
Memory Scalability in Constraint-Based

Multimedia Style Sheet Systems

Terry Cumaranatunge and Ethan V. Munson

Department of EECS

University of Wisconsin{Milwaukee
Milwaukee, WI 53201

fcumarana,munsong@cs.uwm.edu

Abstract. Multimedia style sheet systems uniformly use a constraint-

based model of layout. Constraints provide a uniform mechanism for all

aspects of style management and layout and are better-suited to non-
textual media than
ow models.

We have developed a prototype style sheet system, Proteus, and have
used it with a variety of document types, including program source code.

This work has exposed a critical performance problem in constraint-

based style sheet runtime systems: memory usage. Existing constraint

systems treat cached attribute values and constraints as �rst-class ob-

jects, each with its own storage. Program syntax trees are very large and

the constraint data for a medium-sized source �le can easily consume

tens of megabytes of main memory. This scalability problem would be

exposed by any document of any type containing thousands of objects.

We present here a new constraint-based runtime system that is substan-

tially faster and dramatically more space-e�cient than its predecessor,

which had �rst-class constraint objects. The improved performance is
the result of exploiting important common cases and a sophisticated

constraint representation that allows considerable sharing of information

between individual constraints.

1 Introduction

Multimedia style sheet systems [7,14] uniformly use a constraint-based model

of layout, because constraints are better suited to non-textual media than the

ow models used in text-oriented style sheet systems [3,6, 12]. Some multimedia

style sheet systems [14] only use constraints for layout, but in our work on

the Proteus style sheet system [2, 11] and the PSL style sheet language [9], we

use constraints as the foundation of the entire style management process. This

approach gives the PSL language uniform and relatively simple semantics and

the runtime system of Proteus exhibits a similar uniformity in its underlying

mechanisms.

We have been using Proteus to manage style information for program source

code in the Ensemble software development environment [1], and in the pro-

cess have exposed a serious limitation to the scalability of existing constraint-

2

management systems: memory usage. The central problem is that existing con-

straint systems [4, 13] treat the attributes of document elements and the con-

straints between them as �rst-class objects.

Program syntax trees are quite large. In Ensemble, the abstract syntax tree

for a 21 line Java fragment contains 91 lexemes (the text fragments that must

be laid out and displayed) and over 500 nodes. By extrapolation, a 1000-line

program would have nearly 4300 lexemes and about 24,000 nodes.

Ensemble's text formatter requires Proteus to manage the values of 22 style

attributes for each node. This means that, for a 1000-line program, Proteus

would have to manage about 500,000 independent attribute values. If each value

is represented by a �rst-class object, then for large programs (or any other large

document), the memory requirements of Proteus's runtime system must be mea-

sured in megabytes. Furthermore, for many style sheets, there are more con-

straints than attribute values and if constraints are represented by �rst-class

objects, even more megabytes will be consumed. Memory usage at this level

places tremendous pressure on system resources, both by consuming available

memory and by slowing performance due to virtual memory page faults.

Prior to the research described in this paper, Proteus used a runtime system

originally developed for the Shilpe style sheet system [8]. This runtime system

does indeed treat attribute values and constraints as �rst-class objects and it

uses about 2.3 kilobytes of memory per document node.

This paper describes a new runtime system, called Protean, that reduces

memory consumption by a factor of 8.8 and improves runtime performance by

a factor of 2. Protean's improved performance results from the identi�cation of

certain common cases that can be handled without using �rst-class constraint

or attribute objects and from a novel representation for constraint information

in the less common cases.

Section 2 describes the original runtime system of Proteus. Section 3 presents

the new runtime system and our initial performance results. Section 4 gives our

conclusions.

2 The Shilpe Runtime System

Prior to this research, Proteus used a runtime system originally developed for

Shilpe [8]. The Shilpe runtime system uses the incremental attribute evalua-

tion algorithm developed by Hudson [4] for the Higgens user interface manage-

ment system [5]. The Higgens UIMS was used in an interactive editor for graph-

structured music documents. In contrast, Proteus assumes that its documents

are tree-structured, but this di�erence is not important to the attribute evalua-

tion algorithm, because both systems allow the dependencies between attribute

values to form a directed-acyclic graph.

Hudson's algorithm uses a mix of eager and lazy techniques to achieve good

performance. For each node, the most recently computed value of each attribute

is cached. The algorithm eagerly propagates information about the invalidation

of these cached values while updating them lazily.When evaluating all attributes

3

from scratch, its performance is linear in the size of the document. When up-

dating attributes in response to an editing change, its worst-case performance is

linear in the number of attribute values dependent on the change.

In Shilpe, attribute invalidation is performed by maintaining a data structure

called a dependency chain, which keeps track of the attributes that must be

invalidated due to an invalidation or changed caused by an editing operation.

For example, the following rule constraints a node's Width attribute to be the

same as its parent's Width.

Width = Parent.Width;

Given this rule, whenever the parent's Width attribute value is changed or invali-

dated, the Width attribute of the child should also be invalidated. A dependency

chain is a data structure that keeps track of those attributes that must to be

invalidated due to changes in other attribute values or in the structure of the

document caused by editing operations.

2.1 Problems with Shilpe

The dependency chains consume a large amount of memory, even for small doc-

uments, for two reasons:

1. The system represents all attribute dependencies using the same structure.

This ignores two important common cases: inheritance and bounding box

attributes.

{ Inheritance of formatting attributes is very common in style sheets for

tree-structured documents. Inheritance is one kind of constraint, so each

inheritance relationship must be represented by a dependency chain.

{ Proteus's box layout system maintains complete bounding box informa-

tion for all document nodes. A node's bounding box is computed from

(i.e. constrained by) the bounding boxes of each of its children, which

must be represented by a (often long) dependency chain.

2. The dependency chain representation in Shilpe is not particularly space-

e�cient. Even if the aforementioned special cases were handled more e�-

ciently, memory consumption for dependency chains would remain a prob-

lem.

The Shilpe runtime system was instrumented and its memory usage analyzed

for an application that requires the maintenance of 16 attribute values for each

node. The results of the experiment are shown in Figure 1. These results indicate

that for each additional node, memory usage increased by almost 2.3 Kb. For

large documents (over 10,000 nodes) this can result in very high memory usage.

The space-e�ciency problems seen with the Shilpe runtime system are not

unique to it or to Hudson's algorithm. They would also be observed with any

other constraint system that treats cached attribute values and constraints as

�rst-class objects, such as the SkyBlue constraint solver [13].

4

Number Shilpe Protean

of Nodes Size of Overall Size of Overall

dependency memory dependency memory
data structures usage data structures usage

10 17.75 Kb 33.76 Kb 80 bytes 18.37 Kb
11 19.94 Kb 36.06 Kb 88 bytes 18.63 Kb

12 21.95 Kb 37.90 Kb 96 bytes 18.90 Kb

13 24.51 Kb 40.20 Kb 104 bytes 19.15 Kb
500 1095.75 Kb 1160.76 Kb 3.91 Kb 140.87 Kb

1000 2195.75 Kb 2310.76 Kb 7.81 Kb 265.87 Kb

10000 21995.75 Kb 23010.76 Kb 78.12 Kb 2515.87 Kb

Fig. 1. Memory usage of Shilpe vs. Protean. Shilpe's memory usage grows at a rate
8.8 times higher than Protean's memory usage. (This experiment was performed on a

document that used a style sheet containing 16 attributes.)

3 The Protean Runtime System

The Protean runtime system preserves the approach to incremental attribute

evaluation that was used in Shilpe, but uses a more sophisticated algorithm to

handle dependencies along with very compact runtime data structures to improve

the memory usage and runtime performance.

Each node in the tree has two parts: a cache, and dependency information.

The framework for this algorithm is a simple, yet very e�ective representation

of the cache and dependency information.

3.1 Cache

A central premise behind Hudson's attribute evaluation algorithm is that caching

of attribute values leads to critical runtime performance gains. We performed

an experiment and discovered that Protean, on average, takes 27.64 �sec to

determine the value of a node's attribute when values were cached, while it

takes 279.4 �sec when values were not cached | a performance di�erence by

a factor of 10. The runtime performance when attribute values are not cached

leads to poor and unacceptable response times that makes the system almost

unusable for large documents, especially in interactive applications.

Each node has an attribute cache, which is a set of value/status-
ag pairs

stored as an array of two-word values, and a packed array of 4-bit status
ags.

A typical medium in the Ensemble system has about 20 attributes. Since 4

bits 1 are required to represent each status
ag, the entire cache status
ag repre-

sentation for each node would take 80 bits (or 12 bytes on a modern workstation,

1 In PSL, an attribute value can be computed in four di�erent methods: a node-speci�c

rule, a default rule, an implicit rule, and a global default value. Each of the rules has

a unique odd and even values to represent the valid and invalid states. An additional

value to represent complete invalidity makes a total of 9 bits, which are represented
as 4 bits.

5

rounded to the next word). For each node, the storage for cached attribute values

would be 160 bytes.

3.2 Invalidating the Cache

When an editing operation is performed, attribute values can change. Such

changes trigger a chain of cache status
ag invalidations to invalidate both the

attribute values directly a�ected by it and the ones indirectly a�ected due to

dependencies caused by rules speci�ed in the style sheet.

3.3 Dependencies

Each node contains a data structure, the dependency list, which stores infor-

mation about the cached values (in this node or another) that are dependent

on each of the node's attributes. Protean implements a dependency list using

a very compact bit representation. The runtime system performs the following

administrative tasks at startup time: (1) style sheet rules are stored in a shared

data structure called the component array, (2) a mechanism, called an inverse

path, is established to reach dependent attributes, (3) the component array is

ordered, and (4) a dependency list is created in each node.

The Component Array Each style sheet rule is internally represented as a

list of its atomic components. For the style sheet rule in Figure 2, the atomic

components are: a rule header for attribute VertPos:Y; a tree navigation function

(LeftSib); and an access operation (on attribute Y).

VertPos:Y = LeftSib.Y;

Fig. 2. A rule de�ned for the \RAYS" node in the style sheet shown in Figure 7. The
rule asserts that the node's VertPos:Y attribute is constraint by its left sibling's Y

attribute.

AccessOp(Y)) LeftSib) VertPos:Y

Fig. 3. Inverse path for the rule shown in Figure 2

The list of atomic components for a rule is linked together by storing a for-

ward pointer in each component. Our implementation arranges the components

as in�x expressions. When the rule needs to be evaluated, the list of components

is followed in the forward direction. The details of this implementation, however,

are not important to the algorithm presented in this paper.

6

Inverse Paths When an attribute is invalidated due to an editing operation, at-

tributes that are dependent on it must be invalidated. Protean uses a mechanism

called an inverse path to reach the a�ected attributes. The key to determining

the inverse path is an observation in the PSL style sheet language: Dependen-

cies between attributes can arise only from attribute-access operations and tree

navigation functions. Such components of a rule are called dependency-causing

components.

An inverse path for a rule is created by storing backward pointers in the

dependency-causing components of a rule. For the rule that we have been dis-

cussing (in Figure 2), the inverse path is shown in Figure 3.

The process of invalidating a�ected attributes follows the inverse path (back-

ward pointers) in a rule's component list and inverts the meaning of each tree

navigational component, in order to locate the nodes that are dependent by

the rule. Given the rule shown in Figure 2, if \RAYS" node's left sibling's Y at-

tribute were invalidated, the LeftSib tree navigation function would be inverted

as RightSib to reach the \RAYS" node.

The Parent tree navigation function does not have a unique inverse when

there are multiple children. However, the algorithm maintains dependency in-

formation in the parent and the child to resolve this problem. The details of

marking (establishing) dependencies will be described in section 4.4.

Ordering the Component Array The rules speci�ed in the style sheet are de-

composed into its atomic components and stored in a component array, which is

logically divided into three contiguous blocks: the attribute-access block, the nav-

igation block, and the miscellaneous block. The attribute-access block contains

all components that access attributes; the navigation block contains all compo-

nents that are tree navigation functions; and the miscellaneous block contains

all components that are neither an attribute-access operation nor a tree naviga-

tion function. Such components include constants, rule headers, and arithmetic

operators.

Figure 6 shows the component array resulting from parsing the style sheet

shown in Figure 7. The component array is a single data structure shared by all

nodes.

Creating Dependency Lists The dependencies between attributes are repre-

sented using a dependency list in each node. The dependency list is implemented

as a packed array of bits, a compact data structure compared to heavier-weight

data structures used in other constraint-based style sheet runtime systems.

The ordering of the component array places the dependency-causing compo-

nents in a contiguous section of the array. This contiguity allows us to create

a dependency list for each node, where each bit in the dependency list has a

corresponding dependency-causing component in the component array.

7

SUN

Dependency List

Cache Status Flags

Cached Values

Dependency List

Cache Status Flags

Cached Values

Dependency List

Cache Status Flags

Cached Values

MASS RAYS

Fig. 4. A sample tree depicting the cache and dependency list for each node.

8

3.4 Marking Dependencies

The relationship between two attributes is represented by setting the appropri-

ate bits in the dependency list of each of the relevant nodes. Given the rule

shown in Figure 2, its dependency-causing components are listed in the com-

ponent array at indices 17 (LeftSib) and 8 (access on attribute Y), as shown

in Figure 6. If you apply this rule to the tree shown Figure 4, the dependency

can be represented by setting bits 8 and 17 in \MASS" node's dependency list.

The dependency representation of the \MASS" node is shown in Figure 5.

Since the rule shown in Figure 2 constraints the \RAYS" node's VertPos:Y

attribute to \MASS" node's Y attribute, if the \MASS" node's Y attribute were

invalidated, the \RAYS" node's VertPos:Y attribute must be invalidated. This

is done by searching the attribute-access block in the component array to de-

termine if there are components that access the Y attribute. In our example,

the component at index 6 in the component array accesses the attribute Y. So

the \MASS" node's bit 8 of the dependency list is checked to see if it is set.

Since the bit is set, starting from the component at index 8, the inverse path

(shown in Figure 3) is followed to locate the a�ected attribute. When the af-

fected attribute is located, it is invalidated and the process continues recursively

to invalidate attributes that are a�ected by the recent invalidation.

Recall from earlier that when following an inverse path, the Parent naviga-

tion function can give rise to ambiguity when there are multiple children. This

problem is resolved by identifying the Parent tree navigation function's compo-

nent index in the component array, and setting the bit both in the child's and

parent's dependency lists. When a Parent function is encountered while follow-

ing an inverse path, the bit for that component is matched with the children to

identify the correct child (or children if the rule a�ects multiple children).

3.5 Memory Usage of Protean

The memory usage of the Protean runtime system and its comparison to the

Shilpe runtime system is shown in Figure 1. The results showed that, on average,

Shilpe requires about 2.3 Kbytes per document node while Protean requires only

.26 Kbytes. This improvement by a factor of 8.8 approaches a decimal order-of-

magnitude.

3.6 Runtime Performance of Protean

The runtime performance of Protean was compared to that of Shilpe. The results

showed that, on average, Shilpe takes 58.23 �sec to evaluate an attribute while

Protean takes only 27.64 �sec | a binary order-of-magnitude improvement.

(This experiment was performed on an HP 715/80 with 64MB RAM and a clock

speed of 80MHZ running HP-UX 9.05.)

9

8

11

Cache Status Flags

Cached Values

MASS

Dependency List

17

Fig. 5. Bits 8 and 17 are set to represent the dependencies caused by the rule in Fig-

ure 2.

Index Attribute/ Node Name Rule for

Function/ Attribute

Constant
...

6 X RAYS HorizPos: X
...

8 Y RAYS VertPos: Y
...

14 Parent MASS Width
15 Parent MASS Height

16 LeftSib RAYS HorizPos:X

17 LeftSib RAYS HorizPos:Y
...

30 Width MASS (rule header)
31 * MASS Width

32 0.666667 MASS Width

33 Height MASS (rule header)
34 * MASS Height

35 0.666667 MASS Height

36 HorizPos:X RAYS (rule header)
37 VertPos:Y RAYS (rule header)

Fig. 6. A portion of the component array resulting from parsing the style sheet shown

in Figure 7. Indices 0-9 represent the attribute-access block, indices 10-21 represent
the navigation block, and indices 22-37 represent the miscellaneous block.

10

MASS {

Width = Parent . Width * 0.666667;

Height = Parent . Height * 0.666667;

BgColor = "yellow";

Fill = BG_SOLID;

}

RAYS {

/* This will automatically space out all

rays radially around the sun's mass */

HorizPos:X = LeftSib . X;

VertPos:Y = LeftSib. Y;

Linewidth = 5.0;

}

Fig. 7. A portion of a style sheet.

4 Discussion and Future Work

The Protean runtime system provides dramatic improvements in both space and

runtime e�ciency over the Shilpe runtime system's implementation of Hudson's

algorithm. Protean uses a novel system of bit arrays to represent dependencies

between the attribute values of document elements, instead of the multi-byte

�rst-class objects used by Shilpe.

Even with these improvements in space e�ciency, the memory required to

maintain style sheet information for a 1000-line Java program would still be

about six megabytes, which might be tolerable given the recent rapid decline in

memory prices but is still excessive. As a result, we expect to continue research

into ways to reduce memory consumption. Some ideas that we will explore are

{ Improving the component array data structure so that components that

appear in multiple rules can be shared;

{ Using a sparse representation for cached attribute values; and

{ Representing layout information (especially bounding boxes) in relative co-

ordinates, rather than absolute coordinates.

The Protean runtime system is quite general, but it makes certain assump-

tions and has certain limitations.

{ Hudson's attribute evaluation algorithm was originally designed for use with

graph-structured music documents [5]. The Proteus style sheet system as-

sumes that its documents are tree-structured, but the Protean runtime sys-

tem is not restricted to tree-structured documents.

{ In general, Protean requires that dependency-causing components of style

rules can be inverted unambiguously. The one violation of this assumption

in Proteus (the Parent function) is handled as a special case.

{ Protean is a \one-way" constraint system. The fact that an attribute valueX

is dependent on an attribute value Y does not mean that Y is dependent on

11

X. In contrast, the SkyBlue constraint solver [13] is an example of a \multi-

way" constraint system, supporting dependencies in both directions. Multi-

way constraint systems are interesting and very useful for certain graphic-

object transformational applications in which all attributes are subject to

change from external forces (such as users), but the one-way constraint model

is simpler and appears to be well-suited to the multimedia style sheet task.
{ SkyBlue also provides a general solution to the problem of cyclic constraints.

Protean is capable of detecting cycles and will not crash or in�nitely loop

because of them, but does not guarantee that useful attribute values will be

computed when cycles are present in the constraint rules.

Our future research will continue to explore style sheet systems and their

applications to multimedia documents and programming environments. We seek

to improve the power and ease of use of style sheet languages and to develop

direct manipulation tools for style sheet development. We are continuing the

development of the model of media used in con�guring Proteus [10] and plan to

extend it to better address issues of user interaction. Finally, the best document

model for integrating program source code and multimedia documentation has

not been identi�ed and we hope to address this issue.

References

1. Susan L. Graham. Language and document support in software development en-

vironments. In Proceedings of the Darpa '92 Software Technology Conference, Los
Angeles, April 1992.

2. Susan L. Graham, Michael A. Harrison, and Ethan V. Munson. The Proteus pre-

sentation system. In Proceedings of the ACM SIGSOFT Fifth Symposium on Soft-

ware Development Environments, pages 130{138, Tyson's Corner, VA, December

1992. ACM Press.
3. Web Design Group. Cascading style sheets. Home Page at

http://www.htmlhelp.com/reference/css.
4. Scott E. Hudson. Incremental attribute evaluation: A
exible algorithm for lazy

updates. ACM Transactions on Programming Languages and Systems, 13(3):315{

341, 1991.
5. Scott E. Hudson and Roger King. Semantic feedback in the Higgens UIMS. IEEE

Transactions on Software Engineering, 14(8):1188{1206, August 1988.
6. ISO/IEC. Information technology | Text and o�ce systems | Document Style

Semantics and Speci�cation Language (DSSSL), August 1994. Draft International

Standard ISO/IEC DIS 10179.2.
7. N. Layaida and L. Sabry-Ismail. Maintaining Temporal Consistency of Multimedia

Documents Using Constraint Networks, pages 124{135. Multimedia Computing

and Networking. SPIE, January 1996.
8. Alok Mittal. SHILP�E: A presentation system for Ensemble. Master's thesis, Uni-

versity of California, Berkeley, California, December 1995.
9. Ethan V. Munson. A new presentation language for structured documents. Elec-

tronic Publishing: Origination, Dissemination, and Design, 8:125{138, Septem-

ber 1995. Originally presented at EP96, the Sixth International Conference on

Electronic Publishing, Document Manipulation, and Typography, Palo Alto, CA,

September 1996.

12

10. Ethan V. Munson. Toward an operational theory of media. In Proceedings of the

Third International Workshop on Principles of Document Processing. Springer-
Verlag, Palo Alto, CA, September 1996. To be published as part of the Lecture

Notes in Computer Science series.

11. Ethan Vincent Munson. Proteus: An Adaptable Presentation System for a Software
Development and Multimedia Document Environment. PhD dissertation, Univer-

sity of California, Berkeley, December 1994. Also available as UC Berkeley Com-

puter Science Technical Report UCB/CSD-94-833.
12. Vincent Quint. The languages of Grif. Available by anonymous ftp from ftp.imag.fr

in directory /pub/OPERA/doc, December 1993. Translated by Ethan V. Munson.

13. Michael Sannella. The SkyBlue constraint solver. Technical Report 92-07-02,
University of Washington Department of Computer Science, 1992. Available at

http://www.cs.washington.edu/research/constraints.

14. Louis Weitzman and Kent Wittenburg. Grammar-based articulation for multime-
dia document design. Multimedia Systems, 4(3):99{111, 1996.

