
1

AGENT MONITORING AGENTS &
DEVELOPMENT OF A GROUP CLASS

Marietta A. Gittens, Shu Shen
 Sadanand Srivastava, James Gil Delamadrid

{mgittens,sshen,ssrivas,gildelam}@cs.bowiestate.edu
Department Of Computer Science,

Center for Distributed Computing (CeRDiC)
Bowie State University, MD, 20715.

This paper deals with the development of a group class. This abstract class inherits from
our previously developed Agent superclass. All instances of groups inherit from the
ComWin class, which is an extension of the group class, and which accepts, via its
command window, user commands of specific actions to be performed on agents or
groups of agents. Each instance of a group becomes a group leader that possesses the
capability of accepting as many members as possible, deleting members from its
association, communicating messages to one or all of its members, destroying itself or
any or all of its members, accepting leadership of a group that is merging with it,
returning leadership to the former leader of a subgroup by splitting that group away and
moving its members to a new host to continue its operations there.

Such a group class was developed to extend the capabilities of our Agent Monitoring
System. At present our system is capable of monitoring the occurrence of communication
exchanges between agents and detecting whether agents are active or not. With the
incorporation of our group class to the system, we hope to extend the Agent Monitor s
capabilities to include monitoring the timestamp and location of the above mentioned
events, the reason for their occurrence, and the identity of the participating group leaders
or agents.

The group class offers the user greater flexibility and control over a wide collection of
agents performing a variety of specified tasks on his/her behalf. If the user no longer
requires the services of a particular agent, he can remotely order that agent to destroy
itself. If, however, some new service is desired, he can communicate to the agent
accordingly. A visual representation of group members and the hierarchical relationships
among group instances are displayed on our user interface via the newly developed
gpCanvas.

AMA Architecture: Our AMA System consists of two main parts: an Agent
Monitoring Agent (AMA) and an agent-based system. The AMA consists of the
AgentMonitor (our server) and its associated user interface, amaPage, which, via its
three canvases, show agent activity, group hierarchies and agent communication. The
agent-based system consists of instances of communicating agents which may or may not
belong to groups (Fig.1)

2

When an agent is created, it immediately registers at the AgentMonitor by passing on to
it certain defining characteristics about itself. In return, the AgentMonitor issues a port
number to the agent (Fig.2).
Via this backport the server sends a ping message to check whether the agent is active
or not (Fig.4). The AgentMonitor is not only capable of monitoring agent viability, but
can also detect occurrences of inter-agent communication (Fig.3), and can track the path
of a mobile agent as it moves from one host to the other. In order for each group and its
members to relocate to a new host to continue operations there, a previously executing
AgentCatcher must be there to receive them. This causes the agent to be reinitialized at
the AgentMonitor (Fig.5).

server

User
Interface

group leader

agent2

agent1

Fig.1 THE AMA STRUCTURE

 AMA AGENT BASED SYSTEM

 server agent

Agent Info

Fig.2 AGENT REGISTRATION

agent3

 group

 port#

3

Fig.3 MONITORING AGENT COMMUNICATION

User
Interface

agent1

agent2

server

comunication
detection

Fig.4 PING ACTIVE AGENTS

agent1

agent2

server

active agent list

ping

OK

User
Interface

PING

ping

ping

4

Synopsis Of The group Class

Within this synopsis of the group class, members are broken down into four functional
groups — constructors, public instance methods, private instance methods, and
private utility groups. The constructors are used to instantiate groups or subclasses of
groups. Instance methods operate on instances of the class rather than on the class itself.
The public instance methods provide the user with an interface of seven methods, whilst
the private instance methods are called within the class itself. The public and private
modifiers show the accessibility of the methods to the user. Public methods are
accessible to all users, whilst private methods are only accessible within the class itself
and are never available to the user. Finally, the private utility methods are helper
functions which are called by other methods within the group class to help them process
its data and to efficiently carry out their duties.

public class group extends Agent

// Public Constructors
public group()
public group(String gpname, String membname, String monitor, String ping)

// Public Instance Methods
public void enter(Vector gp, String str)
public void delete(Vector gp, String str)

agent1mercury
voyager

server
User

Interface

Host 1

agent reinitializes

AgentCatcher

display

Fig. 5 MONITORING MOBILE AGENTS

5

public void merge(Vector gp, String str)
public void split(Vector gp, String str)
public void destroy(Vector gp, String str)
public void move(Vector gp, String str)
public void communicate(Vector gp, String str)

// Private instance methods
private void register(String str, int monitorport)
private String memberConnect(String membname, int memport)

// Private utility methods
private int findgpMember(Object membname)
private Properties toProperties(Object propliststring)
private Vector backToVector(String gpliststring)
private String getstrToken(String str)

Details Of Group Class Methods
The chart below shows the function hierarchy within the group class, ending at the level
of the public instance methods. Arguments passed to these functions are omitted for
purposes of clarity.

Fig.6 FUNCTION HIERARCHY CHART FOR THE GROUP CLASS

super

Agent

Agent.init

 Agent.start ComWin.startup

 Agent.run

group.enter group.delete group.merge group.split group.communicate group.move group.destroy

6

A. Constructor

1. group (String gpname, String membname, String monitor, String ping)

To create an instance of a group, the arguments passed to the super constructor match
the four String parameters of the Agent superclass constructor. They include the
groupname, group leader name, monitor name and ping value. Each group, like each
agent

• opens a backport via which it will be pinged by the AgentMonitor to ascertain
whether the agent is active or inactive,

• calls a startup method. Whilst the agent s startup method is empty, the group s
startup method in the ComWin class controls a command window.

B. The ComWin class

This public class contains the public instance methods — startup(), and carryon (). The
latter calls startup() after the group has relocated and reinitialized itself at the server. Via
the command window, the user will be able to send group commands to each group
leader. The fields of the user input string are specified in the table below. The commands,
formatted in this way, cause the appropriate public group instance method to be invoked.

Fig.7. TABLE SHOWING USER INPUT STRING FORMAT

METHOD PORT# COMMAND ARGUMENT ARGUMENT ARGUMENT
enter agentport# enter agentname
delete delete agentname
merge agentport# merge gpname
split agentport# split gpname
destroy destroy all

destroy self
destroy agentname

communicate communicate msg message
move move hostname port#

move self hostname port#

7

B. Public Instance Methods

The seven public instance methods are all void methods to which are passed two
arguments, the current list gpMembers and the unprocessed string entered by the user in
the command window.

 C.1 enter (Vector gp, String str)

• The user string is input into the command window of the group wishing to be entered.
• The local host name is obtained to identify the address of the group leader.
• This input string is parsed to get its fields which are placed in a properties table used

to identify each new member. This table has the following five (5) fields

member=agentname, gpName=gpname, port=agentport#, address=hostname,
subgroup=subgpname

and is unique at each index of the gpMembers list which is implemented with the use
of the Vector Class.

• If an entering agent is not a member of a subgroup then its subgroup field is
initialized with no .

• If the entering agent is a group with its own members, a member of that group is
contacted via its port number and a list of its group members requested.

• Information from this list is added to the new group leader s gpMembers list.
• For each of these members two keys of its properties table are updated with values

from the new group. The subgroup key, which can have one value or a list as its
value, is initialized with the subgroup name. If the member s group is not already

• subgroup, this name becomes the first name in the subgroup list. If it is already a
subgroup the subgroup name is concatenated to the end of the list.

• The new gpMembers list is then communicated to all members of the newly formed
group.

Fig. C.1a THE ENTER METHOD

 agent

enter

GROUP

1
2
3

 Gp 1

enter

8

C.2. delete (Vector gp, String str)

 The group leader receives a delete command via its command window.

• It checks its gpMembers list to see if that agent is present in its group.
• If present, the member s port number is obtained.
• Contact with the member is made via this port# to obtain that member s existing

group list.
• The member(s) from this group list that has/have the group leader s name in its/their

gpName field is/are deleted and the residual list is returned to it/ them.
• If the member to be deleted from gpMembers is a subgroup, all those members which

have that subgroup name in their subgroup field are deleted. If the member is an
agent, when found it is simply deleted from gpMembers.

• The properties table of each of these members that are deleted is added to the special
Vector names.

• Via the method communicate that uses the Vector names, the residual lists are
broadcast to all agents that are affected.

Fig.C.1b THE ENTER METHOD

1
2
3
4
5
6
7 ...

GROUP

Gp 1

agent

9

• The group leader then communicates its new gpMembers list to any of its remaining
members

Fig. C.2a THE DELETE METHOD

Fig. C.2b THE DELETE METHOD

1
2
3
4
5
6
7

GROUP

Gp 1

agent

1
2
3

GROUP

Gp 1
agent

10

C.3 merge (Vector gp, String str)

• Again the input string is parsed to obtain the port# for the incoming group,
the name of the group to be merged and the name of the group leader .

• Contact via the port is made with a subgroup member and the group list is requested.
• The properties table, used to identify each member of the subgroup, is taken, and its

subgroup key is initialized with its group name if the previous value was no .
Otherwise, the group name is concatenated to the end of the subgroup key values.
The gpName key is updated with the new group leader s name and the properties
list is added to the group leader s gpMembers list.

• The group leader registers this change at the AgentMonitor.
• The new gpMembers list is communicated to all its members.

Fig. C.3a THE MERGE METHOD

1
2
3

Gp 1
GROUP

Fig. C.3b THE MERGE METHOD

1
2
3
4
5

GROUP

11

C.4 split (Vector gp, String str)

• In split the input string is parsed to receive each field.
• The gpMembers list of the group wishing to split away is requested from a member of

that group via its port#.
• Any members of that list that had belonged to that subgroup have their subgroup

key replaced with no , and their previous gpName returned.
• These members are placed in a new list names, the members of which are broadcast

to each of them.
• The members are then removed from the group leader s gpMembers list.
• The new gpMembers list is communicated to the remaining members of the group

leader s group.

Fig. C.4 THE SPLIT METHOD

C.5 destroy (Vector gp, String str)

 The destroy command can have three variant forms as shown in the user string
format table given above.

• The string is parsed to obtain its fields.
• If the command is to destroy self the group leader exits from the system.
• If a specific agent has to be destroyed, that agent s port# is obtained from the

gpMembers list and an exit command is sent to it. This command invokes the system
exit procedure in the agent.

• If the agent to be destroyed is a subgroup, all the subgroup members are placed in the
special list names and the exit message communicated to them.

1
2
3
4
5

Gp 1

GROUP

12

• The destroyed group member, single agent or subgroup members is/are removed from
the gpMembers List.

• If the group leader wishes to destroy all its members the exit message is
communicated to all its members.

Fig. C.5 THE DESTROY METHOD

destroy
 self

1
2
3

GROUP

destroy
agent 1

1 .
2 .
3 .

1
2
3

GROUP

GROUP

agent1

destroy
all

13

C.6 move (Vector gp, String str)

• The string is parsed to receive the hostname which is tacked on to the standard
address of computers on our local network to give the full remote host address. The
port# of the application on the host machine that will receive the moved agents is
extracted, and the name of the group name is recorded.

• The group leader updates the address of its gpMembers with the new address and
communicates this new list to them.

• The leader communicates the move command to all its members providing them
with the remote host address and the port number.

• This move command invokes a send procedure possessed by all agents that allows
them to move to the waiting host.

• After all its members have relocated to their new host the group leader sends itself
across.

• If the agent to be moved is a subgroup leader, a command move self is input
into that group leader s command window causing it to send itself across to the
indicated host.

• There is no need for the group to register this operation at the AgentMonitor since
this is done automatically, after a change of address, when the agent reinitializes
itself.

Fig. C.6a THE MOVE METHOD

1
2
3

host1 host2

GROUP

move

14

Fig. C.6b THE MOVE METHOD

Fig. C.6c THE MOVE METHOD

 host1 host2

GROUP

1
2
3

host 2
host 1

agents
move

agent

group
leader
moves

GROUP

15

C.7 communicate (Vector gp, String str)

• The communicate method passes its message verbatim to all members populating
the names list by obtaining their port#s from the list and communicating via these.

• These messages, when received by the agents, may invoke other procedures such as
send, or System procedures such as exit or out.println.
If the message is to be directed to specific members, the names of these members are
placed in a vector called names which the group leader uses instead of its general
gpMembers list.

Fig.C.7 THE COMMUNICATE METHOD

D. The Private Instance Methods

The two private instance methods register and memberConnect require two arguments
each — a String and an integer. Whereas register is void, i.e returns no value,
memberConnect returns a String.

D.1. register (String m, int p)

• In register, each of the user input strings, minus the first agentport# field, is sent to
the AgentMonitor via that application s port#. These commands invoke processes in

1
2
3
4
5

GROUP

agent

16

the AgentMonitor that enter, delete, move, merge, and split groups in the agentList.
A groupList is then built from the agentList.

D.2. memberConnect (String m, int p)

• When a single member agent has to be contacted and some response is expected the
private method memberConnect is used.

E. The Private Utility Methods

E.1. The findgpMember (Object membname) method is passed the name of a member
 in the list as an Object. If the member is found its index in the list is returned.

E.2. The method which converts a properties table in the form of a String back to a
 properties table object is toProperties (Object propliststring).

E.3. A Vector that has been converted to a String is reconverted to its original form using
 the backToVector (String gpliststring) method which returns a Vector.

E.4. The string input by the user in each group s command window
is parsed using the getstrToken (String str) that returns the first token of the string
passed to it.

Future Work: The present group class provides a skeletal framework upon
which many new features will be added. In the future we hope

• To improve the stability of the system and its ability to support a multiplicity of
executing threads,

• To extend the functionality of the visual display to reveal, not only the ping and
traffic, but also the history of group members,

• To collect subgroup statistics.
• To provide mechanisms by which a group can tell whether there are sufficient

resources at a remote location to which it wishes to migrate.
• To build a test bed for the group class.
• To provide mechanisms that would permit group creator proprietary rights to certain

public instance group methods such as destroy etc.
• To institute criteria upon which a merger, split, delete, enter, or communicate

command is sent to a group member: e.g When should a merger take place? How
should it be done and with whom should it be done?

• To be able to associate a detected communication socket with an agent name.
• To extend the use of the group class from a single user to multiple users
• To treat each method as an atomic transaction process and to put mechanisms in place

that would allow rollback to take place if a method cannot be completed in its
entirety.

17

