
Ontology Extraction from text documents
by Singular Value Decomposition

ADMI 2001

Research students: Govind Reddy Maddi, gmaddi@cs.bowiestate.edu
 Chakravarthi S Velvadapu, cvelvada@cs.bowiestate.edu

 Faculty Advisers: Sadanand Srivastava, ssrivas@cs.bowiestate.edu
 James Gil de Lamadrid, gildelam@cs.bowiestate.edu

Bowie State University, 14000, Jericho park road, Bowie, MD, 20715.

Abstract:
Due to the abundance of unstructured data available today, it has been interesting to
research for finding an automated way to retrieve information, or to respond to a
structured or an unstructured query. Domain specific information is useful in processing
natural language, information retrieval and systems reasoning. We need more than a
simple list of key words for all but very elementary processing.

It is very important to build document ontology to analyze a large collection of
documents. Ontology of concepts, terms and the relations between concepts is more
useful for complex reasoning. This type of ontology if automatically compiled, the user
will be freed from all the tedious task of construction and also the ontology will be
produced at a greater speed. Basically this project is about constructing a domain
specific ontology, by reading the collection of related text documents, and extracting
ontological information statistically. In particular, this system determines word
frequencies, which are formed into a frequency matrix. Singular Value Decomposition is
performed on the frequency matrix, and the resulting matrices are used to determine
statistical relationships between documents and terms. These relationships are then
used to build an ontological graph. The ontology graph can be viewed and manipulated
with graphical user interface (GUI), or loaded into user code. On the whole our system
provides a procedure of generating richer domain specific knowledge, with minimal user
interaction.

1. Goal
The˚goal˚of˚this project is to construct a system capable of reading a standard text file documents,
performing semantic analysis on those documents and generating a useful ontology for that set of
documents with little human intervention. This process should be automated as much as possible.
Methods used for extracting ontological information might include statistical methods and a small
amount of user feedback. This project is coded in Java language.

2. Introduction
In our context, Ontology , is specification of a conceptualization. That is, ontology is a
description (like a formal specification of a program) of the concepts and relationships that can
exist for an agent or a community of agents. Document Ontology , is extracting concepts from a
set of documents and identifying relationships of these concepts with different individual terms,
i.e. individual words in that particular set of documents.
 Domain specific ontology s are useful in systems involved with artificial reasoning, and
information retrieval. Ontologies give such systems a vocabulary of terms, and concepts relating
one term to another.

 Crafting ontology is a tedious process. In process of relieving the user from this tedium,
we have examined the automation of the process for constructing ontologies. Our system
constructs a domain specific ontology from text documents, presented to it as a training set. The
documents are read, processed, and a graph-structured ontology is produced. This ontological
structure can be viewed and modified with graphical user interface (GUI).

 In the process of achieving this goal, contemporary statistical methods of information
retrieval such as Boolean, extended Boolean and vector space approaches have been studied
[Green grass 1997]. Of all these approaches vector space approach has been found to be the most
efficient method. It describes each document as a set of terms. This set defines the document
space such that each distinct term represents one dimension in that space [Salton, 1989]. Each
document in document space is defined by the weights, or in other words frequencies, of the
terms that represent it.

Another vector space approach called Latent Semantic Indexing (LSI) [Derwester, 1990]
attempts to catch term-term statistical references by replacing the document space with lower-
dimensional concept space. LSI accomplishes this by using Singular Value Decomposition
(SVD), a method of matrix decomposition. The effectiveness of SVD as compared to other
techniques is described in [Harman, 1995].

In our present work we have concentrated on statistical analysis method, as compared to
heuristic and rule based methods because of its simplicity and because it is based on fairly precise
mathematical foundation.

This project describes a system of constructing a domain specific ontology, by reading a
collection of related text documents, and extracting ontological information statistically, which is
result of the procedures Pre-processing, Normalization, LSI by SVD, Graph construction and
Graphical user interface (GUI) construction, which are very important and have been studied in
depth.

 Pre-processing is a process in which we extract the meaningful terms and count their
frequencies while reading the input text file. Here several formatting procedures are performed on
the document text, in order to make sure that the computed statistics are meaningful. These
procedures are concerned with common roots and eliminating the marker words which are
semantically insignificant.

 Normalization is a process in which we calculate the normalized weight of each word
that we have obtained from preprocessing. Here the preprocessed document is analyzed in terms
of correlation of words, the frequency matrix known as Term-Document matrix is produced as
result of the analysis.
 This Term-Document matrix is then decomposed into three matrices like Term Vector
(U), Singular Matrix (S), and Document Vector (V), using Latent Semantic Indexing (LSI) based
on SVD. Then, after minimizing the size of all this matrices, the term matrix, which is one of the
three matrices, is decomposed into vectors of related terms known as concepts. Concept is set of
related terms.

Building document ontology is essentially building concept nodes and term nodes from
the term matrix (U) and the document matrix (V), which we have obtained from SVD. A concept

node represents a concept and contains information about its concept name, terms that belong to
that concept, and their weights in that concept.

In graph construction, concept vectors are used to construct a bipartite graph, which is
used to show the relationship between different terms and concepts, where the concept nodes are
taken on one side and term nodes are taken on the other side.

To let the user easily interact with the system, a graphical user interface (GUI) is built.
The GUI allows the user to easily view and manipulate the ontology. The GUI consists of two
lists, one of which contains the list of concepts and the other contains the list of terms, and a
panel that displays the bipartite graph drawn to show the relationship between terms and concepts
by a line joining them and it also has many other functions.

4. Architecture Of Document Ontology Extractor

Figure 1. DOE Architecture

4.1 Input
The input for this system is set of text documents. The list of text documents, for which the
ontology is to be built, is written to a text file and that text file is the input to our system. New
files to this list can be added by typing directly onto input text file or from the Graphical User
Interface (GUI).

Input (text documents)

Document Ontology Construction

Pre-processing

Normalization

LSI (using SVD)

Graph Construction

GUI

4.2 Tasks to Perform
To accomplish this goal we should perform the following tasks:

• Pre-processing
• Normalization
• Latent Semantic Indexing based on SVD.

4.2.1 Pre-processing
Pre-processing is a process in which we extract meaningful terms and accurately count their
frequencies while reading the input text file. Pre-processing involves the reformatting, or
filtering, of a text document, to facilitate meaningful statistical analysis. In doing the Pre-
processing on a text document the system will follow the following steps:

§ Numbers and punctuation marks standing alone should be cut; for example, "55", "720",
"90", "4", " - "

§ It is necessary to cut punctuation marks at the end of the words; e.g., the program should
not distinguish the words "school" and "school," "theaters" and "theaters," from each
other.

§ The Program should not be sensitive to the case and all the words should be examined as
low-case words; e.g., if the text contains words "school" and "School", the frequency of
the word "school" in the output of the program should be two.

§ It is important to exclude "stop" words - articles, preposition, unions etc. - which cannot
be used as descriptors of any document (words like "and", "the", "when", "though", "for"
etc.). To achieve that goal, we prepare a "stop list" of such "noise" words (now
approximately 250 words) in additional file. The program construct s a hash-table based
on that list so that the current token in input file is compared with the content of this
hash-table.

§ One more aspect of pre-processing is correct counting of the words in specific
grammatical forms (irregular verbs, nouns of Latin origin etc.) We prepared one more
auxiliary file which produced another hash-table to replace derivative forms with original
ones;˚e.g.˚˚ "broke" - "break",˚˚˚ "broken" - "break",˚ "phenomena" - "phenomenon" .By
using this procedure for the text containing words "break" and "broken" the program
gives a frequency of two for the word "break".

§ And finally the last procedure of the pre-processing stage - "stemming". The objective is
to eliminate the variation that arises from the occurrence of different grammatical forms
of the same word (e.g., "president" - "presidential", "toured" - "tour", "worked" -
"workers "etc.).

To illustrate the Pre-processing in short, consider the following text:
 “Of 36 previously broken parts, 16 will probably break again. Rules like this worked before, and
rules like this will probably work again.”

After the Pre-processing the above sample text will be as,
 “previously broken parts will probably break again rules like this worked before rules like will
probably work again.”

Using an article in Washington Post as an input textual file we tested the effectiveness of pre-
processing procedures further. The article is the one In Appendix.

Output for the article in Appendix A, for the words occurring in the above text˚for more than once
after Pre-processing, is as in Table below.˚

3 - opened˚
3 - closed˚
2 - prayer˚
4 - try˚
2 - constructor˚
3 - carry˚
2 - lake˚
2 - emotional˚
3 - relations˚
3 - kind˚
2 - develop˚
2 - associate˚
2 - write˚
5 - los˚
5 - angeles˚
3 - day˚
4 - president˚
9 - clinton˚
3 - invest˚
2 - poorest˚
4 - area˚
2 - country˚
2 - recover˚
2 - dead˚
5 - riots˚
5 - people˚
2 - visit˚
2 - community

2 - watts˚
2 - make
2 - today˚
4 - help˚
2 - disadvantaged˚
2 - skills˚
3 - high˚
2 - jobs˚
2 - new˚
2 - magic˚
2 - johnson˚
2 - star˚
5 - south˚
3 - inner˚
3 - cities˚
2 - movie˚
2 - theater
3 - tour˚
2 - transportation˚
3 - care˚
4 - academy˚
2 - program˚
4 - school˚
2 - black˚
2 - facility˚
2 - students
2 - percent˚
2 - go

2 - conference˚
2 - chief˚
2 - age˚
3 - white˚
2 - house˚
3 - work˚
2 - force˚
2 - say˚
2 - announce˚
2 - initiative˚
2 - partnership˚
2 - watch˚
2 - side˚
3 - take˚
2 - damaged˚
2 - economic˚
2 - see˚
3 - banks˚
2 - loans˚
2 - residents˚
2 - open˚
2 - phoenix˚
2 - producer˚
2 - plant˚
3 - tortilla˚
3 - blessed˚

4.2.2 Normalization:
Normalization is a process in which we calculate the normalized weight of each word that we
have obtained from preprocessing. In Normalization we are primarily concerned with establishing
word correlation. We base this on word frequency. The first step in normalization is then to
determine the number of occurrences of each term in the document, which is obtained from Pre-
processing. We then calculate the weight of each term, by the following formula:

where Wi, k is the weight of ith term in kth document and nk is the total number of terms in
that document. This weight corresponds to term weight in a document. But this term weight
should be normalized for the entire set of documents, not for only one document. This is called as
normalizing the term weight.

In the next step of Normalization, the weights for each individual document are combined
into normalized analysis of the whole collection of documents. To do this we must take into
account the fact that a term may have a large weight simply because the document in which it

Wi,k =

=

kn

j
kfrequencyj

kfrequencyi

1
),(

,

occurs is small, rather than because it occurs frequently throughout the document collection. To
eliminate this problem, the normalized weight of a term is calculated as

NormalizedWeighti, k =

=

kn

j

ki

ki

W

W

1

,

,

2

This process is a fairly standard normalization for document length, as explained by
Greengrass [3].The Normalized output of the words occurring more than twice, in the
tested document of Washington post are shown in Table below.
Frequency - Word - Weight ˚
5˚
5˚
3˚
4˚
9˚
3˚
4˚
5˚
5˚
4˚
3˚
5˚
3˚
3˚
3˚
3˚
4˚
4˚
3˚
4˚
3˚
3˚
3˚
3˚
3˚

˚˚˚ los˚
˚˚˚ angeles˚
˚˚˚ day˚
˚˚˚ president˚
˚˚˚ clinton˚
˚˚˚ invest˚
˚˚˚ area˚
˚˚˚ riots˚
˚˚˚ people˚
˚˚˚ help˚
˚˚˚ high˚
˚˚˚ south˚
˚˚˚ inner˚
˚˚˚ cities˚
˚˚˚ tour˚
˚˚˚ care˚
˚˚˚ academy˚
˚˚˚ school˚
˚˚˚ white˚
˚˚˚ million˚
˚˚˚ work˚
˚˚˚ take˚
˚˚˚ banks˚
˚˚˚ tortilla˚
˚˚˚ blessed˚

˚ 0.17937425˚
˚ 0.17937425˚
˚ 0.107624546˚
˚ 0.1434994˚
˚ 0.32287365˚
˚ 0.107624546˚
˚ 0.1434994˚
˚ 0.17937425˚
˚ 0.17937425˚
˚ 0.1434994˚
˚ 0.107624546˚
˚ 0.17937425˚
˚ 0.107624546˚
˚ 0.107624546˚
˚ 0.107624546˚
˚ 0.107624546˚
˚ 0.1434994˚
˚ 0.1434994˚
˚ 0.107624546˚
˚ 0.1434994˚
˚ 0.107624546˚
˚ 0.107624546˚
˚ 0.107624546˚
˚ 0.107624546˚
˚ 0.107624546

4.2.2.1 Creating Term-Document matrix
At this stage we can represent a textual document as a set of meaningful normalized terms. The
normalized term weights, collectively form the matrix W , where Wi,k = NormalizedWeighti, k.

This matrix is referred to as term-document matrix. A term-document matrix contains terms as
rows and documents as columns.

In this step, we create term-document matrix that describes the occurrence of meaningful
terms in each document of the collection. To create such a matrix, we keep track of different
meaningful terms occurred in different documents. While reading new text document, new terms
are added into matrix as rows, their frequencies are added in the respective columns. While
reading new document the system should check whether these new terms are grammatical forms
of some previous terms (i.e. eliminating stemming words).

The output of this process is a term-document matrix containing distinct, meaningful
terms in the entire collection as rows, and documents in the collection as columns. For a
collection of hundred documents, assume that we obtained two hundred and fifty different
meaningful terms. For this collection, the term-document matrix would be a 250 X 100 matrix.

4.2.3 Latent Semantic Indexing
 At this stage we wish to determine a set of concepts from the term-document matrix, where a
concept is defined as set of related terms. We accomplish this by using a method called Latent
Semantic Indexing (LSI), which primarily involves decomposing the matrix W using Singular
Value Decomposition (SVD).

Latent Semantic indexing is a statistical method that links terms into a useful semantic
structure with out syntactic or semantic natural language analysis and without manual human
intervention. By using this method each document is represented not by terms but by concepts
that are truly statistically independent in a way that terms are not.

Terms cannot be used as descriptors of a document, as it has certain drawbacks such as
the assumption that the terms are independent. But some terms are likely to co-occur in different
documents, which should not be considered as independent terms. LSI concepts are described as
information rich by Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman,

R. et al.[2].
Latent Semantic Indexing uses Singular Value Decomposition (SVD) to accomplish its

goal. LSI is described thoroughly by Berry et al.[1]

4.2.4 Singular Value Decomposition
Singular Value Decomposition is well-known matrix decomposition method. It decomposes the
matrix A, i.e. the m x n term-document matrix, with m terms, and n documents, as A = U*S*VT.

where U is m x r matrix, called the term matrix, V is r x n matrix, called the document
matrix, and S is r x r diagonal matrix containing singular values of A in its diagonal in
descending order. In this decomposition, the singular values _i corresponds to the vector ui, the ith

column of U and vi, the ith row of V. Without loss of any generality we can assume that the
columns of U, the rows of V, and the diagonal values of S have been arranged so that the singular
values are in descending order, moving down the diagonal.
The decomposition of matrix A is as shown in the figure2.

 A U

 S VT

 U
 = x x

 r x r r x n
 m x n m x r

Fig. 2. Singular Value Decomposition and Latent Semantic Indexing
In LSI we form a new matrix As = Us*Ss*VsT

Where As is derived from A by removing all but the largest s singular values, Us is derived from
U be removing all but the s columns corresponding to the remaining singular values, and Vs is
derived from V by removing all but the s corresponding rows, where s <= r. As discussed by
Nicholos and Dahlberg[5], and Derwester et al.[2], As is an approximation of A, with increasing

ui

 Us Vi

 VS
_i S

S

accuracy as s approaches r. in our approach to LSI, we remove all singular values from A which
fall below a threshold percentage of the largest singular value, _1.

The matrix Us is an m x s matrix representing correlations between terms in the document
collection. Each column of this matrix, ui, is a vector, which we consider to represent a concept.
The elements of ui, is a vector, which we consider to represent a concept. The elements of ui, give
the correlation of terms to the concept. The frequency of occurrence in the documents is
represented by the value _i.

Detailed information about Singular Value Decomposition can be obtained from SVD-
package Berry[1] and Spotting Topics with the SVD, Charles Nicholas and Randall Dahlberg et
al.[5].

5. Constructing Document Ontology
Constructing document ontology is essentially building concept nodes and term nodes from term
matrix (U) and document matrix (V), which we have obtained from SVD.

A concept node represents a concept and contains information about its concept name,
terms that belong to that concept, and their weights in that concept. The name of a concept is
generated automatically and is a hyphenated string of the five most frequent terms in that concept.
Each column in document matrix (U) corresponds to a concept node.

A term node represents a term and contains information about its term name, concept that
it belongs to, and its weight in different concepts. The name of a term is generated automatically
and is simply the term itself. Each row in document matrix (U) corresponds to a term node.

6. Graph Construction:
Our ontology is a bipartite graph. We have two node types: concept nodes, and term nodes.
Bipartite graph is used to show the relationship between different terms and concepts. In graph
construction, concept nodes are taken on one side and term nodes are taken on the other side.
Concept nodes are connected to term nodes, but are not directly connected to other concept
nodes. Term nodes are connected to other term nodes, only by being connected to a common
concept node. An example is shown in Fig.3.
 Concepts Terms

Fig. 3. Example, bipartite ontology graph.

Aircraft parts

Automobile parts

 wing

 fuel

 wheels

 tail

 engine

The ontology graph is constructed from the matrix U and a list of term names. From the vector ui

we eliminate low correlation terms, by zeroing out elements in ui, which fall below a certain
threshold percentage of the highest correlated term in ui. As an example if ui = [0.4, 0.9, 0.7, 0.3]
and the threshold is 50%, we would zero out all elements not within 50% of 0.9, resulting vector
will be [0.0, 0.9, 0.7, 0.0]. This process is designed to eliminate terms that are, only weakly
associated with the concept.

The resulting modified ui vector becomes the template for the construction of a concept
node. The concept node is connected to all terms with non-zero elements in the modified ui

vector, and term nodes are constructed only for terms, which are connected to some concept node.
All nodes are given names. Term nodes are simply named using the term name. Concept

nodes are constructed automatically. Currently we generate a concept name consisting of a
hyphenated string of the five most highly correlated terms in the concept vector. Since this does
not produce excessively intuitive concept names, the user should have the ability to modify the
concept name, to a more meaningful name, using the graphical user interface (GUI).

7. Ontology GUI:
The ontology GUI allows the user to easily examine and manipulate the ontology. The GUI
contains different components like the bipartite graph display, the concept list, the term list, the
current documents list, and also it has file, update and modify menus, which allows the user for
doing different kind of things which are explained later in detail.

The graph displays a graphical representation of a bipartite graph to the user. Nodes
arranged in two columns: the concept node column, and term node column. Connections between
columns are shown as connecting lines. A GUI is as shown in Fig4.

Fig. 4. Ontology GUI screen layout

Because of the potentially large size of the graph, a display of all connections would be
too busy. While our system does allow the user to display all connections, the user can choose to
display only a selected subset of edges. The user specifies this subset by selecting particular
concepts and terms from the concept list and term list, respectively.

The GUI then displays only edges connected to the selected concepts and terms. This is
shown in GUI in Fig.5

Fig.5. GUI. Displaying only the selected terms and concepts.
7.1 Different Menus in Ontology GUI
The different menus in Ontology GUI are the File menu, Update menu, and Modify menu; these
menus are for doing different kind of operations.

7.1.1 File Operations menu:
As we know building ontology is a time consuming and expensive procedure, because it is
involved with lot of mathematical computations. For avoiding all this overhead, when the user
builds the same ontology over and over, the GUI lets the user save his work for future reference
with some file operations such as New, Open, save, saveAs, Close and Exit. Each of the file
operations is briefly described below.
New — It opens a new blank fresh ontology.
Open — It opens a previous ontology, which was already saved.
Save — It saves the changes made in already saved ontology, or saves a new built ontology for
future references.
SaveAs — It saves the present ontology with any name for future references.
Close — It closes the present ontology.
Exit — It exits the user from the system.
 The ontology files are saved with an extension .ont . The information such as names of the files
in ontology, concept nodes and term nodes are saved in .ont file. Ontology file is compressed
while saving to save the disk space. File operations menu in GUI is shown in figure 6.

Fig. 6. Ontology GUI showing the File operations menu

7.1.2 Ontology Updates menu:
In the ontology Updates menu the users can add or delete documents to/from the present ontology
and also the user can do different changes like ChangeSVDthreshold, and ChangeConcthreshold.

The user can change SVD threshold or concept threshold. SVD threshold controls s
largest singular values that will be selected from S. the default value is 50% i.e. only those
singular values, that are greater than 50% of the highest singular value, are selected. The user can
change this default value. Concept threshold controls the number of terms related to a concept
based upon the term weight. The default value is 50% i.e. only those terms, whose weight is
greater than the 50% of the highest term weight in that concept, are selected. The user can change
this default value.

The Document ontology may already exist for a collection of documents and at some
time later the user may want to add some more documents to that existing ontology. To support
all these operations, the Ontology Update menu in GUI has the following items.

Add — This command adds a new document to the ontology. The user has two options of adding
new document viz. default build method and Fold-In method. The user can choose not to build
right away and some time later can build ontology using default method or fold-In method from
Update menu. This method throws an error message if the user tries to add a document that is
already present in the collection.
To add a new document the user should,

• Click on Add menu item from Update menu
• The name of the file to be added should be selected from file chooser popup menu, which

appears after clicking on Add menu item

• The build method type should be selected i.e. default build or fold-In build. The user can
choose not to build right away. In this case, the file name is saved in a temporary file and
the user can add these files in future by using default build or fold-In build.

Delete — This command deletes a document from ontology. Throws an error message if the user
tries to delete a document that is not present in the ontology.
To delete a document from the ontology, the user should

• Click on Delete menu item from Update menu
• The name of the file to be deleted should be selected from file chooser popup menu,

which appears after clicking on Delete menu item
• The user should select whether to build right away or not. If he/she chooses yes , the file

will be deleted and GUI will be updated otherwise the file won t be deleted and GUI will
remain unchanged.

ChangeSVDThreshold — This command changes the default value of SVD threshold and the
user should choose between building right away with new threshold value and ignoring the
change in threshold value.

ChangeConcThreshold — This command changes the default value of concept threshold and the
user should choose between building right away with new threshold value and ignoring the
change in threshold value.

DefaultBuild — This command builds a new ontology for the collection of files that are written in
the input text file. The ontology Update menu in GUI is shown in figure 7.

Figure 7 GUI, showing Ontology Update menu

7.1.3 Ontology Modifications:
The concept name is generated automatically and is a hyphenated string of the five highest
frequent terms in that concept. The user may want to change this name, as the new name may
give more meaning to that concept. The user may also want to delete a term from the present
ontology. The user may also think that the Ontology would have been better without the last
modification. To support these operations, Ontology Modifications menu has the following items
Rename — This command renames a selected concept
DelTerm — This command deletes a selected term
Undo — This command undoes the last modification and returns the system to the previous
state

The modifications that can be undone are adding a document, deleting a document,
changing SVDThreshold, changing ConcThreshold, renaming a concept and deleting a term. The
modification menu item in GUI is shown in figure 8.

 Figure 8 GUI, showing the modify menu

8. Future Directions
Making several improvements to our system would make it versatile. We are currently working
on facilitating document based updates, as described by Berry et al.[1], which are Fold-In and
SVD update methods and also we are trying to concentrate on developing the relations between
the concepts.

10. Conclusions
Here, until now we have presented a system of Ontology Extraction from text documents using
singular value decomposition, which constructs a domain ontology graph from a collection of
text-based documents. The method used in this construction is statistical. It uses simple well-
known matrix decomposition, and produces results whose validity is supported theoretically. Our
system also allows the easy manipulation of the ontology. A system such as ours, which allows
rapid construction of domain ontologies for use in systems requiring domain expertise, is a
significant contribution.

11. Acknowledgements
This is a Bowie State University project in accomplice with University of Maryland, Baltimore
County, and the National Security Agency, who are the sponsors for this project, to whom we are
grateful. We sincerely thank our mentors Dr.Sadanand Srivastava, Dr.James Gil de Lamadrid for
their valuable support.

REFERENCES
1. Berry, M. W., Dumais, S. T., O Brein, G. W. (December, 1995). Using linear algebra

intelligent information retrieval.
2. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman, R. (1990).

Indexing by latent semantic analysis.
3. Greengrass, E. (February 1997). Information retrieval: an overview.
4 . Golub, G. H., Reinsch, C. (1969). Singular value decomposition and least squares

solutions. Hand book for Automatic Computation, Springer-Varlag, New York.
5 . Nicholos, C., Dahlberg, R. (March 1998). Spotting topics with singular value

decomposition, principles of Digital Document Processing, FIARO, St. Malo.
6. Berry,M.W., Do,T., O’Brien, Krishna,V., Varadhan,S., SVDPACKC: Version 1.0 User’s

Guide, Tech.Report CS-93-194, University of Tennessee, Knoxville, TN, October 1993.
7. Golub,G., Reinsch C., Singular Value Decomposition and Least Squares Solutions, in

Handbook for Automatic Computation II, Linear Algebra., Springer-Verlag, New York,
1971.

8. Golub,G., Kahan.,W., Calculating the Singular Values and Pseudoinverse of the Matrix,
SIAM Journal of Numerical Analysis, 2(3), pp.205-224, 1965;

9 . Dr.Sadanand Srivastava, Dr.James Gil de Lamadrid, Yuriy Karakshyan, Document
Ontology Extractor, CADIP 00

10. Dr.Sadanand Srivastava, Dr.James Gil de Lamadrid, Extracting an ontology from a
document using singular value decomposition.

11. Golub,G., Luk,F., Overton,M., A Block Lanczos Method for Computingthe Singular
Values and Corresponding Singular Vectors of a Matrix, ACM Transactions on
Mathematical Software, 7(2), pp.149-169, 1981.

12. Chakravarthi S Velvadapu, Document Ontology Extractor, Applied research in Computer
science, Fall-2001.

Appendix:
LOS ANGELES (AP) - For three days, President Clinton has stressed the nee
areas of the country. But here, on economically deprived turf that is stil
riots, he is arguing for investing in the poorest people themselves.
The president was visiting the community of Watts, scarred by riots nearly
today for private firms to help disadvantaged young people gain the skills
new millennium.

Among those lined up to accompany Clinton was Magic Johnson, the form
star who has revitalized South Central L.A. and other inner cities with mul
touring the Transportation Career Academy Program within Alain Leroy Locke
first black Rhodes scholar. The facility helps prepare students for caree
from urban planning to architecture. Since 1994, 1,800 students have parti
percent who graduate go on to college.

Later, Clinton was going to nearby Anaheim for the annual conference
Foundation - where chief executives were huddling to discuss ways to
disadvantaged youth, especially those ages 16 to 24. The White House estima
that age group are out of school, and 4 million of them lack a high school d

"They have to pay attention to and care about the development of the
White House chief of staff Maria Echaveste. "They can’t be competitive, th
don’t have a work force that is skilled and that is trained." At the confer
million initiative to help create "information academies" within inner city
partnership between the Department of Labor and companies such as AT&T, L
Cisco Systems.

That announcement closes out Clinton’s tour, but he will remain in Lo
to watch the U.S. women’s soccer team compete for the World Cup.
Today’s visit to Los Angeles’ south side takes Clinton back to an area he
candidate in May 1992, just days after riots in the wake of police acquitta
King left 55 people dead and 720 buildings destroyed or damaged by fire.

Part of the complaint then - as it was in 1965, when 34 people died i
for better access to jobs and social investment to eliminate the economic
president will see a changed South L.A. After the 1992 riots, banks and f
have made millions of dollars in loans and grants to local businesses, and
rebuilt. And while residents welcome the government’s help, there is a thr
self-reliance.

The Baldwin Hills Crenshaw Plaza mall, boosted by a Magic Johnson
proximity to affluent black neighborhoods, is booming with an occupancy ra
other areas, retailers have opened new stores. Three banks, Washington Mutua
Fargo and Hawthorne Savings, partnered with Operation Hope to open banking
can apply for loans and take classes on managing their finances.

The president flew to Los Angeles from Phoenix, where he toured the
successful food producer, to highlight the needs of the Latino community
strolled through the plant with owner Carmen Abril Lopez and watched as t
past him on conveyor belts. While workers in white shirts and baseball ca
Clinton took a tortilla in his hands and inspected it, marveling at the fa
840,000 tortillas each day.

"Our country has been really blessed by these good economic times," C
as blessed as America has been, not every American has been blessed by this
is drive down the streets of South Phoenix to see that."

