IMPLEMENTATION OF AN
AGENT MONITORING SYSTEM
IN A JINI ENVIRONMENT

WITH RESTRICTED USER ACCESS
Marietta A. Gittens
(Dr. Sadanand Srivastava, Dr. James Gil De Lamadrid)
{mgittens, ssrivas, gildelam}@cs.bowiestate.edu
Department Of Computer Science,
Center for Distributed Computing (CERDIC)
Bowie State University, MD, 20715.

Abstract

This paper deals with the implementation of our Agent Monitoring System in a Jini
environment with restricted user access. Since most Jini applications rely heavily on
Remote Method Invocation, our Agent and Group Services were modified to each exhibit
an interface. The Agent interface object possessed the activity method implemented in all
Agent servers, whilst the group interface object had to be modified to implement its
interface. Once this was done the services had to register with reggie, which is a lookup
service. Using the methods in reggie the Jini Lookup Service Browser can be invoked.

AMA Architecture

Our AMA System consists of two main parts: - an Agent Monitoring Agent (AMA) and
an agent-based system. Agents can belong to groups or exist independently. The AMA
consists of the AgentMonitor (our server) and its two associated user interfaces,
amaPage, and AgHistory. Via its three canvases, amaPage shows agent activity, group
hierarchies and agent communication. AgHistory displays the history of the agents on a
timeline. The agent-based system consists of instances of communicating agents, which
may or may not belong to groups. (see Fig.1)

Fig.1 THE AMA STRUCTURE

group leader

User
Interface

AMA AGENT BASED SYSTEM

Fig.2 AGENT REGISTRATION

Agent Info

=
=
(=

port#

When an agent is created, it immediately registers at the AgentMonitor by passing on to
it certain defining characteristics about itself. In return, the AgentMonitor issues a port
number to the agent (Fig.2). Via this backport the server sends a ping message to check
whether the agent is active or not (Fig.4). The AgentMonitor is not only capable of
monitoring agent viability, but can also detect occurrences of inter-agent communication
(Fig.3), and can track the path of a mobile agent as it moves from one host to the other. In
order for each group and its members to relocate to a new host to continue operations
there, a previously executing AgentCatcher must be there to receive them. This causes
the agent to be reinitialized at the AgentMonitor (Fig.5).

Fig.3 MONITORING AGENT COMMUNICATION

Interface

==

communication
agent2

detection

Fig.4 PING ACTIVE AGENTS

active agvent list

User < —
Interface

=5

Fig. S MONITORING MOBILE AGENTS

Host 1

) 4

agentl

voyager

AgentCatcher

agent reinitializes

mercury

J

display

User

The function hierarchy chart below shows the common ancestry of agents and groups.
The divergence occurs depending on whether the application calls Agent.start() or
ComWin.startup(). Agents possess an activity method that is at present empty but can be
made specific depending on the task the user wishes it to carry out. Group leaders
activate their command windows via which they can accept groups of members, which
may include agents or other groups. Groups possess the capability of

* accepting as many members as possible

* deleting members from their association

* communicating messages to one or all of their members

* destroying themselves or any or all of their members

» each accepting leadership of a group that is merging with it

» returning leadership to the former leader of a subgroup by splitting that group away
* moving their members to a new host to continue their operations there.

A file, containing user privileges that restrict interaction with groups, agents and the
monitor itself, has been constructed. When a user attempts to start the AgentMonitor his
access rights are first verified. If he is authorized to use the monitor the application runs.
If he is not the application exits. A similar situation occurs with the execution of group
and agent services.

Fig.6 FUNCTION HIERARCHY CHART FOR THE GROUP CLASS

super

Agent

Agent.init

Agent.start ComWin.startup

Agent.run

group.enter group.delete group.merge group.split group.communicate group.move group.Jestroy

The Jini Environment

Jini is a distributed computing framework that operates under the client-server paradigm.
Clients and servers can communicate in a Jini community using any distributed
computing protocol. The terms - server and service are differentiated in a Jini
environment. A service interface or service is defined as the API that a server presents
to the outside world. A server is recognized as the implementation of a service. In Jini a
well-defined interface is of utmost importance since it is the object that is known and
used by both the client and the server. Although many Jini applications are both clients
and servers in their functionality, nevertheless all Jini services can be considered to be
Jini clients because they use at least one other Jini service (the lookup service). The Jini
framework allows services to locate each other on the network. The distinction between
hardware and software is erased in a Jini environment. Jini is characterized by

» the absence of user intervention when bringing services on-line or offline (except
when initially starting the service).

* Robustness — a result of its leasing and event notification methods. It can adapt to
additions to or deletions from its community at any time.

* Dynamic loading of service implementations when they are needed.

Jini Prerequisites

In order for a developer to adequately utilize all of Jini s capabilities, certain
prerequisites must be in place.

* Java must exist throughout the network since the lookup service runs on Java and
all other services need to be either run directly on a Java VM or proxied to a Java
VM.

* A network must exist. Jini services locate lookup services via the process of
discovery. This process relies heavily on the fact that a network exists which
supports the process of multicasting in its underlying infrastructure. Java VMs all
require the presence of the TCP/IP protocol, which is only available in a
networked environment.

* Devices that run the Java VM must be connected directly to the network. This
requirement allows Jini to benefit from the fact that Java s VM provides a
protocol-neutral interface to the underlying network.

» Participants in a Jini community must be aware of the identity of each other s
service interface in order to locate instances of it on the network, via a lookup
service or registrar.

Jini and RMI

RMI or Remote Method Invocation forms an integral part of Jini. It is very hard to
separate the two. A Jini community benefits most from other Jini services if the
underlying platform or VM upon which it runs supports RMI. Two major reasons for this
is that

» all distributed events in Jini use objects that implement the RMI remote interface.

* Sun s implementation of the lookup service, reggie, gives an object that contains an
embedded RMI reference. In order to receive this object successfully one s
underlying VM must support RMI.

While RMI is generally the most obvious choice by Jini developers they are not at all
limited to its use. If Jini is used in an environment that doesn t support RMI, the
strategies used will require the availability of a proxy Java Virtual Machine. Jini services
must be able to communicate with the Jini lookup service and they will have to do so
through a combination of native code and proxies on the network.

RMI is based on a client-server paradigm. The server provides an implementation of
service methods and runs on a particular host at a particular port. The client seeks these
methods whenever it needs to perform a specific task. A list of the methods that the client
can use, as well as their input parameter types and return value types, constitutes the
remote interface or stub object that accompanies each server. The client invokes these
methods using a remote procedure call (RPC) mechanism, which appears no different
from any local procedure call. The RMI infrastructure, however, packages the parameters

and ships them via the network to the VM (host and port) where the server is running.
These parameters are passed to the appropriate method on the server. The server runs the
invoked method in its VM and the results are again packaged and sent via the RMI
infrastructure back to the waiting client.

Jini technology utilizes this RMI infrastructure to accomplish its distributed events. The
client - an application - needs to accomplish a specific task. In order to accomplish this
task there are servers on the network that the client can call. RMI necessitates that the
client should know where the server is, how to reach the server, and what the server can
do. However Jini sets out with different goals in mind. To accomplish these goals, it adds
services to the RMI infrastructure that RMI does not support.

» It provides a discovery mechanism so that foreknowledge of server location is not
needed by the client. Service discovery is part of the underlying infrastructure.

» Itallows a client to continue its operations independent of the availability or
unavailability of a service during execution by providing the leasing and
notification mechanisms. With RMI, if a service is unreachable on the network,
the client, which was trying to connect to it, fails.

In order for RMI clients to be able to download code from RMI servers, a security
manager must be installed. Since all Jini services are clients of at least one other Jini
service, the lookup service, all Jini services have a security manager installed in them.
By default most Java applications do not have a security manager installed in them.

Jini Architecture
Overview

Within the Jini architecture a lookup service or registrar is placed on the network. There
may be multiple lookup services on one network. Any Jini developer that wishes to place
his service on the network discovers this service and registers with it. The lookup
service provides each new member with a lease. Lease renewal must occur periodically
If the service expects to retain its membership with the lookup service. As the name
implies, lookup services are registrars that clients seek out and peruse in order to find
service objects that can perform certain specific desired tasks on demand.

The Jini lookup service

1. The Jini lookup service keeps a list of all the Jini services that are available on the
network. It holds the registrations of all other services available in the Jini
community. An application that wants to use a Jini service finds the desired service
by looking for the service s registration within the lookup service. A Jini service must
register itself with the Jini lookup service in order for applications to find and hence
be able to use it. Sun s version of a lookup service, is called reggie, Each service that
wishes to register with reggie must possess its service interface in order to
communicate with and invoke methods on reggie.

2. A service can register with the lookup service to be notified when another desired
service has been added to the network. When this notification comes the desired
service can be used. If the desired service becomes disconnected from the network the
original service will also be notified and will be able to adapt itself to its new
environment.

3. The lookup service interface defines all operations that are possible on the lookup
service. Clients use the service by requesting services that implement a particular
interface. When an application wishes to use a registered service in the lookjup
service, it must know that service s service interface. It then asks the lookup service
for all services that implement that particular service interface. The lookup service
returns service objects for all registered services that implement the given interface.

4. A client finds a Jini lookup service through one of the fundamental pieces of Jini — a
process called discovery. For most Jini programming the discovery protocol is hidden
by the Jini APIs. There are two ways in which discovery is done.

* multicast discovery - the client sends out a multicast request of a specified
format. All Jini lookup services that see the request will respond to it. Clients will
discover all lookup services that are within the multicast radius of the network.
The multicast discovery packet will be broadcast on the local network. Routers
that join two networks may or may not route the multicast packet between
networks depending on its TTL (Time To Live) timestamp.

* unicast discovery - The client attempts to connect to a lookup server that is
known to exist at a particular location (host and port number).

5. When a Jini service starts, it discovers all the lookup servers on the network. It
must then register with each using Jini s join protocol. A pure client that wants only
to use services of the Jini community does not participate in the join protocol.

Leasing

When a service registers with the lookup service the lookup service issues it a lease,
which the service must renew periodically. When the service fails to renew its lease the
lookup service removes it from its internal list of registered services. If the lease expires
the service is no longer accessible and the lookup service will automatically unregister
the service. If the service was inaccessible as a result of network failure Jini code keeps
track of the network s state and reregisters services automatically when the network is
fixed.

Notification

This occurs through Jini s distributed event mechanism. Jini extends Java s standard
event mechanism in the Jini Distributed Event Specification, which defines a set of
interfaces and conventions for distributed events. Distributed events are more complex
than local events since they must deal with potential network failures, potential server

failures, and so on. The core API handles part of the complexity and part is handled by
the Jini application s themselves.

Dynamic implementation of Services At Runtime

The server must provide a serializable object that implements the service interface. This
object is loaded into the client, and the client executes methods on the object. A vital
requirement of a Jini community is the ability to automatically download all classes that
it needs through object serialization and dynamic class loading. This is made possible
through RMI. In object serialization all member data within an object are converted to a
stream of bytes, packaged and shipped across the network to the client. This package is
tagged with the codebase of the code definition of the object i.e. with the directions
needed to locate the code definition of the object. This code definition is needed by the
client for the reconstitution of the original object.

AMA Architecture in a Jini Environment

Our Agent Monitoring System was implemented in a Jini environment with restricted
user access. Since most Jini applications rely heavily on Remote Method Invocation, our
Agent and Group Services were modified to each exhibit an interface. The Agent
interface object possessed the activity method implemented in all Agent servers, whilst
the group interface object had to be modified to implement its interface. Once this was
done the services had to register with reggie.

STARTING OUR JINI SERVICE

An httpserver is started In its own Java Virtual Machine (VM),

In order for RMI to function correctly, there has to be a mechanism to deliver the class
files to the client, which may not have these files in its classpath. The standard method is
to use a standard web server and to set the java.rmi.server.codebase property to inform
the client where to obtain the class files. The http server is needed to download classes
that represent the core set of services that come with Jini.

The Remote Method Invocation Daemon (rmid) is Activated

Rmid creates a directory called log in its current directory and restarts any services that
are registered with it. Services that use rmid are activatable services. The command that
runs the activatable service registers itself with rmid and exits. Rmid then spawns a new
VM that runs the service. Activatable services are persistent. If an activatable service
crashes, rmid will restart it. Rmid will run until it is killed. Since Sun s implementation of
the lookup service, reggie, is registered with rmid. Reggie is an activatable service, and
hence is activated by rmid.

Reggie is invoked by rmid

The lookup service provided by Jini is reggie. The command line for reggie is used to
register the service with rmid and to provide rmid with the options it should use to invoke
the VM in which reggie will run. Like all activatable services 2 VMs are involved.

(1) The setup VM which is used to register the service with rmid.
(i1)) The server VM that rmid will start to run the service.

* The policy file which, has sufficient permissions to register the reggie service with
rmid, is the first argument of the command.

* The next command line argument locates the jar file that contains the code for the
reggie service. The class files of the reggie service are bundled as part of this jar file.

* The third argument locates the client side jar file, which is placed on the HTTP server
running on a particular host. This URL parameter is used as the
java.rmi.server.codebase property to tell the client where the class files for reggie can
be obtained. When clients contact reggie they must obtain class files that provide the
implementation of the service.

« To set the security of the Java VM that will eventually run reggie, the 4™ command
line argument is given. This security file must have sufficient permissions for reggie
to run.

* The last parameter is the directory that is used by reggie to store its log files, which
manage the persistence of the lookup service. Reggie reads these log files to recreate
its previous state from the log.

The Jini Lookup Service Browser

The purpose of this Sun Jini service is to seek out and provide information on which

services have registered with a particular lookup service.

* When the lookup service browser is started, if no lookup service is currently running
on the network the browser displays no registrars to select .

* Once reggie is present on the network, the browser displays 1 registrar, not
selected.

* The File menu on the browser is used to specify or restrict which lookup services
we re interested in discovering. A user can select a particular lookup service by
hostname (and optionally by network port).

* The Registrar menu is used to pick the lookup service or registrar to examine.
Selecting a registrar in this menu allows us to examine the services registered with
that registrar.

* The Services menu and Attributes menu are used to refine which services within a
lookup service we want to examine. Selecting an item in this menu implies that we
want to see only services that implement the corresponding interface. Selecting >=1
attribute narrows our view to services that have corresponding attributes.

* The Options Menu is used to specify the display of the Services and Attributes menu.
With this menu, we can specify all the types of Java classes that the Services and

10

Attributes menus support. In the default state services are selected only by their
interface.

Remote Events

The concept of an event is the ability of one object to notify another object when
something has happened. The Jini listener is a Remote interface, which allows events to
be passed between different VMs. A Remote Event Listener object is an RMI stub that
the source calls to deliver objects to the receiver. Listeners must implement the
net.jini.core.event.remoteEventListener interface and the events themselves must inherit
from the net.jinni.core.event.RemoteEvent class.

Future Work

* To treat each method as an atomic transaction process and to put mechanisms in
place that would allow rollback to take place if a method cannot be completed in
its entirety.

* To identify and solve portability issues arising with the use of the application.

* To provide mechanisms that would permit group creator proprietary rights to
certain public instance group methods such as destroy etc.

* To place viewing restrictions on the user interface of the AMA system.

11

