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Abstract

Using inductive learning techniques to construct explanatory models for large, high-dimensional
data sets is a useful way to discover useful information. However, these models can be diffi-
cult for users to understand. We have developed a set of visualization methods that enable
a user to evaluate the quality of learned models, to compare alternative models, and identify
ways in which a model might be improved.

We describe the visualization techniques we have explored, including methods for high-
dimensional data space projection, variable/class correlation, instance mapping, and model
sampling. We show the results of applying these techniques to a model built from a bench-

mark data set of census data.

1 Introduction

Discovering useful information in large, high-dimensional data spaces is a challenging prob-
lem. Using inductive learning techniques to construct explanatory models has proven to
be a useful approach for solving this problem. However, these models can be difficult to
interpret and evaluate. We have developed a set of visualization methods with the goal of
enabling a user to evaluate the quality of learned models and to identify ways in which a

model might be improved.



In this paper, we describe our exploration of a range of visualization techniques to
support this goal, and show that these techniques yielded insights into the nature and
quality of the models. The key problems that the work addresses are (1) projecting a
high-dimensional data space into a 3D display space; (2) sampling from the data space to
support this projection; and (3) visualizing model characteristics of interest in the display

space.

2 Induced Models

A model is a description of how the world is expected to behave. Typically a model
describes the aspects of the world that are relevant to a specific task: e.g., diagnosing
a disease, predicting credit risks, or classifying documents by topic area. Here we focus
on classification tasks, which have the form “Given an object description, classify it into
one of £ classes.” Classification methods can be used for both prediction and diagnosis
(e.g., “Given an applicant’s characteristics, predict whether they will default on a loan,”
or “Given a patient’s symptoms, determine what disease is affecting them”). Probabilistic
classification methods give the probability of class membership, which is particularly useful
in domains containing uncertainty, noisy data, or incomplete object descriptions.

The problem of accurately predicting class membership from available information is a
key challenge of knowledge discovery. A wide variety of methods have been developed by
machine learning and data mining researchers to solve this problem, ranging from decision-
tree learning algorithms to nearest-neighbor techniques to Bayesian learning methods.

In classification problems, one of the variables is a distinguished class variable; we refer
to the other variables as input variables. (The class variable can be thought of as the

dependent variable; the input variables, as the independent variables.) The data space is



the n-dimensional space defined by the n input variables. In a classification task, the goal
is to derive the class probabilities, i.e., the marginal probabilities that an instance belongs
to each class, given values for some (or all) of the input variables.

The visualization techniques we have developed are applicable to any learning methods
whose output makes predictions that can be interpreted as probabilities, such as probabilis-
tic decision trees or Bayesian networks. In the examples given in this paper, we used the
ADULT data set from the UCI Machine Learning Repository [UCI 1999], which is derived
from U.S. Census data, to construct classification models. We applied Tree-Augmented
Naive Bayes (TAN) [Friedman and Goldszmidt 1996], a Bayesian network learning system
that is tailored for classification, to construct the models. Data instances contain fourteen
variables (six continuous and eight nominal) and a binary class label indicating income
level (> 50K (higher-income) or <= 50K (lower-income)). Input variables include age, sex,
race, education, occupation, hours worked per week, native country, type of employer, mar-
ital status, and household type. The data set has approximately 30,000 training instances
and 15,000 test instances. Using a subset of eight of the input variables, we used TAN to

construct (from the training data) a model to predict income level.

2.1 Model Characteristics

The visualization techniques are designed to support model analysis by clearly display-
ing important characteristics of the model, highlighting potential flaws in the model, and
enabling comparison of alternative models.

We have identified a set of model characteristics—properties of a model that may be
visualized in order to understand and analyze its behavior. Identifying projection and visu-
alization techniques that enable the user to understand and interpret these characteristics

is a key aspect of our research. Some of the characteristics we have explored are:



Class probability: For a given point in the data space, we are interested in knowing
the probability that it belongs to the class. For some model classes (non-probabilistic
decision trees and associative rules), this probability will be given as zero or one; for

probabilistic models, it will take on continuous values between zero and one.

Decision boundary: In making predictions, the model needs to be interpreted.
For example, for using a Bayes net or probabilistic decision tree to solve a binary
classification problem, we might use the decision rule that if the class probability is
less than 25%, it is assumed not to be a member of a class; if greater than 75%, it is a
member; and otherwise, the system gives a “not sure” answer. For a non-probabilistic
decision tree, these boundaries will be very sharp. We would like to know where these
decision boundaries fall, and in the case of probabilistic models, how varying the

thresholds can affect the behavior of the classifier.

Misclassifications: In addition to knowing the overall prediction accuracy, we would
like to understand which data points are misclassified. In addition, we would like to
be able to assess the distribution of misclassification types (e.g., false positives vs.

false negatives).

Meta-attributes: There are characteristics of the model that are not directly re-
flected in the class predictions. In particular, we are interested in understanding
the distribution and density of the training data used to build the model and the

confidence assigned to each estimate.

2.2 Model Analysis

A number of measurements have been developed by machine learning and statistics re-

searchers to assess model performance. The most commonly used are classification accu-



racy, confusion matrices, and receiver operating characteristic (ROC) curves. By providing
a visual representation of the model characteristics discussed previously, our visualization
methods add depth to a user’s understanding of these measurements.

In most machine learning research, model evaluation focuses on a single metric, such as
classification accuracy. Classification accuracy is simply a single number that indicates the
percentage of correctly classified instances in a test set. By showing the number of instances
and their class labels against the background of the predicted probability distribution, the
user can gain a visual understanding of the number and types of misclassifications.

A confusion matriz is often used to show the types of misclassifications made by a
model. The confusion matrix is a two-dimensional table that indicates actual class label
along one dimension and predicted class label along the other dimension. Each matrix
entry has a number indicating how many instances with the corresponding actual class
label were predicted by the model to have the corresponding predicted class label. Entries
along the diagonal correspond to correctly classified instances. For a binary class, there
are two off-diagonal entries, corresponding to false positives (negative instances with a
predicted positive label) and false negatives (positive instances with a predicted negative
label). These matrices are useful but often hard to understand, and do not tell the user
which instances (i.e., which input attribute values) are being misclassified. The visual
representation allows the user to see clusters of each type of misclassification. By querying
the visualization, these clusters can be interpreted as regions in the data space.

ROC curves are used to assess the performance of the model with respect to varying
misclassification costs. By changing the prediction threshold, any given model can be biased
towards making more false positive predictions (lowering the threshold) or towards making

more false negative predictions (raising the threshold). The ROC curves plots the false



positive rate against the false negative rate. By showing the probability distribution as
a graded color background, and the instance classifications against this background, our
approach gives the user a visual interpretation of the information conveyed by the ROC

curve.

3 Data Space Projection

The data space for a model is in general a high-dimensional space, with one dimension
for each variable. For instance, a model predicting the probability of a person earning a
high income in the ADULT domain, which includes fourteen demographic and occupational
characteristics, would inhabit a 14D data space. Each possible combination of variable val-
ues (i.e., each person of interest) corresponds to a point in this 14D space. Variable values,
and therefore data space coordinates, may be continuous, ordinal, or nominal. Display
spaces supported by most scientific visualization methods are two- or three-dimensional
with continuous-valued coordinates. In order for a data space or an object inhabiting a
high-dimensional data space to be visualized, it may first need to be transformed into a
display space that is better suited for visualization. Information visualization applications,
which are typically characterized by non-spatial, high-dimensional, non-continuous data
spaces, generally combine some transformation of the data to a spatial display space with
the application of representation techniques to transformed data points.

To support model analysis, the display space should represent the data space in such
a way that the behavior of the model can be clearly visualized, and that the properties or
regions of the data space that are important for model performance are preserved. We have
identified five characteristics that an ideal projection method for model analysis should

exhibit: region preservation, accuracy of representation, efficiency of representation, model



comparison, and model smoothness.

Region preservation means that homogeneous regions in the data space should corre-
spond to contiguous regions in the display space. In other words, points that are close to
each other with respect to the model in the data space should map to points that are close
to each other in the display space. Another way of saying this is that data points that are
treated as similar by the model should be close to each other in the display space.

Any projection in which there are fewer locations than the size of the data space will have
multiple data points mapping to locations in the display space. A projection is considered
to be accurate, with respect to a model, if the set of points that map to a given location are
“close” to each other (again with respect to the model) in the data space. This criterion
is similar to region preservation: in the latter, we want nearby points in the data space to
correspond to nearby points in the display space. An accurate representation has nearly
the inverse property: collocated points in the display space should map to nearby points in
the data space.

Efficiency of representation means that the display space should be utilized to represent
regions of the data space that are important to the behavior of the model. For example, if
a large part of the data space is treated as identical by the model, this region should map
to a small region of the display space. (An extreme case of this would be a classification
model for predicting ectopic pregnancies, in which maleness is an automatic disqualifier.
The display space in this case should allocate little if any space to males.)

The ideal projection should support model comparison. There is a tradeoff here: a
completely model-independent projection will facilitate model comparison, since the display
space will not be biased towards either model. However, a model-independent projection

is not likely to exhibit other desirable characteristics, such as region preservation. On the



other hand, using model-dependent projections can make it model comparison difficult: if
different display spaces are used (each being dependent on the model being displayed), the
correspondence between the visualizations can be unclear. If a common display space is
used, and is built from one model or the other, the resulting comparison can be biased
towards that model.

Finally, model smoothness is an essential characteristic of a projection. This simply
means that the model characteristics to be visualized (probability distribution, decision
boundary, misclassifications, and meta-attributes) should be smooth and easily visible in
the display space.

We will discuss three types of methods for performing dimension reduction: feature
selection, principal components analysis (PCA), and similarity clustering. Each method is
presented primarily in 2D in order to show the distribution of variable values across the
space as clearly as possible in a static view. Doing dimension reduction to 3D using feature
selection and PCA is completely analagous and is, in fact, what we actually use in practice.

3D similarity clustering is theoretically straight-forward, but we have not implemented it.

3.1 Feature Selection

Most visual data mining tools for high-dimensional data allow arbitrary data variables to
be used as the coordinates in the display space. This method, called feature selection, can
sometimes provide useful insights into the structure of the model in the data space. Using
feature selection on data instances, each instance is plotted at the location determined
by two (or three) variable values. For a 2D display space, the plane of the display space
corresponds to an axis-aligned plane through the hD data space, with all points orthogonally
projected onto the plane. Such views are most useful when the user has immediate and

intuitive control over both variable selection and 3D viewpoint.



Figure 1 shows a 2D display space created using feature selection. The selected features,
education and hours worked, are shown with colored contour lines. Each location in this
display space represents a high dimensional subspace where education and hours values are
fixed but other values can vary over their entire range. Feature selection has the advantages
that it is simple to perform and intuitive to understand.

Unfortunately, such a straightforward display frequently does not adequately capture
the complex structure of the model in the high-dimensional data space, since instances
with very different characteristics along other dimensions are now aggregated. This can
result in a projection which provides neither accuracy, due to the collapsing of large data
space hyper-regions to a single location, nor model smoothness, due to unacceptably high
variability of predictions among data space locations mapping to the same display space

location.

3.2 Principal Components Analysis

Principal Components Analysis (PCA) can be used to create a projection which captures
more of the variability within the data space. The first principal component is a linear
combination of data variable values accounting for the greatest variability. The second
principal component is another linear combination of data variable values, orthogonal in
the data space to the first combination and accounting for greatest amount of remaining
variability. This continues for a total number of principal components equal to the original
number of data variables. For a 2D display space, the plane of the display space corresponds
to a plane through the hD data space, with all points orthogonally projected onto the plane.
Unlike with feature selection, this plane need not be axis-aligned.

Locations in the data space map to display space coordinates given by their first two

(or three) principal components. Figure 2 shows the display space defined by projection by



principal components of a sampled model. Colored contour lines of education and hours
worked show something of the correspondence between the data and display spaces. These
contours generally show increasing education level moving toward the lower right corner
and increasing hours worked moving toward the lower left. If it were possible to analytically
determine the data variable value for a location in the display space, these lines of constant
data value would be expected to be generally straight, though not axis aligned as they
were in feature selection. Unfortunatly, such an analytic determination is not possible, so
we have averaged values over the model samples mapped to a location. This approach is
sensitive to the distribution of samples, as well as to large unoccupied regions of the space.

For most data sets, the PCA projection has the advantage of showing more of the
variability of the data space than does feature selection, even when the most predictive
features were selected. Unfortunately, the dimensions of the display space no longer have an
intuitive meaning. Additionally, PCA projections tend not to be efficient, in that important
regions of the data space tend to map to the middle of the display space, leaving the corners

unoccupied.

3.3 Similarity Clustering

In both feature selection and principal components projection, the requirement that a 2D
display space correspond to a plane in the hD data space (and a 3D display space correspond
to a 3D subvolume) limits the degree to which the display space can span the data space.
A planar display surface necessarily will pass very far from some regions of the data space.
These regions will not be well represented in the display space, grouping with distant regions
to violate projection accuracy.

In order to achieve a display space which better represents the high-dimensional struc-

ture of the data space, we also used a set of projection techniques based on self-organizing



maps (SOM) [Kohonen 1995]. In a SOM, neighboring locations in the display space corre-
spond to neighboring locations in the data space, unlike feature selection, in which points
that are far apart in the data space can map to the same location in the display space.

The SOM is initialized with a random codebook vector at each node, then the map is
trained with a set of instances. For each map training instance, the map is searched for
the most similar codebook vector, and the neighborhood around the matching codebook
vector is altered to be more like the training instance. After the training cycle, neighboring
locations in the SOM correspond to similar instances (i.e., instances that are close to each
other in the data space). We are currently performing data space projection using a public-
domain package that implements self organizing maps [Kohonen et al. 1996].

Dimension reduction by similarity clustering produces display space locations with
greater region preservation and representation accuracy than the maps produced by vari-
able selection. Nearby locations in the data space map to nearby locations in the display
space, and each data space location corresponds to a contiguous region of the data space.

The dimensions of a display space created through similarity clustering have a highly
non-linear relationship to the dimensions of the data space. Figure 3 shows how two data
space dimensions have been warped by the projection process. The blue lines show contours
of constant education, with more vivid blues corresponding to higher education levels. The
red and pink lines show contours of constant number of weekly hours worked, with more
vivid reds corresponding to more hours. In this display space, highly educated people tend
to group to the right, while people who work many hours tend to group to the top. These

curving lines correspond to hyperplanes in the high-dimensional data space.



3.4 Data Space Sampling Schemes

With variable selection, each location in the display space represents a subspace of the
data space in which each of the unrepresented dimensions span their entire range. For
instance, in the projection from eight dimensions to three, each location in the resulting
display represents the 5D subspace in which the three represented dimensions are held to
their values in the display space, while the five other dimensions are allowed to vary. Each
location of the data space therefore corresponds to a high-dimensional volume sampling
from the data space. In this manner, whole dimensions of the data space are projected
together.

Standard PCA and Similarity clustering methods project individual data space locations
(i.e., the instances in the map training set), rather than whole dimensions. In these cases,
we use a set of instances to derive a projection which can then be used for any other
location in the data space. Specifically, the data instances used to derive a projection are
point samples from the data space. This gives rise to the issue of which locations in the
data space should be projected—that is, how should samples be created. The selection of
sample points can greatly affect the resulting display space. Once a projection has been
derived using a set of sample points other points can be projected into that display space
or model predictions can be computed for locations in the display space.

We have explored three basic approaches for choosing these sample points: using an
instance set as the sample set, taking a sample from the model to be visualized, and using

spanning vectors of the data space as the sample.



3.4.1 Training Data

In most information visualization applications, data sets (rather than models constructed
from them) are displayed. The data sets are made up of discrete observations. In such
applications, each observation is generally projected and displayed. Similarly, we can con-
struct a display space for the model directly from the test or training instance set used to
learn the model, applying the model to compute probabilities for the instance set before
projection. For instance, the set of training instances could be used as the map training
instances to build a SOM. The resulting display space would primarily contain regions of
the data space which were occupied by training instances. If the training set is considered
to be a representative sampling of the underlying population, such a map might be the best
use of available space. Using this method, a unique map is produced for each training set
and model. The effects of sample set on the derivation of PCA projection parameters are
more subtle, but still influence the region of the data space traversed by the display space

plane.

3.4.2 Model-Generated Sample

Alternatively, the locations used to build the display space can be sampled directly from
the probability distribution specified by a model. With this method, the instance set used
to derive the projection parameters will approximate the distribution of instances in the
training set used to build the model, but need not have the same number of instances. As
with the last case, the display space is specific to that model, facilitating understanding of
the model characteristics of a particular model. However, comparing two models is difficult,

since there is no particular relationship between locations in the two display spaces.



3.4.3 Data Space Spanning Vectors

A display space that is created from an instance set is naturally biased toward variable value
combinations which appear in the instance set. Therefore, regions of the data space that are
not represented or are sparsely represented by training instances will be underrepresented
or missing from the display space. Unfortunately, these are regions in which a model can be
most prone to making mistakes, so their inclusion is often desirable. One approach which
addresses this problem is to generate the display space from a set of value vectors that
span the data space by sampling from the data space using a uniform distribution. Such a
display space depends only on the dimensions of the data space, making it easy to compare
different models inhabiting the same data space. It also allows evaluation of the model over
the entire data space, rather than just the portion of the data space from which the model
was learned. This approach facilitates the comparison of alternative models, since display

space locations are only specific to the data space, not any particular model.

4 Visualization of Model Characteristics

After projecting the data space into a 2- or 3D display space, we can visualize a variety
of model characteristics in the display space. In this section, we discuss the visualization
methods we have used to display the model characteristics, and how the visualizations can

be used to interpret the behavior of the model.

4.1 Probability Distribution

On each projection, we can visualize the probability distribution, i.e., the probability of
high income predicted by the model for each location in the display space. Because each of
these locations corresponds to multiple points in the data space, it is necessary to average

the predicted probability over those points. The degree of green saturation corresponds



to probability (more green means higher probability). The white contour line shows the
decision boundary (50 percent probability of high income).

Figure 5 shows the probability distribution for the 2D feature selection projection. The
correlations of the selected input variables with the class are easy to see by comparing
Figure 1 to Figure 5: individuals with more education (towards the top) and who work
more hours (towards the right) tend to make more money, with the education correlation
being somewhat stronger.

In the PCA probability distribution visualization (Figure 6), we see again that more
educated individuals (towards the “southeast”) and individuals who work more hours (to-
wards the “northeast”) are more likely to earn a high income. The decision boundary
here is rather fragmented, indicating that the PCA projection does not provide a smooth
representation of this particular model characteristic.

Figure 7 shows the probability distribution for the SOM projection. When building
the SOM, probability is treated as just another variable for similarity clustering. Since
probability is one of the variables used to cluster points, the SOM training process can
be biased to produce maps with greater coherence of predicted probabilities. Note the
smoothness of the decision boundary in Figure 7 as compared with those of Figures 5 and
6.

This smoothness is somewhat misleading, as it is partially an artifict of the SOM build-
ing process. As mentioned earlier, the SOM treats probability like any other attribute,
constructing the map through an iterative process that converges to codebook vectors at
each location that characterize a set of instances. Each attribute, including probability, has
some “average” value in this codebook vector. However, using this value for the probability

distribution is not quite correct, since the predictions made by the model for the input in-



stances that fall at a location may not correspond to the probability given in the codebook
vector. Since multiple instances in the data space map to the same location, in order to
show the model probabilities, we need to average over those instances. Figure 8 shows the
probability distribution generated by sampling the data space at each point in the SOM
16 times, and averaging the resulting probabilities. The decision boundary is considerably
less smooth than the SOM probabilities shown in Figure 7. The latter is a close enough

approximation for the purposes of visualization, however.

4.2 Instance Mapping

Test instances may be plotted in the display space in order to compare model predictions
to actual classifications. In Figure 9, each test instance is displayed on the SOM as a small
sphere colored by true classification (yellow for high income; dark red for low income). This
view allow us to identify false positives (red glyphs inside the decision boundary) and false
negatives (yellow glyphs outside the decision boundary).

Because of the compression involved in the projection process, many instances can map
to the same location in the display space. Using 5000 test instances, we found that it was
not uncommon for hundreds of instances to map to the same SOM cell. This is not a major
issue when all of the instances that map to the same location have the same classification,
but when the collocated instances include multiple class labels, important information is
lost in the repesentation of Figure 9.

To convey this missing information, we developed a representation that shows the den-
sity and class label distribution of the instances (Figure 10). Glyph size indicates the
number of instances at a given point. A continuous color map is used to show the pro-
portion of class labels in the set of collocated instances. Yellow-saturated glyphs indicate

a higher proportion of positive instances; red-saturated glyphs indicate more negative in-



stances. Orange glyphs indicate points where there are roughly equal numbers of positive
and negative instances. This representation gives a much more useful and informative view
of the nature and distribution of the test instances with respect to the decision space defined
by the model.

Visualizing the instances allows us to identify regions of misclassification. The visualiza-
tion can be queried to generate a description of the instances that correspond to any given
region. For example, near the upper right there is a region with two large orange glyphs
(mixed positive and negative instances). This region corresponds to a group of males in
private industry who work long hours (60 hours a week), have moderate education (typi-
cally some college), and work as professionals or managers. Querying further, we can get a
description of the positive instances (true positives) and negative instances (false positives)
in the region. Upon inspection, there are few differences between these two groups. A
knowledge engineer could use this analysis process to identify groups of individuals who
are not easily differentiated with respect to the class of interest. Such a conclusion might
lead to further data gathering (to identify features that would differentiate the high- and
low-income earners), or might simply indicate that the model was not reliable for that
particular group.

An interesting artifact of the SOM building process can be observed in Figure 9, in the
instance-free “trench” snaking from left to right across the map. This trench corresponds
to the contour line between men and women in Figure 12, and is a result of the averaging
process of the SOM: between the “mostly female” and “mostly male” regions, the codebook
vectors have intermediate values for sex, which of course do not occur in the actual data.

Therefore, there are no instances that fall in that intermediate region.



4.3 Attribute Contours

Figures 11 and 12 overlay attribute contours for education level, hours worked, and sex on
top of the probability distribution to show how the input variables are correlated with the
predicted class and with each other. Notice that the region of the space that is more likely
to contain high-income earners is also more likely to have greater education levels. These
pictures also show several sociologically interesting effects: first, the model predicts that
there will be relatively few high-income-earning women (the red concentric semi-circles at
the right of the high-income region in Figure 12). Also, many of the predicted low-income
females (red) that appear just outside the decision boundary have the same education level
as the high-income males just inside the decision boundary. These individuals could be

interpreted as underpaid women.

4.4 Annotation Glyphs

There is a tradeoff between the feature selection approach and the other projection ap-
proaches (SOM and PCA): in feature selection, the dimensions correspond to data space
dimensions, and are therefore easy to understand. However, any contribution of the other
features to the shape of the data space are lost in the projection. In contrast, the SOM
and PCA incorporate all of the features, but the meaning of the display space is much less
intuitive. PCA can be thought of as an intermediate approach: while it uses all of the
features, the fact that it uses a linear combination of feature values means that it may not
be able to preserve arbitrary regions or clusters within the data space as effectively as the
SOM.

Annotating the display space can help in understanding the projection, allowing more

effective use of both the SOM and the PCA approaches. The attribute contours that we



introduced earlier provide one form of annotation. We have been exploring other annotation
approaches as well. Figure 4 shows a display where the SOM is discretized into coarser-
grained regions, and a glyph is placed at each map location. The glyph indicates average
education level (color scale), sex (glyph shape), hours worked (colored percentage of glyph),

and marital status (ring shape around the glyph) for individuals in that region of the map.

5 Related Work

Although many researchers have studied techniques for visualizing data sets, and others
have developed techniques to view model structure directly, there has been relatively little
effort focused on visualizing learned models in the data space. A notable exception is the
MineSet data mining package [SGI 1999], which includes several techniques for visualizing
models, such as scatterplotting of misclassified instances. The display space is generated by
manual variable selection, so the behavior of the complete model can be difficult to perceive.
Visualization of classifiers in the MineSet framework was described by [Becker 1998].

A wide variety of techniques have been developed to perform dimension reduction of
high-dimensional data. These include parallel coordinates [Inselberg and Dimsdale 1990],
multiparameter icons [Pickett et al. 1990], and a host of interactive techniques developed
by dynamic statistics researchers [Cleveland and McGill 1988]. Many of these approaches
only work for discrete data instances, rather than the potentially continuous model char-
acteristics we discuss here.

There are also other techniques that produce clusters in 2D space based on the similar-
ity of data instances in the higher dimensions. These techniques include multi-dimensional
scaling [Cox and Cox 1994] and relevance maps [Assa et al. 1997]. Other applications of

SOM techniques to information visualization include the visualization of customer charac-



teristics [Rushmeier et al. 1997].

6 Conclusions

We have presented visualization techniques that support model quality assessment and
model comparison. These techniques allow the user to see multiple characteristics of the
model’s behavior. We described our exploration of a range of techniques to support these
goals, and presented results on a benchmark data set. The research described here repre-
sents a first step towards a suite of visualization methods for model evaluation, which will

enable the discovery of more useful information from high-dimensional data sets.
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Figure 1. Census data space projected into a Figure 2. Census data space projected into
2D subspace with dimensions of hours worked (in- 2D using PCA. Contours show education (blue;
creasing to right) and age (increasing to top). Col-  roughly increasing towards lower right) and hours
ored lines show contours of hours worked (red) and  worked (red; roughly increasing towards upper
education level (blue). right).
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Figure 3. Census data space projected into 2D
using a SOM. Contours show education (blue) and
hours worked (red).
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Figure 4. 2D SOM display space with annotated glyphs indicating attribute values for each map
location. As shown in the legend, color scale indicates education level. Glyph shape indicates sex
(circles are female, squares are male, clover shapes are mized). Colored percentage of the glyph indi-
cates hours worked. The ring around the glyph indicates marital status (no ring: single; dotted ring:
absent spouse (separated or in armed services); ring with endpoints: divorced; half ring: widowed;
circle: married).
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Figure 5. Probability distribution for the 2D
feature selection. Increasing saturation of green
corresponds to increasing predicted probability of
higher income. White line shows decision bound-

ary.

Figure 6. Probability distribution for the PCA
projection. Increasing saturation of green corre-
sponds to increasing predicted probability of higher
income. White line shows decision boundary.
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Figure 7. Probability distribution for the SOM
projection. Increasing saturation of green corre-
sponds to increasing predicted probability of higher
income (according to the codebook vector at each
point). White line shows decision boundary.
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Figure 9. SOM probability map with test in-
stances overlaid.  Yellow-saturated glyphs indi-
cates instances that are higher-income earners;
red-saturated glyphs correspond to lower-income
earners. Orange-saturated glyphs correspond to
points where both higher- and lower-income indi-
viduals are mapped.
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Figure 8. SOM probability map with probabilities
produced by querying the model.
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Figure 10. SOM probability map with scaled test
instances overlaid. Size of glyph at a point indi-
cates number of instances that map to that point.
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Figure 11. SOM probability map with contours

. Figure 12. SOM probability map with contours
{oneducatzon (blue) and hours worked (red) over- for education (blue) and sex (red) overlaid.
aid.



