler capable of administrative control over resources, such as

processors, memory and disk, and workload. It allows a high degree of configuration in

the areas of job prioritization, scheduling, allocation, fairness, fairshare, QOS levels,

backfill and reservation policies. The Maui is an advance cluster schedule suited for high

performance computing (HPC) platforms including PC clustering like Beowulf. The

Maui itself is not a resource manager but it makes decisions by querying and controlling

a resource management system such as OpenPBS, PBSPro, Loadleveler, SGE, etc. For

example, the Maui may query jobs and nodes information from the PBS server and direct

PBS to manage job in response with specified Maui policies, priorities, and reservations.

In the PBS users’ view, the Maui is a set of external commands which provide additional

information and capabilities intended to improve the user's ability to run jobs “when”,

“where” , and “how” they want. It term of quality of service, Maui allows a user to

request improved job turnaround time, access to additional resources, or exemptions to

particular policies automatically

2.2.1 Brief history

The Maui scheduler was originally developed to be dependent on the IBM SP

Load-Leveler API. As interest in the Maui scheduler for Linux, IRIX, HP-UX and

Windows NT grew it was necessary either to write the interfaces to existing Resource

Managers, or the develop a Resource Manager (RM) specifically for the Maui Scheduler.

In 1998, a Maui High Performance Computing Center team started to develop a generic

resource manager called Wiki, from what was the Wiki RM. The Linux Resource

Manager development began at the Albuquerque High Performance Computing Center

and is know as the Linux Resource Manager. The Maui Scheduler is an advanced

reservation based High Performance Computing batch scheduler supported on SP, O2K,

and Linux clusters. It can be used to extend the functionality and improve the efficiency

of sites utilizing the PBS and Loadleveler batch system.

2.2.2 Maui Features

 19

 �
�Backfill

Backfill is one of scheduling approaches that allows user to run some jobs out of

the queue order as long as they do not delay the highest priority jobs in the queue. Each

job must be defined the estimate running time called wallclock limit. It is an estimation

of the elapsed time from start to finish of the job. Since the scheduler may be configured

to kill jobs which exceed their wallclock limits, it is often wise to slightly overestimate

this limit. With this information, it allows Maui to determine whether or not a high

priority job will be delayed. The more accurate the wallclock limit, the more 'holes' Maui

can find to start the desired job early.

The backfill increase the utilization and throughput because it schedules job to the

available resource for immediate use while decreasing the average job queue time. The

command showbf in the Maui is to show a backfill window i.e., showing the available

resources for immediate use. Users are able to configure a job that will be able to run as

soon as it is submitted by utilizing only available resources.
�

Advance Reservations

Maui provides the advance reservations by reservation-specific access control list

(ACL) to specify the reserved resource and users who can use them. Also it allows setup

of timeframe for certain resources to be used in particular site. Maui will attempt to

locate the best possible combination of available resources whether these are reserved or

unreserved without forcing the job to utilize the resources. For example, in the figure

below, note that job X, which meets access criteria for both reservation A and B,

allocates a portion of its resources from each reservation and the remainder from

resources outside of both reservations.

A

 Job X

 B

A

B

 20

Maui can configure jobs to be run within accessible reservations on a job-by-job

basis or by the QoS constraints depending on the policy.
�

Quality of Service (QOS)

 The Maui QOS features allow a site to grant special privileges to particular users

including the access to additional resources, exemptions from certain policies, the access

to special capabilities, and improved job prioritization.

� Statistics

The Maui statistics features allow users to track the data that determine how well

and how often their jobs are running. The showstats command provides detailed statistics

per user, per group, and per account basis. Besides, the command showgrid displays

various tables of scheduling or system performance. Therefore, user can determine what

types of jobs the gain the highest performance and tune the jobs to optimal turnaround

time.

��Diagnosis

The command checkjob in Maui allow users to view a detailed status report for each

submitted job. This command shows all job attribute and state information and analyze if

the job can run or not. If the job is unable to run, it will provide the reasons. Besides, the

Maui logs viewed by system administrator can reveal the detail why the job did not start.
�
�Workload Information

In order to manage the workload, Maui provides an extensive array of job

prioritization options for each site. Maui allows sites to control exactly how jobs run

through the job queue. Maui provides the showq command to show queued jobs, a

relevant listing of both active and idle jobs.

2.3 MOSIX

Bproc aims to provide a single system image similar to Mosix but does not attempt

to do Mosix style transparent process migration. Bproc will allow a process to migrate

from one node to another but this migration is not transparent or automatic. On the other

hand, bproc should avoid most if not all of the performance penalties associated with

Mosix style migration. �

 21

MOSIX is a software module for supporting scalable cluster computing with Linux.

The core of MOSIX are kernel-level, adaptive load-balancing algorithms that are

designed to respond to variations in resource usage among the nodes by migrating

processes from one node to another (strong mobility), preemptively and transparently.

MOSIX allows a cluster of PCs to work cooperatively as if part of a single system [13].

There are two versions: a kernel patch (K-MOSIX) that can be applied to a specific Linux

kernel, and a user-level package (U-MOSIX) that can be used with different Unix

platforms.

Both versions are based on the same principles, and are geared to achieve even

work distribution and load balancing. K-MOSIX provides load-balancing by transparent

process migration. The application developer need only fork new processes. U-MOSIX

provides even load distribution using several of the algorithms of K-MOSIX.

[13] claims that MOSIX can support configurations with large numbers of

computers, with minimal scaling overheads to impair the performance. A low-end

includes several PCs by Ethernet, while a larger may include a large number of

workstations (SMP and non-SMP) and servers by higher speed LAN such as Gigabit-

Ethernet.

[14] is an procedural article to guide the user for installing and configuring MOSIX.

During the configuration, the terminology such as “Migration” is used in MOSIX that

gives the insight of MOSIX’s process mobility to other nodes. It continues with

installation MOSIX on the Development Machine and installation testing.

Another attempt to deploy MOSIX is pursued and reported by Jelmer Vernooij [15].

It tried to use Mosix with Linux Terminal Server Project (LTSP). The reason is given as

such that LTSP is to run remote X (Linux) without needing disks and MOSIX has the

capability to migrate processes to machines with a lower load. The procedure to install

MOSIX is detailed with some practical tips, gained at the project.

 [16] presents one example of how clusters of MOSIX extension Linux systems

were used to eliminate a performance bottleneck and to reduce the cost of building

software. It concludes that this approach is beneficial to create high performance and

distributed build environments form commodity hardware and open source software.

 22

Barak and La’adan [17] experienced the resource sharing that is geared for

performance scalability in a scalable computing cluster (CC), MOSIX over fast Ethernet

and the Myrinet LANs. Parallel applications can be executed by allowing MOSIX to

assign and reassign the processes to the best possible nodes. It demonstrated the low-cost,

scalable CC from commodity components, such as PC’s, UNIX and PVM.

2.4 SPRITE

Sprite was a UNIX-like distributed operating system developed at Berkeley from

1984 [18]. Processes run on a number of different machines, and had a number of

interesting features, such as load-balancing, a high-speed, aggressively-caching,

distributed file-system, and a fast log-structured local file-system.

Sprite [19] provides transparent process migration to allow load sharing. It provides

a UNIX like system call interface. Each process appears to run on a single host node, but

physically to execute on a different machine. [20] presents the implementation of a

SPRITE system to provide the transparent process migration of processes. The simulated

results reside in migration, load sharing over distributed systems. [21] estimates the

performance measurements, especially on a multiprocessor Sprite kernel. Variety of

macro- and micro-benchmarks were taken in place for this matter.

K. Shirriff [22] implemented of memory sharing and file mapping of 4.2 BSD Unix

to Sprite with user-level control over paging. In the report, he stated two limited sharing

capabilities: code and heap segments while having separate stacks. Mach model is similar

in this matter of execution in a single address space. In addition, some of his effort has

exhibited in collecting the reference of Sprite papers [23].

Despite the kernel level dynamic load balancing in a cluster system such as Sprite,

[24] suggests to provide a high-level and portable implementation of migratable Java

threads over Java Virtual Machine.

2.5 Comparison of Implementations

In this section we will explore some of the similarities and differences in the design

decisions among several systems that support process migration. Specifically, we will

 23

examine MOSIX, developed at the Hebrew University of Jerusalem, Israel; Condor,

developed at the University of Wisconsin-Madison; and Sprite, developed at the

University of California at Berkeley. Condor, MOSIX, and Sprite appear similar on the

surface in that they all have implemented a process migration. Underneath, however,

each of the three systems is trying to solve a different problem. The design decisions that

went into the systems are necessarily different, because the designs were based on

different assumptions. Each of these decisions is discussed in more detail below.

2.5.1 MOSIX

MOSIX might be best described as an attempt to create a low-cost equivalent of a

scalable, SMP (multi-CPU) server. In an SMP system such as the Digital Alpha Server or

SGI Challenge, multiple CPUs are tightly coupled, and the operating system can do very

fine-grained load balancing across those CPUs. In an SMP, any job can be scheduled to

any processor with virtually no overhead. MOSIX, similarly, attempts to implement very

low-overhead process migration so that the multicomputer, taken as a whole, might be

capable of fine-grained load balancing akin to an SMP. The MOSIX designers have

expended a great deal of effort implementing very fast network protocols, optimizing

network device drivers, and doing other analyses to push the performance of their

network as far as possible.

Also in line with the SMP model, MOSIX goes to great lengths to maintain the

same semantics of a centralized OS from the point of view of both processes and users.

Even when a process migrates, signal semantics remain the same, IPC channels such as

pipes and TCP/IP sockets can still be used, and the process still appears to be on its

“home node” according to programs such as ps .

As a result, the MOSIX implementation typically takes the form of a “pool of

processors”--a large number of CPUs dedicated to acting as migration targets for high-

throughput scientific computing. Although MOSIX can be used to borrow idle cycles

from unused desktop workstations, that mode of operation is not its primary focus.

2.5.2 CONDOR

 24

In contrast, Condor's primary motivation for process migration seems to be to

provide a graceful way for processes that were using idle CPU cycles on a foreign

machine to be evicted from that machine when it is no longer idle. They made many

simplifying assumptions; for example, that the remotely-executing processes will be

running in a vacuum, not requir ing contact with other processes via IPC channels.

Their migration strategy does not provide a fully transparent migration model;

processes ``know'' that they are running on a foreign machine, and the home

machine has no record of the process' existence. These assumptions, while more

limiting than the MOSIX model, do buy a fair amount of simplicity: Condor 's designers

were able to implement its process migration without modifying the kernel.

2.5.3 SPRITE

In motivation, Sprite seems to be a cross between Condor and MOSIX. Like

MOSIX, Sprite strives for a very pure migration model--one in which the semantics of

the process are almost exactly the same as if the process had been running locally. IPC

channels, signal semantics, and error transparency are all important to the Sprite design.

However, their migration policy is much more akin to Condor's. Similar to Condor, they

seem primarily motivated by the desire to gracefully evict processes from machines

which are no longer idle. When processes are first created with exec(), they are migrated

to idle workstations if possible; later, they are migrated again only if the workstation

owner returns and evicts the process. Unlike MOSIX, Sprite has no desire to dynamically

re-balance the load on systems once processes have been assigned to processors.

2.5.4 Specific Design Decisions

In this section, we will explore some of the specific design decisions of the three

systems in more detail.

2.5.4.1 User Space vs. Kernel Implementation

Sprite and MOSIX both involve extensive modifications to their respective kernels

to support process migration. Amazingly, Condor is a process migration scheme that

is implemented in user-space. Although no source code changes are necessary, users

 25

do need to link their programs with Condor 's process migration library. The library

intercepts cer tain system calls in cases where it needs to record state about the

system call. The library also sets up a signal handler so that it can respond to signals

from daemons running on the machines, telling it to checkpoint itself and terminate.

2.5.4.2 Centralized vs. Distributed Control

Condor and Spr ite both rely on a centralized controller , which limits those

systems' scalability and introduces a single point of failure for the entire system. In

contrast, MOSIX nodes are all autonomous, and each uses a novel probabilistic

information distribution algorithm to gather information from a randomly selected (small)

subset of the other nodes in the system. This makes MOSIX much more scalable, and its

completely decentralized control makes it more robust in the face of failures.

2.5.4.3 File system Model

Condor does not assume that file systems available on a process' home

machine are also available on the target machine when a process migrates. Instead,

it forwards all file system requests back to the home machine, which fulfills the

request and forwards the results back to the migration target. In contrast, Sprite has a

special cluster-wide network file system; it can assume that the same file system is

available on every migration target. Sprite forwards the state of open files to the target

machines and file system requests are carried out locally. Similar to Sprite, MOSIX

assumes that the same file system will be globally available, but MOSIX uses standard

NFS.

2.5.4.4 Fully Transparent Execution Location

MOSIX and Sprite support what might be called ``full transparency'': in these

systems, the process still appears to be running on the home node regardless of its actual

execution location. The process itself always thinks that it's running on its home node,

even if it migrated and is actually running on some other node. This has several important

side effects. For example, IPC channels such TCP/IP connections, named pipes, and the

like, are maintained in MOSIX and Sprite despite migration of processes on either end of

the IPC channel. Data is received at the communications endpoint--i.e., a process' home

 26

node--where it is then forwarded to the node on which the process is actually running. In

contrast, Condor does not support such a strong transparency model; a Condor

process that migrates appears to be running on the migration target. For this

reason, migration of processes that are involved in IPC is not allowed.

2.5.4.5 Migration Policies

As mentioned earlier, MOSIX attempts to dynamically balance the load

continuously throughout the lifetime of all running processes, in an attempt to maximize

the overall CPU utilization of the cluster. Sprite schedules a process to an idle processor

once, when the process is born, and migrates that process back to its home node if the

foreign node's owner returns. Once an eviction has occurred, Sprite does not re-migrate

the evicted process to another idle processor. Condor falls somewhere in between these

two. Like Sprite, Condor assigns a process to an idle node when the jobs is created.

However, unlike Sprite, Condor attempts to find another idle node for the process every

time it gets evicted. Absent of evictions, Condor does not attempt to dynamically re-

balance the load as MOSIX does.

2.5.4.6 Check pointing Capability

The mechanics of Condor 's process migration implementation are such that

the complete state of the process is wr itten to disk when a migration occurs. After

the process state is wr itten to disk, the process is terminated, the state transferred to

a new machine, and the process reconstructed. This implementation has a useful

side effects. For example, the process state file can be saved. Saving it has the effect

of ``check pointing' ' the process, so that it can be restar ted from a previous point in

case of a hardware failure or other abnormal termination. The frozen process can

also be queued; who is to say that the frozen process has to be restar ted

immediately? The state file, with its process in stasis, can be kept indefinitely--

perhaps waiting for another idle processor to become available before restar ting.

The MOSIX and Sprite implementations are generally memory-to-memory and preclude

these interesting possibilities.

Table: Comparison of process migration schemes
 MOSIX CONDOR SPRITE

 27

Area Implementation Kernel User Space Kernel
Control Algorithms Distributed Centralized Centralized
Files ystem Model State of open files

transferred; all
nodes have same

view of file system

Requests forward to
home node; results

back to remote node

State of open files
transferred; all

nodes have same
view of file system

Full Transparency
(IPC, Signals, etc.)

Yes No Yes

Migration Policy Continuous;
Dynamic

Assign on eviction Assign once return
if evicted

Checking pointing
Capability

No Yes No

 28

�

3 Virtual File Systems

The distributed file system allows Beowulf to access inter-node file system. It

makes users look like they are accessing the local file system. Basically it is capable of

network transparency, location transparency and location independence. Beowulf

clusters almost always use the Network File System (NFS) protocol to provide distributed

file system services. However, NFS has a problem with scalability unlike the Andrew

File System (AFS). The AFS is proved to be able to reduce CPU usage and network

traffic. Also it overcomes the scaling problems. Recently AFS is available for Linux and

has emerged in the Beowulf community. An alternative for the distributed file system is

a virtual file system (VFS). One implemented open source version of VFS that operates

on the Beowulf is the PVFS. It can be installed without any modifications to the

hardware or kernel. The term virtual in the PVFS implies that file data is actually stored

on multiple file systems on local disks, not by PVFS itself. The term parallel means that

data is stored on multiple independent PCs, or cluster nodes, and that multiple clients can

access this data simultaneously and transparently. PVFS maintains a consistent file name

space across the machine [24].

In the user’s view, the UNIX file commands such as ls, cp and rm can be used on

PVFS files and directories. Also the PVFS supports the UNIX I/O interface and allows

existing UNIX I/O programs to use PVFS files without recompiling. Since PVFS spreads

data out across multiple cluster nodes, called I/O nodes, user can access data from various

paths. This is to reduce bottleneck in case of one access path. Moreover, to reduce the

kernel overhead, the PVFS clients directly contact PVFS servers rather than passing

through the local kernel. Besides, the PVFS library can be utilized by applications or by

libraries, such as the ROMIO MPI-IO library, for high speed PVFS access.

 29

PVFS System

 The figure above shows the PVFS system on the cluster. There are three types of

nodes, the management node, the compute node and the I/O node.

The computer nodes are the nodes of the clients that access the PVFS files. Every

node can be compute node depending on the configuration. The native API (libpvfs) in

the compute node provides user-space access to the PVFS servers. This library handles

the user-transparent scatter/gather operations necessary to move data between user

buffers and PVFS servers.

There is only one management node in the PVFS. The management node serve as a

metadata server. It has a daemon program named “mgr” running inside to manage the

metadata of PVFS e.g., filename permissions, owners and its location in the directory.

The client in the compute node will communicate through the library with the metadata

server in the management node.

The I/O node serves as an I/O server. It has a daemon program name “ iod” running

inside to store and retrieve file data on its local disks. The client in the compute node

will contact I/O servers in I/O nodes directly.

There are three interfaces through which PVFS may be accessed:

• PVFS native API. Not only the PVFS provides the UNIX-like interface, it also allows

users to rearrange how files will be striped across the I/O nodes.

• Linux kernel interface. This allows applications to access PVFS file systems through the

normal channels.

 30

• ROMIO MPI-IO interface. This ROMIO implements the MPI2 I/O calls in a portable

library. It allows parallel programmers using MPI to access PVFS files through the

MPI-IO interface. [ht t p: / / www. mcs. anl . gov/ r omi o]

It is possible to share a globalize information between the processes or agents via

PVFS. The PVFS libraries can be used either directly via the native PVFS calls or

indirectly through the ROMIO MPI-IO interface or the MDBI interface.

 31

4 Design Strong Mobility Environment

4.1 Mobility

The primary identifying characteristic of mobile agents is their ability to

autonomously migrate from host to host. Thus, support for agent mobility is a

fundamental requirement of the agent infrastructure. An agent which has “know-how”

but lack of resources can request its host server to transport it to some remote destination

equipped with resources. The agent server must then deactivate the agent, capture its

state, and transmit it to the server at the remote host. The destination server must restore

the agent state and reactivate it, thus completing the migration. The state of an agent

includes all its data, as well as the execution state of its thread.

At the lowest level, this is represented by its execution context and call-stack. If this

can be captured and transmitted along with the agent, the destination server can reactivate

the thread at precisely the point where it requested the migration. This can be useful for

transparent load-balancing, or fault-tolerant programs. An alternative is to capture

execution state at a higher level, in terms of application-defined agent data. The agent

code can then direct the control flow appropriately when the state is restored at the

destination. However, this only captures execution state at a coarse granularity (e.g.

function-level), in contrast to the instruction-level state provided by the thread context.

Agent systems execute agents using commonly available system or language

environments, which do not usually provide thread-level state capture. Since mobile

agents are autonomous, migration only occurs under explicit programmer control, and

thus state capture at arbitrary points is usually unnecessary.

There are two models for supporting agent mobility, in the weak mobility model, on

migration, the agent’s state essentially consists of the agent's program-defined data

structures or set of reference to resources that can be shared among multiple agents called

data state. Since there is no transferring of execution state, the execution has to start from

the beginning on the destination host. If the fragment of code is transferred, it must be

linked in the context of already running code in the destination host. Whereas the strong

 32

mobility model captures the agent's state at the level of the underlying thread or process,

which consists of both data state and execute state. The execution can be resumed from

the point it stopped on the previous host. �

With weak mobility, an agent's migration is possible only at specific points in the

agent's code, and typically a migration is explicitly requested in the agent's code. It is

generally felt that program-controlled migration under weak mobility suffices for

majority of the applications.

In agent migration, to keep the design simple and efficient, most agent

programming systems do not support resumption of sessions, dealing with open files or

communication channels, on migration. This avoids dependencies on remote nodes.

Besides, under program-controlled mobility, one can properly close any open sessions

before migration, and reopen them after migration. If an agent is multithreaded, then

under the weak mobility model, the programmer needs to take special care when making

explicit requests for migration in the agent's code. Problems can arise if one thread

requests migration when other threads have not yet completed their tasks. In addition, one

needs to prevent a situation when two threads issue migration requests to move to

different hosts. Therefore, even when an agent programming system does not explicitly

support a multithreaded model for its agents, the programmer must be cognizant of such

implicitly created threads. Therefore, when requesting migration, it is the programmer's

responsibility to ensure that all other threads have either terminated or reached a state

when it is safe to terminate them and migrate the agent.

The strong mobility model allows an agent to be migrated at any point in its

execution. This model is certainly useful if agents need to be moved at unpredictable

points in time for fault-tolerance or load-balancing.

Another issue in agent mobility is the transfer of agent code. One possibility is for

the agent to carry all its code as it migrates. This allows the agent to run on any server

which can execute the code. Another possibility is not to transfer any code at all, but it

requires that the agent's code must be pre-installed on the destination server. In a third

approach, the agent does not carry any code but contains a reference to its code base -- a

server that provides its code upon request. During the agent's execution, if it needs to use

 33

some code that is not already installed on its current server, the server can contact the

code base and download the required code. This is referred to as code-on-demand (COD).

4.1.1 Weak Mobility

As mentioned before, the weak mobility makes only data state (i.e., the values of

the internal variables) and code move, while the strong one allows the entire execution

state (i.e., the stack and program counter) of a mobile agent, code, and data state to move .

In fact, mobility requires the implementation of mechanisms to support execution

stopping, state collection, data transfer and execution resuming; all these kinds of

facilities must be provided by the runtime system support. The term mobility is used to

indicate a change of location performed by the entities of a system. It also needs to know

the capability of roaming among nodes in a network-aware fashion to find the needed

resources and services. Starting from simple data, the mobility has had an evolution that

has led to move the execution control, the code and the execution environment.

In weak mobility, after the movement, the agent is restarted and the values of its

variables are restored, but its execution restarts from the beginning or from a given

procedure (a method in case of objects). Usually, A new thread (or process) is created to

execute the code. The newly created thread performs all the needed information to deliver

the results to the source site. In addition, weak mobility has to explicitly synchronize in

order to generate deadlocks and inconsistence state. In addition, the function of mobility

need to encapsulate all the state involving a distributed computation, and can be easily

traced, checkpointed, and possibly recovered locally, without any need for knowledge of

global state. This function also is required in the strong mobility.

The UNIX r shd daemon is one example of weak mobility in that it allows the

shell script to be run on a remote host.

4.1.2 Strong Mobility

In strong mobility, not only code and data state are moved, but also the execution

state, in order to restart the execution exactly from the point where it was stopped before

movement. In strong mobility, the mobility of a complex entity occurs with the following

steps.

 34

1. The execution flow is stopped.

2. The state of the migrating entity is collected.

3. The code and state of the migrating entity are shipped to the destination

node.

4. The code and the state of the migrating entity are restored

5. The execution is restarted.

In strong mobility, not only code and data state are moved, but also the execution

state, in order to restart the execution exactly from the point where it was stopped before

movement. In strong mobility, the mobility of a complex entity occurs with the following

steps. The execution state of a migrating agent is suspended, and its stack and program

counter are sent to the destination site, together with the relevant data. At the destination

site, the stack of the agent is reconstructed and the program counter is set appropriately.

Strong mobility uses state saving techniques to provide transparent process

migration or persistence functionalities. Furthermore, strong mobility has the ability to

store and retrieve computations as variables (continuations) and passes these to the other

agents (remote continuations). To support these things, transparent location function is

required. Strong mobility also usually communicates in an asynchronous fashion which

one agent sends messages to other agents and do not wait for the answers. As a fault

tolerance, whenever one of the communication partners of a given agent dies, the agent

will not stop working correctly even if it is waiting for some action of dead partner.

The existing languages that support strong mobility are Telescript, Tycoon, Agent

TCL and Emerald. In Agent TCL, an executing TCL script can move from one host to

another with single jump instruction. A jump freezes the program execution context and

transmits it to a different host which resumes the script execution from the instruction

that follow the jump.

One of application areas used in strong mobility is load balancing. Load balancing

requires that a running application be restored exactly as it was before the movement of

agents because it must be transparent to the application itself. This seems to require a

strong mobility mechanism, which grants that also the execution state is transferred and

resumed at the destination node.

 35

Features Strong Mobility Software Tools

Code Required BPROC / CONDOR

Data State Required BPROC / CONDOR

Execution State Required CONDOR

Transparent migration Required
CONDOR

(Limited Support)

Agent Migration

(e.g., Itinerary schedule policy

(Sequence / Selection / Split /

Split-Join))

Implicit
BPROC / CONDOR

(Limited Support)

Inter-Agent Communication

and Synchronization
Required MPI

Collective Agent

Communication
Optional MPI

Agent Monitor and Control Optional
CONDOR

(Limited Support)

Agent Fault Recovery Required
CONDOR

(Limited Support)

Agent Identification Required
BPROC

(Limited Support)

Security Required NONE

4.2 Analysis of Existing Softwares

In this section, we will describe the way to apply the existing softwares to the

strong mobility presented in section 4.1. The existing softwares are Bproc, MPI,

CONDOR, and PVFS that can run in the Beowulf system environment.

 36

4.2.1 MPI

The goal of MPI is to write our own parallel programs using the powerful and

general message-passing model of parallel computation. Therefore, MPI can be only used

on the clustering systems not general heterogenous systems connected to Internet. There

are several implementation version of MPI such as MPICH and LAM

(http://www.cs.nd.edu/lam).

In parallel programs, there are two important questions. First, how many processes

are participating in this computation? Second, Which one am I? MPI provides functions

to answer these questions by providing the follows:
�

MPI_Comm_size - reports the number of processes.
�

MPI_Comm_rank - reports the rank, a number of between 0 and size –1, identifying

the calling process.

The MPI-1 standard doest not specify how to run an MPI program. In genereal,

starting an MPI program is dependent on the implementation of MPI we are using, and

might require various scripts, program arguments, and/or environment variables. mpiexec

<args> is part of MPI-2, as a recommendation, but not a requirement. However, we can

write my MPI implementor.

There is no mechanism for loading code onto processors, or assigning processes to

processors or creating/destroying processes in MPI. Besides, the MPI does not provide

remote memory transfers, multithreading and virtual shared memory but it is designed to

be thread-safe.

In MPI, a process is defined in a group and a rank (a unique integer for labeling

each process in the group). Process groups can be created and destroyed. A message

label is specified by a context and a corresponding tag. In a point-to-point

communication, it is a communication between pairs of processes. The Message

selectivity is by rank and tag. In Collective communication, it involves all processes in

the scope of the communication specified by the communicator. The collective

communication routines do not take message tag arguments.

 37

The feature of MPI includes six basic functions and 125 extension functions. The

point-to-point communication functions are
�

MPI_SEND
�

MPI_RECV

The collective communication functions are

��MPI_Bcast – sends data from one process to all others.

��MPI_Reduce - combines data from all processes and returning the result to a single

process.

4.2.1.1 Strong Mobility Features

As described above, MPI is good solution for data transportation across

heterogeneous systems. Therefore, MPI successfully satisfies Inter-Agent

Communication and Collective Agent Communication in strong mobility features. On the

other hand, we can use socket API based on TCP/IP as alternatives of MPI. The socket

API is also another good candidate for agent communication method. However, the

performance of socket API is much slower than that of MPI.

Strong Mobility

Features
Requirement MPI Socket API

Support

Support

 Inter-Agent

Communication and

Synchronization

Strongly

Required
Functions:

(MPI_SEND(),

MPI_RECV())

Functions:

(sendto()/recvfrom(),

send()/recv())

Support Support

Collective Agent

Communication
Optional Functions:

(MPI_REDUCE(),

MPI_BCAST())

Functions:

(send()/recv() using

multicast or

broadcast address.

 38

Limitation

Applied only

clustering systems

within small local

networks

Applied all gobal

networks based on

TCP/IP protocol but

performance is much

slower

System Platform
Supported on

Beowulf

Supported on the

systems with TCP/IP

4.2.2 BPROC

BPROC introduces a distributed process ID (PID) space. This allows a node to run

processes which appear in its process tree even though the processes are physically

present on other nodes. The remote processes also appear to be part of the PID space of

the front end node and not the node which they are running on. The node which is

distributing its pid space is called the master and other nodes running processes for the

master are the slaves. Each PID space has exactly one master and zero or more slaves.

Each PID space corresponds to a real PID space on some machine. Therefore, each

machine can be the master of only one PID space. A single machine can be a slave in

more than one PID space.

4.2.2.1 PID Masquerading

The PID masquerading modifications make it possible for a process to appear as

though a process exists in a different PID space. Processes are still part of the single PID

space that we're used to, but the PID related syscalls (getpid, getppid, kill, fork, wait)

have been modified to treat their arguments differently and to give different responses for

processes that have been tagged as masqueraded. PID masquerading also introduces a

user space daemon to control some of the PID related operations normally done by the

kernel. Each daemon will define a new "PID space" and can create new processes in that

space. Operations such as new PID allocation are handled by this daemon. (In the case of

a masqueraded process forking a new masqueraded PID will be needed for the child

process. This request gets sent out to the user space daemon which will forward it to the

 39

master node. The ghost process there will fork and return the child PID it gets back to the

slave on the node. The child's new masqueraded PID is set to that PID.)

The PID related syscalls will only operate on other masqueraded processes that are

in the same PID space (that is they're under control of the same daemon.) Other non-

masqueraded processes on the local system become effectively invisible as a result.

Signals (kill(2)) that cannot be delivered locally are bounced out to the user space

daemon for delivery.

This is used in conjunction with ghosts to make it appear as though a piece of the

master node's PID space has been moved onto the slave node. When creating remote

processes, there are really 2 processes created, a ghost on the master to represent the

remote process and the real process on the slave node. The (masqueraded) process on the

slave gets the same PID as the ghost on the master node. The daemon controlling the

masqueraded process space in forwards requests from the real process back to the master

node. This way any operations the real process performs (fork, kill, wait, etc) will

performed in the context of the master node's process space. Most requests will be

satisfied by the ghost thread.

4.2.2.2 Starting processes

There are two basic ways to start a process in this scheme. The simpler one is the

rexec (remote execute) which takes the same arguments as execve plus a node number.

This inteface also has roughly the same semantics as the execve system call. This doesn't

involve transfering much data, but it does require that all binaries and any libraries they

require be installed on remote nodes.

The other interface which bproc provides is a "move" or "rfork" interface. This

works by saving a process' memory region and recreating it on the remote node. This has

the advantage that it can transport the binary and anything mmap'ed (such as the

dynmaically linked libraries) to the remote node. This could allow a great reduction in the

size of the software required to be installed on a node.

 40

4.2.2.3 C Interface Library

Programs using bproc should include the bproc header file sys/bproc.h and be

linked with -lbproc. This package builds both static and dynamic versions of libbproc.

4.2.2.3.1 System Information

� void bproc_init(void) : This initializes the bproc library. It reads the current machine

state from /var/run/bproc. (This machine state is only available on the master node.)

It also reads an initial node mapping from $HOME/.bprocnodes if it exists.

� int bproc_numnodes(void) : Returns the number of nodes in the system. This is the

number of slave nodes (not including the front end). The nodes are numbered 0

though n-1.

� int bproc_nodeup(int node) : Returns true if node is up.
�

int bproc_nodeaddr(int node, struct sockaddr *s, int size) : Saves the IP address of

node in the structure pointed to by s. Note that bproc_init has to be called on the

master node in order for this information to be available.

4.2.2.3.2 Node mapping

The library allows the user to create a node mapping that sits on top of the real node

numbers. This allows the user to always see the nodes he is using as nodes 0 through n-1

regardless of the physical nodes in use. Mappings are presented as an array of integers.

The number in element zero is the real node number node zero will map on to and so on.

bproc_init() reads an initial node mapping.

��int bproc_set_node_map(int *map, int numnodes) : This sets the node mapping

being used by libbproc. map is a pointer to an array which lists the real node

numbers that node numbers 0 through numnodes should map onto.
�

void bproc_clear_node_map(void) : This clears any node mapping that might be

present. After this call, all node numbers will be treated as physical node numbers.

4.2.2.3.3 Creating processes on remote nodes

Bproc provides a number of mechanisms for creating processes on remote nodes. It

is probably better to think of these mechanisms as moving processes from the front end to

 41

the remote node. The rexec mechanism is like doing a move then exec with lower

overhead. The rfork mechanism is implemented as an ordinary fork on the front end and

then a move to the remote node before the system call returns. Execmove does an exec

and then move before the exec returns to the new process.

Movement to another machine on the system is voluntary and is not transparent.

Once a process has been moved all its open files are lost except for STDOUT and

STDERR. These two are replaced with a single socket. (Their output is combined.) There

is an IO daemon what will forward between the other end of that connection and

whatever the original STDOUT was connected to. No pseudo tty operations are done.

The move is completely visible to the process after it has moved except for process

ID space operations. Process ID space operations include fork(),wait,kill, etc. All file

operations will operate on files local to the node that the process has been moved to.

Memory that was shared on the front end will no longer be shared.

Processes currently cannot move twice. The process movement API is only

provided on the master node.

Bug: Any child processes that a process had before moving will no longer be visible

to it after moving. SIGCHLD's will be delivered when they exit but it will be impossible

to pick up their exits status with wait().
�

int bproc_rexec(int node, char *cmd, char **argv, char **envp) : This call is like

execve in that it replaces the current process with a new one. The new process is

created on node and the local process becomes the ghost representing it. All

arguments are interpreted on the remote machine. The binary and all libraries it

needs must be present on the remote machine. This function returns -1 on failure

and does not return on success.

� int bproc_move(int node, int flags) : This call will move the current process to the

remote node number given by node. The flags argument determines the details of

the memory space move. See the VMADump for details on the flags argument.

Returns 0 on success, -1 on failure.

� int bproc_rfork(int node, int flags) : The semantics of this function are designed to

minic fork() except that the child process created will end up on the node given by

the node argument. What happens behind the scenes is the process forks a child and

 42

that child performs a bproc_move() to move itself to the remote node. By combining

these two operations in a system call, we can prevent zombies and SIGCHLD's in

the case that the fork is successful but the move is not. On success, this function

returns the process ID of the new child process, on failure it returns -1.

� int bproc_execmove(int node, char *cmd, char * *argv, char **envp) : This function

allows migration of ordinary binaries by allowing you to exec a new process and

move the new process before it "wakes up". Returns -1 on failure, does not return on

success.

4.2.2.3.4 VMADump: Dumping and restoring processes

VMADump is a kernel module distributed with bproc which will dump a process's

state to or from a file descriptor. VMADump is short for Virtual Memory Area Dumper.

It will read or write to pipes, sockets, etc. as well as ordinary files. These functions are

used internally by bproc to move processes around. The saved state includes:

� All the processes memory regions. The date for all writable regions is saved. Read-

only regions that are mmap'ed from files (i.e. glibc code) can be stored as file

references to reduce the size of dumps.

� Other information about memory mmap'ed regions like where the bss and stacks

here. This allows stacks to grow and setbrk (malloc) to work after restoring the

memory space.

� The process's registers including FPU state.
�

The process's signal handlers.

The following interface is provided for vmadump in libbproc:
�

int bproc_vmadump(int fd, int flags) : This takes the current process and dumps it to

the file fd. It returns the number of bytes written to fd. When the process is

undumped, this function will return 0. The flags argument determines what memory

regions will have their data dumped and which ones will be stored as file references.

Writable memory regions are never stored as file references.

VMAD_DUMP_LIBS : If given, read only mmaps from files in /lib and /usr/lib

will not be stored as file references.

 43

VMAD_DUMP_EXEC : If given, read only mmaps from the executable file will

not be stored as file references.

VMAD_DUMP_OTHER : If given, other read only mmaps not falling into the

categories above will not be stored as file references.

VMAD_DUMP_ALL : If given, no read only mmaps will be stored as file

references. This is the safest option if in doubt. This is the logical OR of the other flags.
�

int bproc_vmaundump(int fd) : This attempts to undump an image from fd. This

function is not very error tolerant. If something goes wrong half way through

undumping, it will return with a half-undumped process. If successful, the current

process is replaced with the image from the dump. (much like exec)

4.2.2.3.5 C Library Reference

The following shows the C library reference for Bproc.

bproc_access — determine whether a node can be accessed �

bproc_chgrp — change node ownership

bproc_chmod — change the permissions on a node

bproc_chown — change node ownership

bproc_currnode — return the node the calling process is running on

bproc_execmove — move a newly execed process to another node

bproc_masteraddr — return the address of the master node

bproc_move — move the calling process to another node

bproc_nodeaddr — return the address of a node

bproc_nodecachepurgefail — flush file cache failure list

bproc_nodecachepurgeok — flush successful downloads from file cache

bproc_nodechroot — ask a slave daemon to perform a chroot

bproc_nodehalt — ask a slave daemon to halt the machine

bproc_nodeinfo — get status information for single node

bproc_nodelist — get status information for single node

bproc_nodenumber — get the node number corresponding to an address

bproc_nodepwroff — ask a slave daemon to power off the machine

bproc_nodereboot — ask a slave daemon to reboot the machine

 44

bproc_nodesetstatus — set status of a node

bproc_nodestatus — get the status of a move the calling process to another node

bproc_notifier — get BProc notifier file descriptor

bproc_numnodes — get the number of nodes in the system

bproc_pidnode — return the node that a process exists on

bproc_proclist — get status information for single node

bproc_requestfile — get status information for single node

bproc_rfork — fork a child onto remote node

bproc_version — get BProc version information

4.2.2.4 Strong Mobility Features

As described above, BPROC is the solution for golobal process ID and limited

process scheduler and migration that move the process to the remote node at only one

time. Therefore, MPI successfully satisfies Agent Identification and Collective Agent

Communication in strong mobility features. On the other hand, we can use socket API

based on TCP/IP as alternatives of MPI. The socket API is also another good candidate

for agent communication method. However, the performance of socket API is much

slower than that of MPI.

Strong

Mobility

Features

Requirement BPROC

Support Agent

Identification
Required

Functions: (bproc_proclist(), bproc_pidnode())

Limited Support Agent

Migration
Implicit

Processes decide if, when and where they will migrate

Support

Code Required Functions: (bproc_rexec(),bproc_move(),bproc_rfork(),

bproc_execmove())

 45

Support

Data State Required
Functions: (bproc_rexec(),bproc_move(),bproc_rfork(),

bproc_execmove())

Limitation

- Limited Agent Location: Processes decide if, when and

where they will migrate

- System image is not preserved. (Limited Weak Mobility)

- Open files are lost.

System

Platform
 Supported on Beowulf

Others MPI and Bproc can work together

4.2.3 CONDOR

There are several limitations on CONDOR

4.2.3.1 Current Limitations

Although Condor can schedule and run any type of process, Condor does have

some limitations on jobs that it can transparently checkpoint and migrate:
�
�Multi-process jobs are not allowed. This includes system calls such as fork(), exec(),

and system().

� Interprocess communication is not allowed. This includes pipes, semaphores, and

shared memory.

� Network communication must be brief. A job may make network connections using

system calls such as socket(), but a network connection left open for long periods

will delay checkpointing and migration.

� Sending or receiving the SIGUSR2 or SIGTSTP signals is not allowed. Condor

reserves these signals for its own use. Sending or receiving all other signals is

allowed.

 46

� Alarms, timers, and sleeping are not allowed. This includes system calls such as

alarm(), getitimer(), and sleep().

� Multiple kernel-level threads are not allowed. However, multiple user-level threads

are allowed.

� Memory mapped files are not allowed. This includes system calls such as mmap()

and munmap().

� File locks are allowed, but not retained between checkpoints.
�

All files must be opened read-only or write-only. A file opened for both reading and

writing will cause trouble if a job must be rolled back to an old checkpoint image.

For compatibility reasons, a file opened for both reading and writing will result in a

warning but not an error.
�

A fair amount of disk space must be available on the submitting machine for storing

a job's checkpoint images. A checkpoint image is approximately equal to the virtual

memory consumed by a job while it runs. If disk space is short, a special checkpoint

server can be designated for storing all the checkpoint images for a pool.
�

On Digital Unix (OSF/1), HP-UX, and Linux, your job must be statically linked.

Dynamic linking is allowed on all other platforms. (Note: these limitations only

apply to jobs which Condor has been asked to transparently checkpoint. If job check

pointing is not desired, the limitations above do not apply.)

� Secur ity Implications: Condor does a significant amount of work to prevent

security hazards, but loopholes are known to exist. Condor can be instructed to run

user programs only as the UNIX user nobody, a user login which traditionally has

very restricted access. But even with access solely as user nobody, a sufficiently

malicious individual could do such things as fill up /tmp (which is world writable)

and/or gain read access to world readable files. Furthermore, where the security of

machines in the pool is a high concern, only machines where the UNIX user root on

that machine can be trusted should be admitted into the pool. Condor provides the

administrator with IP-based security mechanisms to enforce this.

� Jobs Need to be Re-linked to get Check pointing and Remote System Calls:

Although typically no source code changes are required, Condor requires that the

jobs be re-linked with the Condor libraries to take advantage of check pointing and

 47

remote system calls. This often precludes commercial software binaries from taking

advantage of these services because commercial packages rarely make their object

code available. Condor's other services are still available for these commercial

packages.

4.2.3.2 Condor Daemons

The following list describes all the daemons and programs that could be started

under Condor and what they do:

� condor_master

This daemon is responsible for keeping all the rest of the Condor daemons running

on each machine in your pool.
�

condor_startd

This daemon represents a given resource (namely, a machine capable of running

jobs) to the Condor pool. It advertises certain attributes about that resource that are used

to match it with pending resource requests.
�

condor_starter

This program is the entity that actually spawns the remote Condor job on a given

machine.
�

condor_schedd

This daemon represents resources requests to the Condor pool. Any machine that

you wish to allow users to submit jobs from needs to have a condor_schedd running..

� condor_shadow

This program runs on the machine where a given request was submitted and acts as

the resource manager for the request.

� condor_collector

This daemon is responsible for collecting all the information about the status of a

Condor pool.

� condor_negotiator

This daemon is responsible for all the match-making within the Condor system.

Periodically, the negotiator begins a negotiation cycle, where it queries the collector for

the current state of all the resources in the pool.

 48

� condor_kbdd

This daemon is only needed on Digital Unix and IRIX. On these platforms, the

condor_startd cannot determine console (keyboard or mouse) activity directly from the

system.

� condor_ckpt_server

This is the checkpoint server. It services requests to store and retrieve checkpoint

files.

4.2.3.3 Submitting Different Types of Jobs: Alternative Universes

A Universe in condor defines an execution environment. Condor supports the

following Universes:

� Vanilla

� MPI: The MPI Universe allows parallel program written with MPI to be managed

by Condor

� PVM
�

Globus
�

Scheduler: DAGMan Scheduler
�

Standard:

• Transparent process checkpoint and restart

• Transparent process migration

• Remote system calls

• Configurable file I/O buffering

• Toconvert our program into a standard universe job, we must use

condor_compile to relink it with the condor libraries.

- Example:

% cc main.o –o program

% condor_compile cc main.o –0 program

 49

4.2.3.4 Strong Mobility Features

Strong Mobility Features Requirement CONDOR

Support Code / Data State /

Execution State
Required

Commands: (condor_checkpoint, condor_submit)

Limited Support
Transparent Migration Required

Commands: (condor_reschedule, condor_submit)

Limited Support
Agent Migration Required

Commands: (condor_findhost)

Support
Agent Fault Recovery Required

Commands: (condor_checkpoint, condor_reconfig)

Limited Support
Agent Identification Required

Commands: (condor_q)

Limited Support
Agent Monitor and Control Optional

Commands: (condor_q, condor_status)

Support
Security Required

X.509 Certificates for Authentication

Limitation

- See Section 4.2.3.1 Current Limitations

- Multi-Universe Problem (e.g., need to check if

“MPI” and “check point” can work together

using different universe) – see Section Section

4.2.3.3

- No library interfaces for developer. Limitted

support with command.

System Platform Supported on Beowulf

Others Need to check the real performance of CONDOR

 50

4.2.4 MAUI

Maui is not the right tool to emulate the strong mobility because it is a batch

scheduling in the user level via external commands. The MAUI itself is not a resource

manager but it makes decisions by querying and controlling a resource management

system such as PBS or Loadleveler.

4.2.5 PVFS

The PVFS is a good candidate tool to share the information or perform the file I/O

by multiple processes which can access this file simultaneously and transparently. Also

the PVFS maintains a consistent file name space across the cluster.

The PVFS libraries can be used either directly via the native PVFS calls or

indirectly through the ROMIO MPI-IO interface or the MDBI interface.

4.2.5.1 Direct access via PVFS function calls

All normal UNIX I/O like read() or write() will work fine with PVFS without any

changes. Files created this way will be striped according to the file system defaults set at

compile time. To determine the physical distribution when the file is first created, the

PVFS provides the function pvf s_open() with the parameters as shown below.

pvf s_open(char * pat hname, i nt f l ag, mode_t mode) ;

pvf s_open(char * pat hname, i nt f l ag, mode_t mode, st r uct

pvf s_f i l est at * di st) ;

The pvfs_filestat structure is described below.

st r uct pvf s_f i l est at {
 i nt base; / * The f i r s t i od node t o be used * /
 i nt pcount ; / * The number of i od nodes f or t he f i l e * /
 i nt ss i ze; / * s t r i pe s i ze * /
 i nt sof f ; / * NOT USED * /
 i nt bsi ze; / * NOT USED * /
}

To obtain information on the physical distribution of a file, use pvf s_i oct l () on

an open file descriptor:

pvf s_i oct l (i nt f d, GETMETA, st r uct pvf s_f i l est at * di st) ;

 51

Besides, the PVFS provides multi-dimensional block interface (MDBI) which is a

slightly higher-level view of file data than the native PVFS interface. With the MDBI,

file data is considered as an N dimensional array of records. This array is divided into

``blocks'' of records by specifying the dimensions of the array and the size of the blocks

in each dimension.

There are five basic calls used for accessing files with MDBI:

i nt open_bl k(char * pat h, i nt f l ags, i nt mode) ;
i nt set _bl k(i nt f d, i nt D, i nt rs, i nt ne1, i nt nb1, . . . , i nt nen,
i nt nbb) ;
i nt r ead_bl k(i nt f d, char * buf , i nt index1, . . . , i nt indexn) ;
i nt wr i t e_bl k(i nt f d, char * buf , i nt index1, . . . , i nt indexn) ;
i nt c l ose_bl k(i nt f d) ;

4.2.5.2 Indirect access via ROMIO MPI-IO

The ROMIO MPI-IO interface implements the MPI-2 I/O calls in a portable library. It

allows parallel programmers using MPI to access PVFS files through the MPI-IO interface. The

MPI-IP functions provide basic functions performed on (parallel) Files including File opening,

File closing, File deleting, File resizing, File space-pre-allocating, File size/parameter querying

and File Info setting/getting. The example of functions and their parameter are shown below.

The full detail is available in the MPI-2 (I/O chapter).

• MPI_FILE_OPEN : open the file identified by the file name filename on all

processes in the comm communicator group.

MPI_FILE_OPEN(comm, filename, amode, info, fh)

IN comm communicator (handle)

IN filename name of file to open (string)

IN amode file access mode (integer)

IN info info object (handle)

OUT fh new file handle (handle)

• MPI_FILE_CLOSE : synchronizes file state then closes the file associated

with fh.

MPI_FILE_CLOSE(fh)

INOUT fh file handle (handle)

 52

• MPI_FILE_DELETE : delete the file identified by the file name filename.

MPI_FILE_DELETE(filename, info)

IN filename name of file to delete (string)

IN info info object (handle)

The MPI-IO is able to implement in various styles e.g., Noncontiguous Accesses,

Collective I/O, Nonblocking I/O, Split Collective I/O and Shared File Pointers.

 53

References

[1] Scyld Computing Corporation, “ Scyld Beowulf Clustering for High Performance” ,

white paper, available at http://www.scyld.com/products/wpaper.pdf

[2] Beowulf Software, available at http://www.beowulf.org/software/software.html

[3] MPICH (Argonne National Laboratory's implementation of MPI), available at

http://www-unix.mcs.anl.gov/mpi/mpich/index.html

[4] LAM/MPI (Local Area Multicomputer MPI), available at

http://www.mpi.nd.edu/lam/

[5] Liang Cheng, Ajay Wanchoo, and Ivan Marsic. Hybrid Cluster Computing with

Mobile Objects. Proceedings. The Fourth International Conference/Exhibition on

Volume: 2 , 2000 , Page(s): 909 -914 vol.2. Available at

http://www.caip.rutgers.edu/disciple/Publications/HPCAsia2000.pdf

[6] Holger Pals, Stefan Petri, and Claus Grewe. FANTOMAS Fault Tolerance for

Mobile Agents in Clusters. Available at

http://ipdps.eece.unm.edu/2000/ftpds/18001241.pdf

[7] Sherif A. Elfayoumy and James H. Graham An Agent-based Architecture for

Tuning Parallel and Distributed Applications Performance. 2nd International

Workshop on Cluster-Based Computing (WCBC'2000), Santa Fe, NM, May 2000.

Available at www.crhc.uiuc.edu/~steve/wcbc00/wcbc-00-elg.pdf

[8] Putchong Uthayopas, Sugree Phatanapherom, Thara Angskun, Somsak

Sriprayoonsakul. “SCE : A Fully Integrated Software Tool for Beowulf Cluster

System.” Proceedings of Linux Clusters: the HPC Revolution, National Center for

Supercomputing Applications (NCSA), University of Illinois, Urbana, IL, 2001

June 25-27. Available at http://prg.cpe.ku.ac.th/publications/sce_linuxhpc.pdf

[9] Yanyan Yang, Omer F. Rana, David W. Walker, Christ Georgousopoulos, Roy

Williams. “Mobile Agent on the SARA Digital Library.” Center for Advanced

Computing Research (CACR) Technical Reports in 2000 (CACR-186). Available at

http://www.cacr.caltech.edu/Publications/techpubs/

[10] Montri Sapapipatpong and Putchong Uthayopas. A Prototype Implementation of

Mobile Agent System on SMILE Beowulf Cluster. Proceeding of The 22nd

 54

Electrical Engineering Conference (EECON-22), Bangkok, Thailand, Dec 1999.

Available at http://prg.cpe.ku.ac.th/publications/ and http://prg.cpe.ku.ac.th/~pu/.

[11] MAUI, available at http://www.supercluster.org/documentation/

[12] Thomas Sterling, Beowulf Cluster Computing with Linux, MIT Press, 2002.

MOSIX. Available at http://www.mosix.org

[13] J. Drake. Linux Clusters without the Pain. Available at

http://softwaredev.earthweb.com/sdopen/article/0,,12077_630211,00.html

[14] J. Vernooij. Using Mosix with LTSP. Available at

http://people.nl.linux.org/~jelmer/ltsp-mosix.html

[15] S. McClure and R. Wheeler. HOW LINUX CLUSTERS SOLVE REAL WORLD

PROBLEMS. Proceedings of FREENIX Track: 2000 USENIX Annual Technical

Conference. San Diego, CA, 2000. Available at

http://www.usenix.org/events/usenix2000/freenix/full_papers/mcclure/mcclure.pdf

[16] A. Barak and O. La’adan. The MOSIX Multicomputer Operating System for High

Performance Cluster Computing. Journal of Future Generation Computer Systems,

Vol. 13, No. 4-5, pp. 361-372, March 1998. Available at

http://citeseer.nj.nec.com/barak98mosix.html

[17] Sprite (University of California, Berkeley). Available at

http://www.cs.berkeley.edu/projects/sprite/sprite.papers.html

[18] F. Douglis and J.K. Outerhout. Process Migration in the Sprite Operating System.

In Proceedings of the 7th International Conference on Distributed Computing

Systems, pp. 18-25, September 1987.

[19] F. Douglis and J.K. Ousterhout. Transparent Process Migration: Design

Alternatives and the Sprite Implementation, Software-Practice & Experience,

21(8):757--785, August 1991. Available at

http://citeseer.nj.nec.com/douglis91transparent.html

[20] J.H. Hartman and J.K. Ousterhout. Performance Measurements of a multiprocessor

Sprite Kernel. Available at http://citeseer.nj.nec.com/hartman90performance.html

[21] K. Shirriff. An Implementation of Memory Sharing and File Mapping.

[22] K. Shirriff. Sprite papers. Available at

http://www.cs.berkeley.edu/projects/sprite/sprite.papers.html

 55

[23] M.J.M. Ma, C.L. Wang and F.C.M. Lau. Delta Execution: A preemptive Java

thread migration mechanism. Available at

http://www.csis.hku.hk/~fcmlau/papers/cluster00.pdf

[24] http://parlweb.parl.clemson.edu/pvfs

