
The Jackal Agent Communication Infrastructure

R. Scott Cost

Laboratory for Advanced Information Technology/

Center for Architectures for Data-driven Information Processing

Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County

Baltimore, Maryland 21250

cost@acm.org

Abstract. Jackal is a Java-based tool for communication using the

KQML agent communication language. Some features that make it ex-

tremely valuable to agent development are its conversation manage-

ment facilities,
exible, blackboard style interface and ease of integra-

tion. Jackal has been developed in support of an investigation of the use

of agents in enterprise-wide integration of planning and execution for

manufacturing. Additionally, Jackal has been used as a framework for

exploring alternative conversation-based approaches to managing agent

interaction. In particular, we have been investigating the use of Colored

Petri Nets as the underlying formal model for a conversation speci�ca-

tion language. This model carries the relative simplicity and graphical

representation of the more familiar Finite State Machine, along with

greater expressive power and support for concurrency. This paper de-

scribes Jackal at a surface and design level, and demonstrates its use in

a multi-agent system that supports intelligent integration of enterprise

planning and execution. It further describes the use of Colored Petri

Nets for the speci�cation of interation protocols within a system such as

Jackal.

1 Introduction

Jackal is a Java package that allows applications written in Java to communicate

via the KQML [24] agent communication language. It is designed to be used as

a `tool' by other applications, in that it does not require that applications be

modi�ed or extend some standard shell. Additionally, Jackal is designed so that

multiple instances of it, and therefore multiple agents, may be run within the

same Java Virtual Machine.

Jackal has been developed as part of a larger e�ort to develop an agent in-

frastructure for manufacturing information
ow. It has been used to facilitate

communication among diverse agents responsible for collecting, processing and

distributing information on a manufacturing shop
oor. In this role, it has be

used to investigate conversation-based approaches to managing inter-agent com-

munication.

Conversations are a useful means of structuring communicative interactions

among agents, by organizing messages into relevant contexts and providing a

common guide to all parties. The value of a conversation-based approach is

largely determined by the conversational model it uses. The presence of an un-

derlying formal model supports the use of structured design techniques and

formal analysis, facilitating development, composition and reuse. Most conver-

sation modeling projects to date have used or extended �nite state machines

(FSM) in various ways, and for good reason. FSMs are simple, depict the
ow of

action/communication in an intuitive way, and are suÆcient for many sequen-

tial interactions. However, they are not adequately expressive to model more

complex interactions, especially those with some degree of concurrency. Colored

Petri Nets (CPN) [34, 35, 36] are a well known and established model of con-

currency, and can support the expression of a greater range of interaction. In

addition, CPNs, like FSMs, have an intuitive graphical representation, are rela-

tively simple to implement, and are accompanied by a variety of techniques and

tools for formal analysis and design.

We have explored the use of model-based conversation speci�cation in the

context of multi agent systems (MAS) supporting manufacturing integration [58].

Agents in our systems are constructed using the Jackal agent development plat-

form [14], and communicate using the KQML agent communication language

(ACL) [24]. Jackal, primarily a tool for communication, supports conversation-

based message management through the use of abstract conversation speci�ca-

tions, which are interpreted relative to some appropriate model. Conversation

speci�cations, or protocols, can describe anything from simple message/acknowledgment

interactions to complex negotiations.

In next section, we introduce Jackal within the context of some other related

agent systems, and follow that with some motivation for higher-level conversation

speci�cation. Next, we present Jackal's design in some detail, followed by a

discussion of the domain within which Jackal has been developed - enterprise

integration automation - and illustrate this with an example. Having discussed

the Jackal framework, we then present CPNs, the model we propose to use, in

more detail. Following this, we discuss the implementation of these ideas in a

real MAS framework. Finally, we present two examples of CPN use: the �rst,

speci�cation of a simple KQML register conversation, and the next, a simple

negotiation interaction.

2 Jackal and Agent Development

Agents that will interact with one another require some method of communica-

tion in order to coordinate their activities and distribute and collect information.

To this end, several agent communication languages (e.g., KQML [24], FIPA

ACL [25], ARCOL [25], ICL [47], AgenTalk [38], KaOS [8], and AOP [64]),

and various software tools for them (e.g., TKQML [15], OAA [47], JAT and

JATLite [26, 59]), have been developed. Jackal is a tool for the use of KQML

by agents written in the Java programming language. Java is a useful language

for writing agents because it is relatively platform independent and has good

language support for multi-threading. Jackal bene�ts from these properties, and

relies exclusively on the Sun JDK 1.2 classes and virtual machine, unmodi�ed.

This maximizes the likelihood that Jackal-based agents can run without modi-

�cation on any platform that supports Java. Not only can Jackal-based agents

run on diverse or remote environments; many may coexist within the same Java

Virtual Machine. This is exploited by transparent protocol adapters for shared

memory message passing.

Adding KQML communication abilities to any Java program requires min-

imal modi�cation of existing code. This is because Jackal's functionality is ac-

cessed through a class instance, which can be shared among agent components.

Thus, after creating an instance of Jackal (the J3.Intercom Class) the agent ac-

cesses Jackal's functionality through method calls on this instance, which can be

shared or passed as a parameter to other classes. This is in contrast to systems

that require a program to subclass an agent shell, or otherwise restructure itself.

With this Jackal instance, the agent gains more than just the ability to send and

receive messages, however. Jackal's design is based in large part on, and imple-

ments, the KQML Naming Scheme (KNS), an evolving standard for resolving

agent names in a hierarchically structured, dynamic environment. This means

that the agent application need only deal with symbolic agent names, and may

leave issues such as physical address resolution and alias identi�cation to the

Jackal infrastructure.

Two components that work together to provide the greatest bene�t to the

agent are the conversation management routines and the Distributor, a black-

board for message distribution. The conversation system supports the use of

easily interchangeable protocols for interaction, which guide the behavior of the

system. The Distributor presents a
exible, active interface for internal mes-

sage retrieval by agent components. While the Distributor optimizes access to

the message
ow, it is the conversation system that gives it its real value; the

next section will discuss in depth the rational behind the conversation-based

approach.

3 Conversation-Based Speci�cation of Interaction

The study of ACLs is one of the pillars of current agent research. KQML and

the FIPA ACL are the leading candidates as standards for specifying the encod-

ing and transfer of messages among agents. While KQML is good for message-

passing among agents, the message-passing level is not actually a very good one

to exploit directly in building a system of cooperating agents. After all, when an

agent sends a message, it has expectations about how the recipient will respond

to the message. Those expectations are not encoded in the message itself; a

higher-level structure must be used to encode them. The need for such conversa-

tion policies is increasingly recognized by the KQML community [40, 41, 42, 43],

and has been formally recognized in the latest FIPA draft standard [25, 17].

It is common in KQML-based systems to provide a message handler that

examines the message performative to determine what action to take in response

to the message. Such a method for handling incoming messages is adequate for

very simple agents, but begins to break down as the range of interactions in

which an agent might participate increases, necessitating selection based on a

number of additional factors relating to the current message and others which

preceded it. Missing from the traditional message-level processing, but required

for this more complex scenario, is a notion of message context.

A notion growing in popularity is that the unit of communication between

agents should be the conversation. This is evidenced by the advent of a conver-

sation policies workshop at the 1999 Autonomous Agents Conference. A conver-

sation is a pattern of message exchange that two (or more) agents agree to follow

in communicating with one another. In e�ect, a conversation is a communica-

tions protocol, albeit one that may be initiated through negotiation, and may be

short-lived relative to the way we are accustomed to thinking about protocols.

A conversation lends context to the sending and receipt of messages, facilitat-

ing interpretation that is more meaningful. The adoption of conversation-based

communication carries with it numerous advantages to the developer. There is

a better �t with intuitive models of how agents will interact than is found in

message-based communication. There is also a closer match to the way that net-

work research approaches protocols, which allows both theoretical and practical

results from that �eld to be applied to agent systems. Also, conversation struc-

ture can be separated from the actions to be taken by an agent engaged in the

conversation, facilitating the reuse of conversations in multiple contexts.

Until very recently, little work has been devoted to the problem of conver-

sation speci�cation and implementation for mediated architectures. Increased

interest is evidenced by the advent of a workshop on conversation policies at the

Third International Conference on Autonomous Agents, in 1999. Strides must

be taken to make conversation speci�cations easy to encode and reuse. Addi-

tionally, libraries of speci�cations must be compiled, along with an ontologies of

conversations.

To achieve these goals, we must solve three main problems:

1. Conversation speci�cation: How can conversations best be described so that they

are accessible both to people and to machines?

2. Conversation sharing: How can an agent use a conversation speci�cation standard

to describe the conversations in which it is willing to engage, and to learn what

conversations are supported by other agents?

3. Conversation aggregation: How can sets of conversations be used as agent `APIs'

to describe classes of capabilities that de�ne a particular service or capability?

3.1 Conversation Speci�cation

A speci�cation of a conversation that could be shared among agents must contain

several kinds of information about the conversation and about the agents that

will use it. First, the sequence of messages must be speci�ed. Traditionally, de-

terministic �nite-state automata (DFAs) have been used for this purpose; DFAs

can express a variety of behaviors while remaining conceptually simple. For more

sophisticated interactions, however, it is desirable to use a formalism with more

support for concurrency and veri�cation. This is the motivation behind our in-

vestigation of CPNs as an alternative mechanism. Next, the set of roles that

agents engaging in a conversation may play must be enumerated. Many conver-

sations will be dialogues, and will specify just two roles; however conversations

with more than two roles are equally important, representing the coordination

of communication among several agents in pursuit of a single common goal. For

some conversations, the set of participants may change during the course of the

interaction.

DFAs and roles dictate the syntax of a conversation, but say nothing about

the conversation's semantics. The ability of an agent to read a description of a

conversation, then engage in such a conversation, demands that the description

specify the conversation's semantics. However, reliance on a full-blown, highly

expressive knowledge representation language may limit a speci�cation's useful-

ness. We believe that a simple ontology of common goals and actions, together

with a way to relate entries in the ontology to the roles, states, and transitions

of the conversation speci�cation, will be adequate for many basic purposes. This

approach sacri�ces expressiveness for simplicity and ease of implementation. It

is nonetheless perfectly compatible with attempts to relate conversation policy

to the semantics of underlying performatives, as proposed for example by [7, 8].

Most complex interactions, however, will require the use of a model that is more

expressive, but which retains many of the positive features of DFAs; we will

return to this later.

The capabilities we have outlined will allow the easy speci�cation of indi-

vidual conversations. To develop systems of conversations though, developers

must have the ability to extend existing conversations through specialization

and composition. Specialization is the ability to create new versions of a conver-

sation that are more detailed than the original version; it is akin to the idea of

inheriting a subclass in an object-oriented language. Composition is the ability

to combine two conversations into a new, compound conversation. Development

of these two capabilities will entail the creation of syntax for expressing a new

conversation in terms of existing conversations, and for linking the appropriate

pieces of the component conversations. It will also demand solution of a vari-

ety of technical problems, such as naming con
icts, and the merger of semantic

descriptions of the conversations.

3.2 Conversation Sharing

A standardized conversation language, as proposed above, dictates how conver-

sations should be represented; however, it does not say how such representations

are to be shared among agents. While the details of how conversation sharing is

accomplished are more mundane than those of conversation representation, they

are nevertheless crucial to the viability of dynamic conversation-based systems.

Three questions present themselves:

{ How can an agent map the name of a conversation to the speci�cation of that

conversation?

{ How can one agent communicate to another the identity of the conversation it is

using?

{ How can an agent determine what conversations are handled by a service provider

that does not yet know of the agent's interest?

3.3 Conversations Sets as APIs

The set of conversations in which an agent will participate de�nes an interface to

that agent. Thus, standardized sets of conversations can serve as abstract agent

interfaces (AAIs), in much the same way that standardized sets of function calls

or method invocations serve as APIs in the traditional approach to system-

building. That is, an interface to a particular class of service can be speci�ed

by identifying a collection of one or more conversations in which the provider

of such a service agrees to participate. Any agent that wishes to provide this

class of service need only implement the appropriate set of conversations. To be

practical, a naming scheme will need to be developed for referring to such sets of

conversations, and one or more agents will be needed to track the development

and dissolution of particular AAIs. In addition to a mechanism for establishing

and maintaining AAIs, standard roles and ontologies, applicable to a variety of

applications, will need to be created.

As mentioned, until recently there has been little work on communication

languages from a practitioner's point of view. If we set aside work on network

transport protocols or protocols in distributed computing (e.g., CORBA) as be-

ing too low-level for the purposes of intelligent agents, the remainder of the

relevant research may be divided into two categories. The �rst deals with the-

oretical constructs and formalisms that address the issue of agency in general

and communication in particular, as a dimension of agent behavior (e.g., Agent

Oriented Programming (AOP) [64]). The second addresses agent languages and

associated communication languages that have evolved to some degree to appli-

cations (e.g., TELESCRIPT [68], now Odyssey [28]). In both cases, the bulk of

the work on communication languages has been part of a broader project that

commits to speci�c architectures.

Agent communication languages like KQML provide a much richer set of in-

teraction primitives (e.g., KQML's performatives), support a richer set of com-

munication protocols (e.g., point-to-point, brokering, recommending, broadcast-

ing, multicasting, etc.), work with richer content languages (e.g., KIF), and are

more readily extensible than any of the systems described above. However, as

discussed above, KQML lacks organization at the conversation level that lends

context to the messages it expresses and transmits. Limited work has been done

on implementing conversations for software agents, and almost none has been

done on expressing those conversations. As early as 1986, Winograd and Flo-

res [70] used state transition diagrams to describe conversations. The COOL

system [3] has perhaps the most detailed current state transition-based model

to describe agent conversations. Each arc in a COOL state-transition diagram

represents a message transmission, a message receipt, or both. One consequence

of this policy is that two di�erent agents must use di�erent automata to engage

in the same conversation. We believe that a conversation standard should clearly

separate message matching from actions to be carried out when a match occurs;

doing so will allow a single conversation speci�cation to be used by all partici-

pants in a conversation. This, in turn, will allow conversation speci�cations to

describe standard services, both from the viewpoint of the service provider, and

from that of the service user.

COOL also uses an :intent slot to allow the recipient to decide which con-

versation structure to use in understanding the message. This is a simple way

to express the semantics of the conversation. We argue below that more general

descriptions of conversation semantics will be needed if agents are to acquire

and engage in new conversations on the
y. The challenge will be to develop a

language that is general enough to express the most important facts about a

conversation, without being so general that it becomes an intellectual exercise,

or too computationally expensive to implement.

Other conversation models have been developed, using various approaches.

Extended FSM models, which, like COOL, focus more on expressivity than ad-

herence to a model include Kuwabara et al. [39, 38], who add inheritance to

conversations;Wagner et al. [67]; and Elio and Haddadi [19], who de�nes a multi-

level state machine, or ATM. A few others have chosen to stay within the bounds

of a DFA, such as Chauhan [9], who uses COOL as the basis for her multi-agent

development system, 1 Nodine and Unruh [54, 55], who use conversation speci�-

cations to enforce correct conversational behavior, and Pitt and Mamdani [60],

who use DFAs to specify protocols for BDI agents. Also using automata, Mar-

tin et al. [48] employ Push-Down Transducers (PDT). Lin et al. [46] and Cost

et al. [13] demonstrate the use of Colored Petri Nets, and Moore [53] applies

state charts. Parunak [57] employs Dooley Graphs. Bradshaw [7] introduces the

notion of a conversation suite as a collection of commonly used conversations

known by many agents. Labrou [40] uses de�nite clause grammars to specify

conversations. While each of these works makes contributions to our general un-

derstanding of conversations, more work must be done in getting agents to share

and use conversations.

3.4 De�ning Common Agent Services via Conversations

A signi�cant impediment to the development of agent systems is the lack of

basic standard agent services that can be easily built on top of the conversa-

tion architecture. Examples of such services are: name and address resolution;

authentication and security services; brokerage services; registration and group

formation; message tracking and logging; communication and interaction; visual-

ization; proxy services; auction services; work
ow services; coordination services;

and performance monitoring services. Services such as these have typically been

implemented as needed in individual agent development environments. Two such

examples are an agent name server, treated below, and an intelligent broker.

1 More recent work with this project, JAFMAS, explores conversion of policies to

standard Petri Nets for analysis [27].

Agent Name Server At �rst blush, the problem of mapping from an agent

name to information about that agent (such as its address) seems trivial. How-

ever, solving this problem in a way that can easily scale as the number of users

and amount of data to be processed grows is diÆcult. We believe that develop-

ment of a successful symbolic agent addressing mechanism demands at least two

advances:

1. A simple naming convention to place each role an agent might play in an organi-

zation at a unique point in a namespace for that organization. Currently there is

no widely accepted mechanism for universal unique agent naming (in the way that

there now is, e.g., for Internet hosts or web documents).

2. An eÆcient, scalable name service protocol for mapping from symbolic role names

to information about the agents that �ll those roles.

The proposed KNS (Section 4) meets both of these demands.

To a large extent, the desired techniques can be modeled after existing name

service techniques such as the DNS (which is widely implemented) and CORBA

(whose namespace mechanisms are only narrowly implemented). Such techniques

are well studied, highly reliable, and scalable. Agent name service will di�er from

DNS primarily in that agents will tend to appear, disappear, and move around

more frequently than do Internet hosts. This will necessitate the development of

naming conventions that are less rigid than those used in DNS, and algorithms

for mapping from names to agent information that do not rely on the static local

databases found in DNS.

Intelligent Broker A system that is to respond to the demands of multiple

users, with needs that vary over time, under an ever-increasing query load must

be able to do on-the-
y matching of queries to documents and services. In an

agent-based architecture, this means that one agent must be able to dynami-

cally discover other agents based on the content of their knowledge. It should

exploit the research on conversations and the symbolic agent-addressing scheme

described above, while at the same time �tting neatly into existing brokered

systems. Such systems will continue to see a single broker where there had been

a single broker all along; now, however, that broker will have the option of co-

ordinating many other disparate brokers of varying capabilities.

4 KNS

Before communication can take place, there must be a known destination. KNS

adds a communication layer in which symbolic names are mapped to actual

transport addresses. In addition, however, it o�ers advanced support for dynamic

group formation and disbanding, and maintenance of persistent, distributed

agent identity. KNS is currently being used within Jackal, UMBC's Java-based

agent development framework. This section introduces the basic concepts un-

derlying KNS.

The problem of agent naming is central to agent communication. We would

like to be able to talk about agents with reasonable certainty that we are all

discussing the same ones, and we would like to be able to send messages to

agents that we know by name. The former statement argues that names should

be unique, within some context, and the latter that they should be resolvable

into addresses which can be used by our underlying transport mechanism. This

can be accomplished by having the address either implicitly or explicitly encoded

in the name, or by providing a service to perform the resolution.

We can think of the problem in three layers of abstraction. At the top is the

agent's identity, that which di�erentiates it from all other agents. One step below

this is the name, and at the base is the address. Although an agent's identity

will never change (by de�nition), its name(s) may, based on changing roles or

associations. Addresses may change even more frequently, because of physical

relocation or constraints of the underlying operating system. This dynamism

argues for the use of service-based resolution (SBR) between both layers. In

addition, SBR allows for the use of symbolic names with useful meaning.

Uniqueness is a more diÆcult problem. It is trivial to assign agents simple

unique identi�ers (e.g. serial numbers) from some central authority. However,

if an agent holds such an identi�er, it must still present the tag to some au-

thority for resolution. An address, for instance a URL, eliminates the need for

SBR altogether, but ties the agent to that address. We propose to represent an

agent's identity by the collection of names it uses which we call the persistent

distributed identity (PDI). This set can change as names are added or removed,

but it remains a constant reference point for the agent itself. Protocols added

to the basic agent registration scheme maintain the PDI with little overhead. In

addition to the bene�ts of identity, the scheme provides a valuable mechanism

for storing and retrieving information relating to the agent such as certi�cates.

KNS is a set of protocols for agent naming and addressing. They were devel-

oped and used as a basis for the design of Jackal 3.0. This section provides an

overview of KNS.

The KNS covers several layers of abstraction, and provides basic support for

agent operation. It should be noted that the KNS protocols are layered on top

of the KQML, or linguistic, layer.

First, some de�nitions:

1 Definition (Given Name) A symbolic name chosen for the agent applica-
tion by itself or some other authority.

2 Definition (Local Name) A Given Name quali�ed by a numeric index,
and assigned by a Domain Registrar upon registration.

3 Definition (FQAN) Fully Quali�ed Agent Name; the canonical form for
names in KNS. Every FQAN names a domain.

4 Definition (Domain) A virtual group, de�ned by registration and unregis-
tration, and managed by the owner of the FQAN which names it.

5 Definition (Alias) A FQAN that is owned by the same agent as another
FQAN is an alias for that FQAN.

6 Definition (Alias Set) Also `Alias Net'; for an agent A, the set of domains
with which A is registered.

7 Definition (AS) Agent Server; holds a database of information for given
agent.

8 Definition (PAS) Primary AS; there is only one for any given agent.

9 Definition (SAS) Backup (secondary) AS; serve as backup to PAS. There
can be any number.

4.1 Assumptions

KNS makes some basic assumptions about the environment in which it is used:

{ Message delivery by the underlying transport mechanisms is reliable. The protocols

do not incorporate any retry mechanism for delivery failure to a speci�ed address.

Further, if KNS protocols are properly implemented, including strong message

delivery, an agent may be consider unreachable if an expected acknowledgment is

not received on a single transmission.

{ Authentication (KNS does not specify what kind) in the message transport layer

assures that the name in the sender �eld of the message is in fact the sender of

the message. Security in KNS is identity based, so any privileges enjoyed by the

named sender are applied to the accompanying transaction.

{ Agents purporting to implement KNS correctly and responsibly render services as

appropriate.

{ It is possible to distinguish agents that implement KNS from those that do not.

This relates to the general problem of determining an agents language or message

format. Initially, an agent should be given the name of another with which to

register; that agent does implement KNS, as do any agents located through KNS

name/address resolution. However, new contacts in unrelated systems may not.

4.2 Agent Names

The foundation of KNS is its agent-naming scheme. It encompasses both sym-

bolic and direct (URL-based) names. The symbolic component is modeled after

the DNS scheme [50, 51], and extends it to allow a URL to �ll the root position

of a name. A FQAN is de�ned as follows:

GivenName = [a� zA� Z0 � 9]f1; 64g (1)

NameIndex = 0 j ([1 � 9][0� 9]f; 10g) (2)

LocalName = < GivenName >< NameIndex > (3)

FQAN = (< LocalName > :) �

(< GivenName >j< LocalName >j< URL >) (4)

As in DNS, names registered within a Domain must be unique. Rather than

accepting only applications for unique names, KNS adopts the policy of ac-

cepting any name and adding a distinguishing suÆx. Some examples of FQANs

are: bob[4].ans, freida, barbecue[34].cs and fred[2].http://www.umbc.edu/. Since

names correspond to entity/Domain relationships, an agent may have any num-

ber of names, and may use them interchangeably.

In light of our earlier discussion of name uniqueness, it should be clear that

this de�nition allows for unquali�ed names. This is included as a convenience,

since many contained systems use well-known names for common resources. We

assume then that unquali�ed names are used only in closed contexts in which

the address of name root is publicly known. In general, the use of fully quali�ed

names is preferred. The technically correct de�nition provides for a root of URL

only.

Every FQAN represents a Domain. Thus, an agent can `have', or manage,

multiple Domains, although none is required to actively accept Domain reg-

istrations. An agent registers with a Domain either with its Given Name, or

under another FQAN that it holds. In the latter case, protocols are engaged

to update the Alias Set for that agent. In either case, the agent is given a

new FQAN, which is derived from the Given Name of the name submitted. For

example, if an agent registers orianus.local with freckles.cs[1].umbc.ans (alter-

natively, freckles.cs[1].umbc.http://jackal.cs.umbc.edu/ans), it may receive the

FQAN orianus[14].cs[1].umbc[23].ans.

An alternative is to represent the name of an agent as an actual URL. While

this would be enormously convenient, it creates unacceptable naming ambiguity.

Any URL should be usable as a legal agent name, for reasons of
exibility, and for

compatibility with systems that use only URLs as agent names. Given that con-

straint, it becomes impossible to determine which portion of a URL constitutes

the root, and which the domain. For example, http://jackal.cs.umbc.edu/ans.umbc.cs[1].freckles

could indicate four di�erent names, depending on where one decided the root

name ended. It is diÆcult to remedy this problem directly without abusing or

outright violating the URL syntax.

4.3 KNS Architecture

KNS is served by a dynamic, distributed database system, depicted in Figure 1.

The two databases maintained are the Domain Registry (one for each Domain),

and the Agent Registry (one for each agent, and one or more backups). We

impose one additional virtual structure on the name hierarchy, called the Alias

Set (or AliasSet). The Alias Set consists of all Domains with which an agent has

ever registered. One Domain is designated as the Primary Agent Server (PAS),

and it hosts the primary agent registry. Likewise, a Backup Agent Server (BAS)

hosts the backup agent registry. All Agent Servers (AS) maintain a reference

to the target agent's PAS and BASs. ASs are arranged in a star con�guration

in order to minimize messaging overhead. The AliasSet itself is treated as a

single entity; queries are directed to any member, and if necessary, are forwarded

directly to the PAS. Member agents notify the PAS of any changes, and the PAS

broadcasts updates to the remaining members of the set.

One dependency is that agent information is not discarded. While this is

not entirely realistic, is means that agents can be located most of the time, and

that more resources can be dedicated to speci�c localities to increase the level

of fault tolerance. For example, under the KNS scheme, if agent bob.erols.ans

unregisters from erols.ans, it will still be possible to locate bob through the

erols.ans domain. If erols.ans terminates, and ans has lifted its domain, location

is still possible. However, if erols.ans goes down catastrophically or otherwise

dissolves the domain, it will not be possible to reach bob via its previous name.

Agents who are concerned with reachability would therefore prefer to register

with strong domains, and would show preference for names that they felt would

more reliably persist. This situation could be improved by allowing agents to

register, have included in their address information, or send with messages an

alternate name; this is reminiscent of the use of sender and reply-to �elds.

ans1

umbc[2].ans

Agent99

Baltimore

1. Register as Agent99, get
name: Agent99[1].ans1

2. Register as Agent99.ans1, get
name Agent99[12].umbc[2].ans

3. Register as Agent99[12].umbc[2].ans,
get name Agent99[3].Baltimore

Fig. 1. KNS Alias Network. The registrars of Agent99 coordinate to maintain the

agent's distributed identity.

4.4 KNS Protocols

KNS speci�es protocols for agent addressing and naming, authentication, aliasing

and Domain registration. These are sketched below:

1. Group Membership

(a) Register: Register with a new Domain (multiple registrations are permitted).

Registration implies a commitment to membership in a Domain. A registration

must contain one address that is reachable by the registrar. The name given

must be a FQAN. Registration causes the intended registrar to invoke the

protocol for joining an AliasSet, if the name given by the registrant indicates

a prior domain association.

(b) Join: Identify the Alias Set for a registrant, and join. The agent accepts the

responsibility of forwarding PAS queries, and becomes eligible to become a

BAS for the registering agent, though the latter is not required.

(c) Unregister: Terminate association with a Domain. The registration entry is

not deleted; it is moved to a dormant status, and the addresses are cleared.

The potential for unregistration creates instability in the naming hierarchy.

For this reason, one of two protocols should be followed in the event that an

agent must leave a Domain.

{ Domain Lifting: For each domain owned by the departing agent, the owner

of the parent domain takes on the subdomain and its registration respon-

sibilities. This involves a transfer of the registry, and a conversion of the

departing agents registration entry from real to virtual.

{ Recursive Domain Dissolution: The agent wishing to unregister �rst ex-

cuses or discharges (below) all agents registered in the Domain that is to

be eliminated, using existing protocols. Each in turn does the same until

Domain and all of its subdomains are eliminated.

Clearly, lifting is preferable to dissolution, since no naming information is lost.

However, dissolution does at least prevent the use of names after they have

become invalid.

(d) Excuse: Request that a registrant unregister from a named group. A posi-

tive acknowledgment constitutes an implicit unregistration. A negative or no

acknowledgment is followed by a discharge.

(e) Discharge: Revoke an agent's membership in a Domain. This action does not

require consent or acknowledgment; it should be used only in order to elicit a

response once a request to unregister has failed.

(f) Leave an Alias Set: Terminate relationship with principal for that set. If an

agent is the principal or a secondary, it must �rst arrange successful transfer

of the database and database responsibilities.

2. Registry Query/Update

(a) Query for the address(es) of an agent: Note that address queries are posed

to Domain registries; therefore, querying an agent for its own address(es) is

not provided for. KNS does not prohibit responding to queries about one's

own addresses. However, some systems which integrate KNS, e.g. Jackal, do

not provide agents with access to information at the message transport level

directly.

(b) Update a registry entry: by adding or deleting an address or other data. It is

permitted for an agent to remove all addresses from its registration entry; this

does not imply unregistration.

(c) Invalidate: notify an agent that an address it has provided is invalid. The agent

receiving the invalidate should take steps to right the registry for the domain

in question, either by posing queries, marking or canceling the o�ending entry.

3. Agent Information Server Query/Update

(a) Identify the alias server for an agent of a Given Name.

(b) Verify a FQAN: This is implemented as an address query, which will return

an address packet if the agent's name is found in the registry.

(c) Get the aliases for an agent of a Given Name.

(d) Request that another agent replicate a (local) alias database: An agent's PAS

may at its discretion request that any or all members of the agent's AliasSet

replicate the AID. If an agent accepts the request, it becomes a BAS, and

receives updates from the PAS. Its new status is broadcast to the members of

the AliasSet.

(e) Abdicate: A PAS relinquishes control of the AliasSet to a member BAS. Upon

acceptance, the abdicating PAS begins forwarding all incoming traÆc to the

new PAS, while the new PAS broadcasts the change of status to all members of

the set. Any agent that serves as a BAS accepts the responsibility of potentially

serving as PAS.

(f) Resign: A BAS noti�es the AliasSet's PAS that it will no longer serve as

BAS. Only a cursory acknowledgment is required. The resigning agent is still

a member of the AliasSet.

4. Additional Features

(a) Broadcast. Messages sent to a virtual Domain are automatically copied by

the registrar of the virtual Domain to all members. This is done as a `direct'

forward; that is, no modi�cation or wrapping of the message. This process

repeats itself recursively.

5 An Overview of Jackal's Design

Java VM

Java Class Libraries

Jackal Svc Extensions Agent/User Services

Jackal Services

Intercom/Jackal API

Utility

Message Bus

Bu�ers

Synch

Fig. 2. Jackal Architecture

Jackal was designed to provide comprehensive functionality, while presenting

a simple interface to the user. Thus, although Jackal consists of roughly seventy

distinct classes, all user interactions are channeled through one class, hiding most

details of the implementation. Although there are signi�cant bene�ts in some

cases to sharing a Jackal instance among several agents, the typical usage is as an

accessory to an individual agent. Thus, the Jackal architecture does not describe

a multi-agent system based around a shared tuple space, as it is often perceived,

but a private system of which each agent in a system owns an instance.

5.1 Architecture

As illustrated in Figure 5, Jackal has a layered architecture which facilitates

dynamic recon�guration. Its native execution environment is standard, o�-the-

shelf Java. Central to Jackal's operation is a set of enhanced synchronization

primitives and bu�ers, which are used to tie together its very loosely coupled

components. The Message Bus is the essence of Jackal. Consisting principally

of the conversation interpreters and a message redistribution system, it is the

common path for all message traÆc in a Jackal-based agent. This Bus, wrapped

along with some additional utilities, by the Jackal API, is referred to as the

Jackal Core. Both Jackal and agent services interact with the Core and each

other through the API. Some examples of Jackal services are the Agent Naming

Services, and Message Transport Services. The Jackal Package as it is typically
distributed consists of the Core and a set of standard services.

5.2 Intercom and the Jackal Core

The Intercom class is the bridge between the agent application and Jackal. The

only visible component of the Core, it controls startup and shutdown of Jackal,

provides the application with access to internal methods, houses some common

data structures, and plays a supervisory role to the communications infrastruc-

ture.

5.3 Message Bus

All messages, between agents or even intra-agent components, traverse Jackal's

Message Bus. Through use of the Message Transport Service, the Bus can be

viewed as a distributed entity, and messages may be passed to symbolically

named entities, without regard to their physical location.

Conversations Based largely on the work of Labrou and Finin [43] regarding

a semantics for KQML, we have created protocols which describe the correct

interactions for various performatives and subsequent messages. These protocols

are `run' as independent threads for all current conversations. This allows for

easy context management, while providing constraints on language use and a

framework for low-level conversationmanagement. This is in contrast with earlier

approaches (e.g., TKQML [15]) that require the agent to maintain context on

their own.

The Conversation Space is a virtual entity, consisting of the collection of

currently active conversations, run by distinct threads on individual protocol

interpreters. Messages are associated with current (logical) threads based on

their ID and assigned to ongoing conversations. If no such assignment can be

made, a new conversation appropriate to the message is started. Declarative

conversation speci�cations are downloaded as needed at runtime from an online

repository. They can specify something as simple as a query-response interac-

tion, or as complex as a sophisticated, multi-party negotiation and beyond. In

conjunction with an ontology of well-known actions, these conversations can be

made to implement a wide range of agent behaviors.

The conversation management component o�ers a number of signi�cant ben-

e�ts to the agent:

{ Running conversations in individual threads provides maximum
exibility.

{ Conversations, in conjunction with the Distributor, route messages automatically

to the threads that need them.

{ Each conversation maintains a local store, which can be accessed by the agent via

a message ID, and which serves as the conversation's context.

{ Since conversations are declaratively speci�ed, they can be loaded on demand. Our

current agents download only the conversations they will need.

{ The conversation mechanisms and the speci�cation are almost completely indepen-

dent of the content or message language used, 2 and so could be easily be tuned

work in a `multi-lingual' environment.

{ Actions can be associated with conversation structures, enhancing their utility.

Distributor The Distributor is a Linda-like blackboard, which serves to match

messages with requests for messages. This is the sole interface between the agent

and the message traÆc. Its concise API allows for comprehensive speci�cation

of message requests. Requesters are returned message queues, and receive all

return traÆc through these queues. Requests for messages are based on some

combination of message, conversation or thread ID, and syntactic form. They

also permit actions, such as removing an acquired message from the blackboard

or marking it as read only. A priority setting determines the order or speci�city

of matching. Finally, requests can be set to persist inde�nitely, or terminate after

a certain number of matches.

The use of the Distributor in Jackal allows the integration of the conversation

management utilities easily into existing agents, by providing a
exible, message-

based interface.

5.4 Services

A service here refers to either components of the controlling agent, or subthreads

of Jackal itself. Two services packaged with Jackal are the Message Transport

Service and the Agent Naming Service.

Message Transport Service Jackal runs a Transport Module for each protocol

it uses for communication. Jackal 3.0 comes with a module for TCP/IP, which

supports SSL, and one for shared memory communication within a Java Virtual

Machine. Users can create and add additional modules for other protocols. A

Transport Module is responsible for receiving messages at some known address,

and transmitting messages out via a given protocol.

2 Messages in Jackal are represented as Java objects, essentially collections of at-

tribute/value pairs. The values can be of a variety of types. Jackal expects a message

to have certain basic attributes (e.g. sender, performative), and places no restrictions

on additional attributes. Values which are critical to Jackal's operation are mapped

to/from corresponding, internally correct values. The conversation framework itself

speci�es the methods to be applied to messages, such as comparisons, and so con-

versation templates can be tuned to any language. Note that this still leaves open

the question of management issues, which often vary from system to system.

A mechanism known as the Switchboard acts as an interface between the

Transport Modules and the rest of Jackal, facilitating the intake of new mes-

sages, and carrying out transmission requests from the application. Utilizing an

intelligent address cache, the Switchboard must formulate a plan for the delivery

of a message and implement it, without creating a bottleneck to message traÆc.

The address cache is a multilayered cache supporting various levels of locking,

allowing it to provide high availability. Unsuccessful address queries trigger un-

derlying KNS lookup mechanisms, while blocking access to only one individual

listing.

Naming and Addressing Service Jackal supports KNS transparently through

an intelligent address cache. Standard Jackal services exist to implement KNS,

and allow any agent to register with any other agent, facilitating the formation of

relationships or teams. Agents can hold multiple identities, and choose which to

use in di�erent situations. Protocols implemented by the naming services allow

agents to easily discover other agents, regardless of the their current location or

chosen identity.

6 Enterprise Integration

The production management system used by most of today's manufacturers

consists of a set of separate application softwares, each for a di�erent part of

the planning, scheduling, and execution (P/E) process [66]. Most P/E applica-

tions are legacy systems developed independently over many years, and are not

equipped to handle complex business scenarios [5, 33]. Typically, such scenarios

involve the coordination of responses by several P/E applications to external en-

vironment changes (price
uctuations, changes of requests from customers and

suppliers, etc.) and internal execution dynamics within an enterprise (resource

changes, mismatches between plan and execution, etc.). Timely solutions to these

scenarios are crucial to agile manufacturing, especially in the era of globalization,

automation, and telecommunication [18]. Currently, these scenarios are primar-

ily handled by human managers, and the responses are often slow and less than

optimal.

The Consortium for Intelligent IntegratedManufacturing Planning-Execution

(CIIMPLEX), consisting of several private companies and universities, was formed

in 1995 with the primary goal of developing technologies for intelligent enterprise-

wide integration of planning and execution for manufacturing [12]. CIIMPLEX

has adopted as one of its key technologies the approach of intelligent software

agents, and has experimented with several multi-agent systems (MAS) for vari-

ous diÆcult tasks involved in enterprise integration. Our e�ort on MAS develop-

ment has been concentrated on those P/E scenarios that represent exceptions to

the normal or expected business processes and whose resolution involves several

P/E applications [58]. Routine, normal communication between P/E applica-

tions is handled by another, non-agent based infrastructure that provides persis-

tent data transfer with static, pre-de�ned communication patterns; the message

format is the OAG's Business Object Document (BOD)

The scenarios for which we developed MASs include:

1. Process rate change. Signi�cant changes in the process rate of an essential operation

may a�ect the production plan and schedule. Moreover, depending on the severity

of the change, di�erent corrective actions may be required, ranging from doing

nothing to to increasing shift or machinery, or even rescheduling production (and

possibly delaying delivery of some orders).

2. Exception in data transfer. Even in routine exchange transaction data between ap-

plications, exceptions such as missing messages, messages out of sync, or messages

with incorrect format or parameters may occur. The source of theses errors needs

to be identi�ed and corrected, and, if necessary, data needs to be re-sent.

3. Application initialization. It is, at times, necessary to introduce into the integrated

environment a new application in order to replace an outmoded application or

to provide function that is not available in the existing environment. The new

application needs to be brought into sync with the rest of the system (e.g., it needs

to populate its own database with appropriate data from existing applications so

that it can start work from a state that is consistent with the rest of the system.)

To provide integrated solutions to the above outlined scenarios, as simple as

they are, is by no means a trivial undertaking. First, specialized agents need to

be developed to provide functions which are not covered by any of the exist-

ing P/E applications, such as exception detection, data collection and mining,

and impact analysis. As integration tasks, these functions fall into the `white

space' between the P/E applications. Next, a reliable and
exible inter-agent

communication infrastructure needs to be developed to allow agents to e�ec-

tively share information, knowledge, and services. Finally, a mechanism for the

runtime collaboration of all these pieces also needs to be developed.

In the next section, we will describe in detail an MAS we developed for

the process rate change scenario. In general, all MASs for the above scenarios

include an Agent Name Server (ANS) and a Broker Agent (BA) in order to

facilitate the coordination of other, specialized agents. All agents use the KQML

as the agent communication language, and use a subset of KIF that supports

Horn clause deductive inference as the content language. A special service agent,

called the Gateway Agent (GA), is created to provide interface between the

agent world and the application world. GA's functions, among other things,

include making connections between the transport mechanisms (e.g., between

TCP/IP and MQ Series) and converting messages between the two di�erent

formats (KQML/KIF and BOD). These agent systems are all supported by

Jackal [14]. From a pragmatic point of view, we have found these experiences

to demonstrate the value of the following features of Jackal in supporting the

development of an MAS.

{ It is light-weight with minimum operational overhead.

{ It is easy to use by the agent developer.

{ It provides mechanisms to ensure the syntactical and semantic correctness of mes-

sages.

{ It is
exible in switching between di�erent transport mechanisms and in specifying

conversation policies.

7 An Application Example

In this section, we demonstrate how the CIIMPLEX agent system supports

intelligent enterprise integration through a simple business scenario involving

some real manufacturing management application software systems.

7.1 The Scenario

The scenario selected, called process rate change and depicted in Figure 3, oc-

curs when the process time of a given operation on a given machine is reduced

signi�cantly from its normal value. When this type of event occurs, di�erent

actions need to be taken based on the type of operation and the severity of the

rate reduction. Some of the actions may be taken automatically according to

the given business rules, and others may involve human decisions. Some actions

may be as simple as recording the event in the logging �le, while others may

be complicated and expensive, such as requesting such as a rescheduling based

on the changed operation rate. Two real P/E application programs, namely the

FactoryOp (a MES by IBM) and MOOPI (a Finite Scheduler by Berclain), are

used in this scenario.

Fig. 3. The \process rate change" scenario

7.2 The Agents

Besides the three service agents, Agent Name Server (ANS), Broker Agent (BA),

and GA, the multi-agent system also employs the following special agents to

support managing this scenario.

1. The Process Rate Agent (PRA), featured below, is both a mining agent and a

monitoring agent for shop-
oor activities. As a mining agent, PRA requests and

receives the messages containing transaction data of operation completion from

GA. The data originates from FactoryOp in the BOD Format, and is converted

into KIF format by GA. PRA aggregates the continuing stream of operation com-

pletion data and computes the current mean and standard deviation of the pro-

cessing time for each operation. It also makes the aggregated data available for

other agents to access. As a monitoring agent, PRA receives from other agents the

monitoring criteria for disturbance events concerning processing rates and noti�es

the appropriate agents when such events occur.

2. The Scenario Coordination Agent (SCA) sets the rate monitoring criterion, re-

ceives the noti�cation for rate changes that meet the criterion, and decides, in

consultation with human decision-makers, appropriate action(s) to take for the

changed rate.

3. The Directory Assistance Agent (DA) is an auxiliary agent responsible for �nding

appropriate persons for SCA when the latter needs to consult human decision-

makers. It also �nds the proper mode of communication to that person.

4. The Authentication Assistance Agent (AA) is another auxiliary agent used by

SCA. It is responsible for conducting authentication checks to see if a person in

interaction with SCA has proper authority to make certain decisions concerning

the scenario.

7.3 The Predicates

Three KIF predicates of multiple arguments are de�ned. These predicates, OP-

COMPLETE, RATE, and RATE-CHANGE, are used to compose the contents of

messages between agents in processing the process rate change scenario. The OP-

COMPLETE predicate contains all relevant information concerning a completed

operation, including P/E-Application-id, machine-id, operation-id, starting and

�nishing time-stamps, and quantity. The RATE predicate contains all relevant

information concerning the current average rate of a particular operation at a

particular machine with a particular product. The RATE-CHANGE predicate

contains all the information needed to construct a BOD that tells MOOPI a

signi�cant rate change has occurred and a re-schedule based on the new rate

is called for. It is the responsibility of the SCA to compose an instance of the

RATE-CHANGE predicate and send it to GA when it deems necessary to request

MOOPI for a re-schedule, based on the process rate change noti�cation from

PRA and consultation with human decision makers.

7.4 Agent Collaboration and the Message Flow in the Agent

System

Figure 4 depicts how agents cooperate with one another to resolve the rate

change scenario, and sketches the message
ow in the agent system. For clar-

ity, ANS and its connections to other agents are not shown in the �gure. The

message
ow employed to establish connections between SCA and DA and AA

(brokered by BA) is not shown.

Fig. 4. The agent system for \process rate change" scenario

Each of these agents needs information from others to perform its designated

tasks. Since there is no pre-determined connection among the agents, the bro-

ker agent (BA) plays a crucial role in dynamically establishing communication

channels for inter-agent information exchange.

GA advertises that it can provide the OP-COMPLETE predicate. It also

advertises its ability to handle the RATE-CHANGE predicate. PRA advertises

that it has current process rates available for some operations in the form of the

RATE predicate. The following is an example an of advertise message from GA

to BA.

(advertise

:sender GA

:receiver BA

:reply-with <a unique id>

:content (subscribe :content (ask-one

:content (OP-COMPLETE ?x1 ?xn))))

PRA asks BA to recommend an agent that can provide the OP-COMPLETE

predicate, and receives the recommendation of GA in response. Similarly, SCA

asks BA to recommend an agent that can answer queries about the RATE pred-

icate and receives PRA in response. It also asks BA to recommend an agent

that can provide RATE-CHANGE predicates and receives GA in response. The

following is an example of recommend-one message from PRA.

(recommend-one

:sender PRA

:receiver BA

:reply-with <a unique id>

:content (subscribe :content (ask-one

:content (OP-COMPLETE ?x1 ?xn))))

In response, BA sends the following tell message to PRA.

(tell

:sender BA

:receiver PRA

:in-reply-to <id of last>

:content (GA))

Upon the recommendation from BA, an agent then obtains the needed in-

formation by sending ask or subscribe messages to the recommended agent.

When SCA knows from BA that PRA has advertised that it can provide

the current rate for certain operations, it may send PRA the following subscribe

message.

(subscribe

:sender SCA

:receiver PRA

:reply-with <a unique id>

:language KQML

:content (ask-one :language KIF :content

(and (RATE ?mean) (< ?mean 50))))

With this message, SCA tells PRA that it is interested in receiving new

instances of the RATE predicate whenever the mean value of the new rate is

less than 50. This e�ectively turns PRA to a process rate monitor with the

mean < 50 as the monitor criterion. Whenever the newly updated rate satis�es

this criterion, PRA immediately noti�es SCA by sending it a tell message with

the new rate's mean and standard deviation.

Figure 5 shows the abbreviated Java source code for the PRA agent. The

PRA �rst initializes its databases, and prepares for communication by creating

an instance of Jackal; Intercom performs startup functions (including registration

with the ANS) and provides access to the Jackal API. Next, PRA advertises itself

to the broker (BA) as a source of statistical data, and requests a recommendation

for a raw data source. Note that Intercom's one-parameter attend method causes

a message to be sent, and blocks waiting for that messages reply. This is the

simplest use of Jackal's messaging facilities. One it receives the name of an agent,

PRA sends that agent a subscription request for a raw data stream; it does this

by spawning a subthread which will manage the incoming data, passing the

thread an reference to the agent's Jackal instance. Then the PRA enters a cycle

of waiting for data to accumulate, and compiling statistics. The subscription

thread will also manage incoming requests for data.

Figure 6 shows the declarative speci�cation for the ask-one conversation used

by the agents in this scenario.

class PRA {

public static RateDatabase Rate = new RateDatabase();

public static Database msgDB = new Database(); // messages

public static int Rate_updated = 0; // # samples observed

public static void main(String[] args) throws Exception {

ShowOpWin win = new ShowOpWin(); // PRA interface

Intercom intercom =

new Intercom("PRA","file:///C:/agents/pra.kqmlrc");

try { // next, send a ADVERTISE to BA(Broker)

KQMLMessage advertise =

new KQMLMessage("(advertise :receiver BA.ANS :content " +

"(subscribe :content (ask-one :content " +

" (RATE 1 1 ? ? ? ? ?))))");

KQMLMessage response = intercom.attend(advertise);

while(true) { // send RECOMMEND to BA

KQMLMessage recommend =

new KQMLMessage("(recommend-one :content " +

"(subscribe :content " +

"(ask-one :content (RO 1 1 ? ? ? ?))))");

recommend.put("receiver","BA.ANS");

response = intercom.attend(recommend);

if (response!=null) break;

}

KQMLMessage subscribe = // PRA now sends a SUBSCRIBE

new KQMLMessage("(subscribe :content " +

"(ask-one :content (RO 1 1 ? ? ? ?)))");

subscribe.put("receiver", response.get("content"));

Sub__Client subClient(this, subscribe);

}

catch (MessageX exception) {intercom.stderr(e) ;}

catch (InterruptedException e) { intercom.stderr(e); }

// set up computational elements

ROmessageFromPRAForRATE Ref = new ROmessageFromPRAForRATE(1);

ROmessageFromPRAForRATE RefA = new ROmessageFromPRAForRATE();

ROmessageFromPRAForRATE RefB = new ROmessageFromPRAForRATE();

while (true) { // poll intermittently for data

while ((msgDB.size())<5) {

Thread.currentThread().sleep(20); }

for (int i = 0; i<msgDB.size(); i++) { // comp statistics

Ref.set((String)msgDB.elementAt(i));

if (Ref.machn == 65) { /* 65 = 'A' */

if (RefA.set(Ref)) // PERFORM CALCULATIONS/UPDATE

else {

if (RefB.set(Ref)) // PERFORM CALCULATIONS/UPDATE

}

msgDB.removeAllElements();

}

}

}

Fig. 5. CIIMPLEX's Process Rate Agent (PRA)

8 Relationship to Current Work

A number of groups are currently developing or marketing Java-based tools and

infrastructures, and Jackal shares many features with them. Some of Jackal's

de�ning characteristics are its use of conversation policies, internal message dis-

tribution blackboard, independence from the transport layer. Also, it's restric-

tion to agent communication support di�erentiates it from most other systems,

which often integrate more agent functionality, making them at the same time

more powerful and less easily integratable. In this section, we will introduce

a few of the more well-known Java-based agent frameworks, and discuss their

relationship to Jackal.

The InfoSleuth project [54, 4] is very much committed to the domain of dis-

tributed information retrieval, although the agent architecture is fairly general.

// Conversation Template

// Convention: Initial and accepting states all caps,

// other states initial caps,

// arc-labels lower case.

(conversation

(name kqml-ask-one)

(author "R. Scott Cost")

(date "3/4/98")

(start-state START)

(accepting-states TOLD)

(transitions

(arc (label ask-one) (from START) (to Asked) (match "(ask-one)"))

(arc (label tell) (from Asked) (to TOLD) (match "(tell)"))

(arc (label deny) (from Asked) (to TOLD) (match "(deny)"))

(arc (label untell) (from Asked) (to TOLD) (match "(untell)"))

(arc (label sorry) (from Asked) (to TOLD) (match "(sorry)"))

(arc (label error) (from Asked) (to TOLD) (match "(error)"))))

Fig. 6. Conversation Template for KQML Ask-one

Their overall system design employs a standard resource brokered approach. In-

foSleuth implements a Java agent shell, which is carefully separated into cleanly

interfaced layers: message (astride the Transport Layer), conversation, generic

agent, and agent application. The message layer handles message addressing,

parameter marshaling, and so forth. The conversation layer imposes language

constraints on sequences of messages. The generic agent layer provides the agent

application layer with basic services. Conversation policies enforced roughly cor-

respond to the Finin and Labrou [40, 43] semantics for KQML, but the model

used is a basic DFA; transitions are determined by performative name only.

Aside from its use of an agent shell, InfoSleuth is similar in principal to Jackal,

but is internally less sophisticated, and relies on simple DFAs for conversation

speci�cation.

Java Agent Template (JAT) [26] is essentially a Java implementation of

KQML, in the form of an agent shell. JAT agents can run stand-alone, or as

applets with some restrictions. Basic message passing is supported for KQML.

An ANS is used to coordinate agents, and the AEE is the basic JVM. JAT is

intended to be
exible yet comprehensive. Agents developed with JAT are tightly

integrated with the agent shell. JATLite [59] is a successor to JAT, intended

to be a much lighter-weight package suitable for use with applets. Of note is

its Router facility: applet agents can communicate with other applet agents by

sending messages back through an associated Router or Routers (communication

by proxy). The Router bu�ers undeliverable messages, and is supported by a

standard ANS. JATLite agents in general are not constrained to communicate

through the Router. Neither platform supports the use of conversation policies.

Of the two, Jackal is perhaps more similar to JATLite than JAT.

The Aglet project [2, 45], developed at IBM, is a very promising frame-

work for agent mobility. It provides support for the construction of small, roving

agents called Aglets, through extension of an agent shell class. Aglets move from

place to place by agent-initiated, single entry-point transfer. Places maintain a

persistent `context', which the agent can access. Some security is achieved by

the use of an agent proxy. All access to the agent, including peer-to-peer com-

munication, takes place via the proxy agent. Since the agent and its proxy need

not be collocated, this allows for location transparency. Access to the agent's

methods can also be selectively restricted with the proxy's intervention. Com-

munication is supported only through direct or remote method invocation on the

receiving agent (or its proxy). The Aglet system di�ers from Jackal in its compre-

hensive MAS framework, which includes mobility support. Many infrastructure

components, such as name serving, can be added onto Jackal as services, but

the library itself is an agent component. Jackal provides more highly developed

communication facilities than do Aglets.

Zeus [56] and AgentBuilder [62] are good examples of MAS design tools.

While they serve a higher level purpose than Jackal, they could facilitate the

development of agents with Jackal components and libraries.

Zeus is a toolkit for building complete agents, from the ground up. It consists

of a component library, a suite of visual design tools, and a set of prede�ned util-

ity agents. The components are designed such that their behaviors are largely

de�ned declaratively, and can be changed at runtime. Agents constructed with

Zeus typically have components which facilitate planning and reasoning, com-

munication (via KQML), and which provide a collection of interaction protocols.

Agents and MASs are created through a process of task and relationship speci�-

cation. The resulting entities are produced as Java source code, for independent

compilation and execution.

AgentBuilder is a commercial platform for constructing agents based on

the RADL (Reticular Agent De�nition Language). RADL is an extension of

PLACA [65] and AGENT-0 [63], and views the agent as a core of behavioral

rules, constrained by beliefs, capabilities, commitments and commitment rules.

9 Colored Petri Nets

Petri Nets (PN), or Place Transition Nets, are a well known formalism for mod-

eling concurrency. A PN is a directed, connected, bipartite graph in which each

node is either a place or a transition. Tokens occupy places. When there is at

least one token in every place connected to a transition, we say that transition

is enabled. Any enabled transition may �re, removing one token from every in-

put place, and depositing one token in each output place. Petri nets have been

used extensively in the analysis of networks and concurrent systems. For a more

complete introduction, see [1].

CPNs di�er from PNs in one signi�cant respect; tokens are not simply blank

markers, but have data associated with them. A token's color is a schema, or

type speci�cation. Places are then sets of tuples, called multi-sets. Arcs specify
the schema they carry, and can also specify basic boolean conditions. Speci�cally,

arcs exiting and entering a place may have an associated function which deter-

mines what multi-set elements are to be removed or deposited. Simple boolean

expressions, called guards, are associated with the transitions, and enforce some

constraints on tuple elements. This notation is demonstrated in examples below.

CPNs are formally equivalent to traditional PNs; however, the richer notation

makes it possible to model interactions in CPNs where it would be impractical

to do so with PNs.

CPNs have great value for conversational modeling, in that:

{ They are a relatively simple formal model.

{ They have a graphical representation.

{ They support concurrency, which is necessary for many non-trivial interac-

tions.

{ They are well researched and understood, and have been applied to many

real-world applications.

{ Many tools and techniques exist for the design and analysis of CPN-based

systems.

9.1 Related Work

CPNs are not new, and they have been used extensively for a broad range of

applications (see [36] for a survey of current uses). Since their target domain is

distributed systems, and the line between that domain and MASs is vague at

best, there is much work on which to build. We will review here a few of the

more directly related research endeavors.

Holvoet and Verbaeten have published extensively on the subject of agents

and PNs. In their 1995 paper, \Agents and Petri Nets" [29], they introduced the

idea of enhancing AOP by using high-level nets to model agents, and extended

this thought in [30] to a variant called `Generic Nets'. In 1997, Holvoet and

Kielmann introduced PNSOL (Petri Net Semantics for Objective Linda) [31, 32],

used to model agents which live in and communicate through the Objective

Linda [37] tuple space.

Yoo, Merlat and Briot [71] describe a contract-net based system for elec-

tronic commerce that uses a modular design. Among the components are BRICS

(Block-like Representation for Interacting Components) [23]), which are derived

from CPNs.

Fallah-Seghrouchni and Mazouzi have demonstrated the use of CPNs in

specifying conversation policies in some detail, using FIPA ACL as a frame-

work [21, 20, 22]. This work suggests an approach for hierarchical construction

of conversations.

Moldt and Wienberg have developed an approach called AOCPN (Agent

Oriented Colored Petri Nets) [69, 52]. This system employed an object-oriented

language, syntactically similar to C++, which maps onto CPN, extended by

`test arcs' [11, 44]. They show how this approach can be used to model societies

of agents as described by Shoham [64]. Their model extends down to the level of

individual agent theorem provers, facilitating the logical speci�cation of agent

behavior.

Other work of note includes Billington et al. [6], Purvis and Crane�eld [61],

Lin et al. [46] (above), and Merz and Lamersdorf [49].

10 Putting Colored Petri Nets to Work

Currently, we are investigating the value of CPNs in a general framework for

agent interaction speci�cation. Within this scheme, agents use a common lan-

guage, Protolingua, for manipulating CPN-based conversations. Protolingua it-

self is very sparse, and relies on the use of a basic interface de�nition language

(IDL) for the association of well known functions and data types with a CPN

framework. Agents use Protolingua interpreters to execute various protocols.

Protolingua itself is simple in order to facilitate the porting of interpreters to

many di�erent platforms.

One advantage to this approach is that a variety of interpreter implementa-

tions may be used, and the agent may trade resources for conversational `power'.

A very simple CPN interpreter may be able to eÆciently execute very small or

simple protocols; an agent may chose to use this in most interactions, while

employing more expensive and powerful interpreters for more complex negoti-

ations. In addition to using direct CPN simulators, CPN speci�cations have a

very natural embedding in a general rule-based framework.

To clarify the relationship between agents, interpreters, and protocols, let us

assume that a Java-based agent would like to converse with another agent, and

that it has determined, through assumption, negotiation, or other means, that

it needs to use protocol xyz. It can obtain the declarative speci�cation for xyz, if

it does not already have it, from the other agent or from some third party; let's

say a protocol server identi�ed through a broker. Xyz contains the wire-frame

speci�cation of the protocol (arcs, places, transition), plus schema and functions

given in the IDL. The agent can then obtain the executable attachments (as

it did the speci�cation) and type speci�cations appropriate for its interpreter

(in the case of Jackal, Java classes and associated methods), and then use the

protocol to engage the other agent.

This CORBA-like approach allows the use of very lightweight, universal in-

terpreters without restricting the expressiveness of the protocols used. Note that

the purpose of the IDL in Protolingua however is the identi�cation and retrieval

of executable modules, not the interaction of distributed components. If types

and actions are appropriately speci�ed, they should be suitable for analysis, or

translation into some analyzable form. For example, we are using Design/CPN, a

tool from Aarhus University, Denmark, for high level design and analysis of pro-

tocols. This system uses an extension of ML, CPN-ML, as its modeling language.

We plan to translate developed protocols into Protolingua and Java extensions,

and restrict modi�cation in such a way that CPN-ML equivalents of the ex-

tensions can be used to facilitate analysis of the protocols. As such, CPN-ML

has played a major role in in
uencing the development of Protolingua. For the

remainder of this paper, we will focus on the abstract application of CPNs to

conversations, rather than their speci�cation in Protolingua.

11 Example: Conversation Protocol

From its inception, Jackal has used JDFA, a loose Extended Finite State Ma-

chine (EFSM), to model conversations [14, 58]. The base model is a DFA, but

the tokens of the system are messages and message templates, rather than simply

characters from an alphabet. Messages match template messages (with arbitrary

match complexity, including recursive matching on message content) to deter-

mine arc selection. A local read/write store is available to the machine.

CPNs make it possible to formalize much of the extra-model extensions of

DFAs. To make this concrete, we take the example of a standard JDFA repre-

sentation of a KQML Register conversation (see Figure 7) and reformulate it as

a CPN. Note that this simpli�ed Register deviates from the [40] speci�cation,

in that it includes a positive acknowledgment, but does not provide for a sub-

sequent `unregister' event. The graphic depiction of this JDFA speci�cation can

be seen in Figure 8.

// Conversation Template

// Convention: Initial and accepting states all caps,

// other states initial caps,

// arc-labels lower case.

(conversation

(name kqml-ask-one)

(author "R. Scott Cost")

(date "3/5/98")

(start-state START)

(accepting-states STOP)

(transitions

(arc (label reg) (from START) (to R) (match "(register)"))

(arc (label reply) (from R) (to STOP) (match "(reply)"))

(arc (label error) (from R) (to STOP) (match "(error)"))

(arc (label sorry) (from R) (to STOP) (match "(sorry)"))))

Fig. 7. Conversation template for simpli�ed KQML Register

There are a number of ways to formulate any conversation, depending on the

requirements of use. This conversation has only one �nal, or accepting, state,

but in some situations, it may be desirable to have multiple accepting states,

and have the �nal state of the conversation denote the result of the interaction.
In demonstrating the application of CPNs here, we will �rst develop an in-

formal model based on the simpli�ed Register conversation presented, and then

describe a complete and working CPN-ML model of the full Register conversa-

tion.

Some aspects of the model which are implicit under the DFA model must be

made explicit under CPNs. The DFA allows a system to be in one state at a time,

(reply)

(sorry)

(error)(register)
START R STOP

Fig. 8. Diagrammatic DFA representation of the simpli�ed KQML Register conversa-

tion

and shows the progression from one state to the next. Hence, the point to which

an input is applied is clear, and that aspect is omitted from the diagrammatic

representation. Since a CPN can always accept input at any location, we must

make that explicit in the model.

We will use an abbreviated message which contains the following compo-

nents, listed with their associated variable names: performative(p), sender(s),

receiver(r), reply-with(id), in-reply-to(re), and content(c).

We denote the two receiving states as places of the names Register and

Done (Figure 9). These place serve as a receipt locations for messages, after

processing by the transitions T1 and T2, respectively. As no message is ever

received into the initial state, we do not include a corresponding place. Instead,

we use a a source place, called In. This is implicit in the DFA representation.

It must serve as input to every transition, and could represent the input pool

for the entire collection of conversations, or just this one. Note that the source

has links to every place, but there is no path corresponding to the
ow of state

transitions, as in the DFA-based model.

The match conditions on the various arcs of the DFA are implemented by

transitions preceding each existing place. Note that this one-to-one correspon-

dence is not necessary. Transitions may conditionally place tokens in di�erent

places, and several transitions may concurrently deposit tokens in the same place.

DoneRegister T2T1In

(p,s,r,id,re,c)

(p,s,r,id,re,c)

(p,s,r,id,re,c)

(p,s,r,id,re,c)

Fig. 9. Preliminary CPN model of a simpli�ed KQML register conversation.

Various constants constrain the actions of the net, such as performative (Fig-

ure 10). These can be represented as color sets in CPN, rather than hard-coded

constraints. Other constraints are implemented as guards; boolean conditions as-

sociated with the transitions. Intermediate places S, R and I assure that sender,

receiver and ID �elds in the response are in the correct correspondence to the

initial messages. I not only ensures that the message sequence is observed, as

prescribed by the message IDs, but that only one response is accepted, since the

ID marker is removed following the receipt of one correct reply. Not all conver-

sations follow a simple, linear thread, however. We might, for example, want to

send a message and allow an arbitrary number of asynchronous replies to the

same ID before responding (as is the case in a typical Subscribe conversation),

or allow a response to any one of a set of message IDs. In these cases, we allow

IDs to collect in a place, and remove them only when replies to them will no

longer be accepted. Places interposed between transitions to implement global

constraints, such as alternating sender and receiver, may retain their markings;

that is implied by the double arrow, a shorthand notation for two identical arcs

in opposite directions.

We add a place after the �nal message transaction to denote some arbitrary

action not implemented by the conversation protocol (that is, not by an arc-

association action). This may be some event internal to the interpreter, or a

signal to the executing agent itself. A procedural attachment at this location

would not violate the conversational semantics as long as it did not in turn

in
uence the course of the conversation.

DoneRegister T2T1In

(p,s,r,id,re,c)

(p,s,r,id,re,c) (p,s,r,id,re,c)(p,s,r,id,re,c)

register
reply,
error,
sorry

p
p

I re
id

S

R

s

s
r

r if p=reply action1
else if p=error action2
else action3 A

Fig. 10. Informal CPN model of a simpli�ed KQML register conversation.

This CPN is generally equivalent to the JDFA depicted in Figure 8. In addi-

tion to modeling what is present in the JDFA, it also models mechanisms implicit

in the machinery, such as message ordering. Also, the JDFA incorporates much

which is beyond the underlying formal DFA model, and thus cannot be subjected

to veri�cation. The CPN captures all of the same mechanisms within the formal

model.

11.1 Register Implemented in CPN-ML

We further illustrate this example by examining a full, executable CPN imple-

mentation of the complete Register conversation. Register as given in [40] con-

sists of an initial `register' with no positive acknowledgment, but a possible `error'

or `sorry' reply. This registration may then be followed by an unacknowledged

`unregister', also subject to a possible `error' or `sorry' response. This Register

conversation (Figure 12) has been extracted from a working CPN model of a

multi-agent scenario, implemented in CPN-ML, using the Design/CPN model-

ing tool. The model, a six agents scenario involving manufacturing integration,

uses a separate, identical instance of the register conversation, and other KQML

conversations, for each agent. They serve as sub-components to the agent models,

which communicate via a modeled network. The declarations (given in Figure 11)

have been restricted to only those elements required for the register conversa-

tion itself. The diagram is taken directly from Design/CPN. The full model uses

concepts for building hierarchical CPNs, such as place replication and the use

of sub-nets, which are beyond the scope of this paper. The interested reader is

encouraged to refer to [34, 35, 36].

The declarations specify a message formatMES, a six-tuple of performative,

sender and receiver names, message IDs, and content. For simplicity, performa-

tive and agent names in the scenario are enumerated, and IDs are integers. For

the content, we have constructed a special Predicate type, which will allow us

to represent content in KIF-like expressions. The Reg type is used for registry

entries, and encodes the name and address of the registrant, the name of the

registrar, and the ID of the registration message. Finally, the Signature type is

used to bind the names of the sender and receiver with the ID for a particular

message.

The model is somewhat more complex than our informal sketch (Figure 10)

for several reasons, which will become clear as we look more closely at its oper-

ation. For one thing, it is intended to model multiple concurrent conversations,

and so must be able to di�erentiate among them. Also, it implements the com-

plete registration operation, rather than simply modeling the message
ow. All

messages are initially presented in the In place, and once processed by each

transition are moved to the Out place. Messages from the Out place are moved

by the agent to the model network, through which they �nd their way to the

In place of the same conversation in the target agent. The �rst transition (T4)

accepts the message for the conversation, based on the performative `register',

and makes it available to the T1 transition. T1, accepts the message if correct,

and places a copy in the Out place. It also places an entry in the registry (Reg),

and a message signature in Sig1. This signature will be used to make sure that

replies to that message have the appropriate values in the sender and receiver

�elds. Message ID is included in the signature in order to allow the net to model

multiple Register conversations concurrently. Note that because KQML does

not provide for an acknowledgment to a `register' message, the registration is

made immediately, and is then retracted later if an `error' or `sorry' message is

received.

Transition T2a will �re if an `error' or `sorry' is received in response to

the registration. It unceremoniously removes the registration from Reg. The

message signature constrains the names in the reply message. It is also possible

for the initiating agent to send a subsequent `unregister'; in that case T2b will

�re (again, contingent on the constraints of the message signature being met),

also removing the registration. However, since it is possible for an `unregister'

to be rejected (by an `error' or `sorry'), T2b archives the registration entry in

Arc, and constructs a new signature for the possible reply. Such a reply would

cause transition T3 to restore the registration to Reg.

color Performative = with register | unregister | error | sorry;

color Name = with ANS | Broker | AnyName;

color ID = int;

color Address = with ans | broker | anyAddress;

color PVal = union add:Address + nam:Name;

color PVals = list PVal;

color PName = with address | agentName;

color Predicate = product PName * PVals;

color Content = union pred:Predicate + C;

color MES = product Performative * Name * Name * ID * ID * Content;

color Reg = product Name * Name * Address * ID;

color Signature = product Name * Name * ID;

var c : Content;

var message : MES;

var s, r, anyName, name : Name;

var i, j : ID;

var p : Performative;

var a : Address;

Fig. 11. Declarations for the Register Conversation.

12 Example: Negotiation Model

In this section we present a simple negotiation protocol proposed in [10]. The

CPN diagram in Figure 13 describes the pair-wise negotiation process in a simple

MAS, which consists of two functional agents bargaining for goods. The messages

used are based on the FIPA ACL negotiation performative set.

The diagram depicts three places places: Inactive,Waiting, and Thinking,

which re
ect the states of the agents during a negotiation process3; we will use

3 It is not always the case with such a model that speci�c nodes correspond to states

of the system or particular agents. More often the state of the system is described

by the combined state of all places.

I n
M E S

P I n

S i g 1
S i g n a t u r e

S i g 2
S i g n a t u r e

A r c
R e g

T 2 a
[p = e r r o r o r e l s e
p = s o r r y]

T 2 b
[p = u n r e g i s t e r]

T 3
[p = e r r o r o r e l s e
p = s o r r y]

R e g
R e g

P I / O

T 1
[c = p r e d (a d d r e s s ,
[a d d a]) , p = r e g i s t e r]

O u t

P O u t

M E S

1 ‘ (r , s , j)

1 ‘ (s , r , j)

1 ‘ (r , s , j)

1 ‘ (s , r , i) 1 ‘ (r , s , a , i)

1 ‘ (r , s , a , j)

1 ‘ (r , s , a , j)

1 ‘ (s , r , a , j) 1 ‘ (r , s , a , j)

1 ‘ (p , s , r , i , j , c)

1 ‘ (p , s , r , i , j , c)

1 ‘ (p , s , r , i , j , c)

1 ‘ (s , r , i)

1 ‘ (s , r , a , i)

1 ‘ (p , s , r , i , j , c)

1 ‘ (p , s , r , i , j , c)

1 ‘ (p , s , r , i , j , c)

1 ‘ (p , s , r , i , j , c)

1 ‘ (p , s , r , i , j , c)

Fig. 12. KQML Register.

Fig. 13. Pair-wise negotiation process for a MAS constituted of two functional

agents.

the terms state and place interchangeably. Both agents in this simple MAS have

similar architecture, di�ering primarily in the number of places/states. This

di�erence arises from the roles they play in the negotiation process. The agent

that begins the negotiation, called the buyer agent, which is shown on the left

side of the diagram, has the responsibility of handling message failures. For this,

it has an extra `wait' state (Waiting), and timing machinery not present in the

other agent, seller. For simplicity, some constraints have been omitted from this

diagram; for example, constraints on message types, as depicted in the previous

examples.

In this system, both agents are initially waiting in the Inactive places. The

buyer initiates the negotiation process by sending a call for proposals (`CFP')

to some seller, and its state changes from Inactive to Waiting. The buyer is

waiting for a response (`proposal', `accept-proposal', `reject-proposal' or `termi-

nate'). On receipt, its state changes from Inactive to Thinking, at which point

it must determine how it should reply. Once it replies, completing the cycle, it

returns to the Inactive state. We have inserted a rudimentary timeout mecha-

nism which uses a delay function to name messages which have likely failed in

the Timeout place. This enables the exception action (Throw Exception) to

stop the buyer from waiting, and forward information about this exception to

the agent in the Thinking state. Timing can be handled in a number of ways

in implementation, including delays (as above), the introduction of timer-based

interrupt messages, or the use of timestamps. CPN-ML supports the modeling

of time-dependent interactions through the later approach.

Note that this protocol models concurrent pairwise interactions between a

buyer and any number of sellers.

13 Veri�cation

The ability to verify the properties of a speci�cation is one of the important

bene�ts of applying formal methods. These bene�ts can be derived in two ways:

{ Veri�cation of the conversation policies or protocols directly, and

{ Veri�cation of agents/MASs that are based on such protocols.

We will �rst consider the range of properties amenable to analysis, and then

discuss their value in the two contexts described. The focus will be on the meth-

ods provided by Design/CPN and associated tools.

In addition to `proof by execution', CPNs can be checked for a variety of

properties. This is done by way of an Occurrence Graph (OG) [16]. Each node

in an OG consists of a possible marking for the net. If another marking (B) can

be reached by the �ring of a transition, the graph contains a directed arc from

the node representing the initial marking to B. All nodes in an OG are therefore

derived from some initial marking of the net.

The properties subject to veri�cation are:

1. Reachability Properties: This relates to whether or not the marking denoted

by node B is reachable by some sequence of transition �rings from node A.

2. Boundedness Properties: The upper or lower bound on the contents of place

X in the net, over all possible markings. This can be the cardinality of the

multiset at node X, or the greatest or least multiset itself.

3. Home Properties: The marking or set of markings which are reachable from

all other markings in the OG de�ne a homespace. One can verify that a

marking or set of markings constitutes a homespace, or determine whether

or not a home marking exits, and what the minimal such marking is.

4. Liveness Properties: A marking from which no further markings can be de-

rived is `dead'. Liveness, then, relates to the possible progressions from a

given node in the OG. One can verify that a marking is dead, or list dead

markings in the OG.

5. Fairness Properties: Relates to the degree to which certain transition in-

stances (TI) will be allowed with respect to other TIs.

Many of these properties have di�erent value depending on whether we are

regarding a CP or a MAS, and also on the complexity of the net. CPs de-

scribe/operate on a message stream, which in most cases is �nite; they are

themselves static. One can imagine analyzing a CP in the context of (1) a single

message stream, or (2) in the presence of a generator for all or many repre-

sentative streams. In that sense, we may be interested in boundedness or home

properties, and possibly reachability or fairness, but not liveness. On the other

hand, liveness and fairness will often be more important in the analysis of a

system as a whole.

For example, consider a simple CP such as Register. Given some sequence of

messages, we might be interested in reachability; does this initial marking result

in the correct behavior (e.g. a registration being placed). If we were to construct

a net which generates a broad range of messages or message sequences, we could

combine this with our Register conversation, and analyze Register's behavior

with respect to this set of messages streams. Home properties would be useful

here; we could designate certain terminal markings (e.g accept, reject), and then,

designating them as members of a home space, determine whether or not all test

sequences resulted in one of the two acceptable markings.

In a MAS, we are concerned with more dynamic properties of the system,

which is assumed to be engaged in some self-sustaining activity. Liveness tests

will assure us that the system has not entered a state in which no further activity

can occur. Fairness assures us that no elements of the system which are able to

act will remain inactive inde�nitely. The identi�cation of a home space could

allow us to determine that a MAS will successfully achieve its goal.

It is possible to verify properties even for very large and complex nets. The

version of Design/CPN used in this research supports the computation and anal-

ysis of OGs of 20,000 - 200,000 nodes and 50,000 to 2,000,000 arcs.

14 Summary

Jackal provides developers with an easy to use facility for KQML, supporting

the use of conversation based protocols. In addition, it provides basic services

such as hidden address resolution. These features make it a valuable asset in

developing agents for manufacturing information
ow.

The use of conversation policies greatly facilitates the development of sys-

tems of interacting agents. While FSMs have proven their value over time in

this endeavor, we feel that inherent limitations necessitate the use of a model

supporting concurrency for the more complex interactions now arising. CPNs

provide many of the bene�ts of FSMs, while allowing greater expression and

concurrency. Using the Jackal agent development platform, we hope to demon-

strate the value of CPNs as the underlying model for a protocol speci�cation

language, Protolingua.

References

1. Tilak Agerwala. Putting Petri Nets to work. Computer, pages 85{94, December

1979.

2. Yariv Aridor and Danny B. Lange. Agent design patterns: Elements of agent

application design. In Proceedings of the Second International Conference on Au-

tonomous Agents (Agents '98), Minneapolis, May 1998. ACM Press.

3. Mihai Barbuceanu and Mark S. Fox. COOL: A language for describing coordi-

nation in multiagent systems. In Victor Lesser, editor, Proceedings of the First

International Conference on Multi{Agent Systems, pages 17{25, San Francisco,

CA, 1995. MIT Press.

4. R. J. Bayardo, Jr., W. Bohrer, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,

T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea,

C. Unnikrishnan, A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic in-

tegration of information in open and dynamic systems. In Proceedings of (SigMod

97), 1997.

5. J. Bermudez. Advanced planning and scheduling systems: Just a fad or a break-

through in manufacturing and supply chain management? Technical report, Ad-

vanced Manufacturing Research, Boston, Massachusetts, December 1996.

6. J. Billington, M. Farrington, and B. B. Du. Modelling and analysis of multi-agent

communication protocols using CP-nets. In Proceedings of the third Biennial En-

gineering Mathematics and Applications Conference (EMAC'98), pages 119{122,

Adelaide, Australia, July 1998.

7. Je�rey M. Bradshaw. KAoS: An open agent architecture supporting reuse, interop-

erability, and extensibility. In Tenth Knowledge Acquisition for Knowledge-Based

Systems Workshop, 1996.

8. Je�rey M. Bradshaw, Stuart Dut�eld, Pete Benoit, and John D. Woolley. KAoS:

Toward an industrial-strength open agent architecture. In Je�rey M. Bradshaw,

editor, Software Agents. AAAI/MIT Press, 1998.

9. Deepika Chauhan. JAFMAS: A Java-based agent framework for multiagent sys-

tems development and implementation. Master's thesis, ECECS Department, Uni-

versity of Cincinnati, 1997.

10. Ye Chen, Yun Peng, Tim Finin, Yannis Labrou, and Scott Cost. A negotiation-

based multi-agent system for supply chain management. In Working Notes of

the Agents '99 Workshop on Agents for Electronic Commerce and Managing the

Internet-Enabled Supply Chain., Seattle, WA, April 1999.

11. S�ren Christensen and Niels Damgaard Hansen. Coloured petri nets extended

with place capacities, test arcs and inhibitor arcs. Technical Report DAIMI PB-

398, Computer Science Department, Aarhus University, Aarhus C, Denmark, May

1992.

12. B. Chu, W. J. Tolone, R. Wilhelm, M. Hegedus, J. Fesko, T. Finin, Y. Peng,

C. Jones, J. Long, M. Matthes, J. May�eld, J. Shimp, and S. Su. Integrating man-

ufacturing softwares for intelligent planning-execution: A CIIMPLEX perspective.

In Plug and Play Software for Agile Manufacturing, SPIE International Symposium

of Intelligent Systems and Advanced Manufacturing, Boston, MA, 1996.

13. R. Scott Cost, Ye Chen, Tim Finin, Yannis Labrou, and Yun Peng. Modeling agent

conversations with colored petri nets. In Working Notes of the Workshop on Spec-

ifying and Implementing Conversation Policies, pages 59{66, Seattle, Washington,

May 1999.

14. R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng Luan, Yun Peng, Ian Soboro�,

James May�eld, and Akram Boughannam. Jackal: A Java-based tool for agent

development. In Jeremy Baxter and Chairs Brian Logan, editors, Working Notes

of the Workshop on Tools for Developing Agents, AAAI '98, number WS-98-10 in

AAAI Technical Reports, pages 73{82, Minneapolis, Minnesota, July 1998. AAAI,

AAAI Press.

15. R. Scott Cost, Ian Soboro�, Jeegar Lakhani, Tim Finin, Ethan Miller, and Charles

Nicholas. TKQML: A scripting tool for building agents. In Michael Wooldridge,

Munindar Singh, and Anand Rao, editors, Intelligent Agents Volume IV { Pro-

ceedings of the 1997 Workshop on Agent Theories, Architectures and Languages,

volume 1365 of Lecture Notes in Arti�cial Intelligence, pages 336{340. Springer-

Verlag, Berlin, 1997.

16. Department of Computer Science, University of Aarhus, Denmark. Design/CPN

Occurrence Graph Manual, version 3.0 edition, 1996.

17. Ian Dickenson. Agent standards. Technical report, Foundation for Intelligent

Physical Agents, October 1997.

18. P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces.

In Proceedings of the ACM 1992 Conference on Computer-Supported Cooperative

Work: Sharing Perspectives (CSCW '92), pages 107{114, Toronto, November 1992.

19. Ren�ee Elio and Afsaneh Haddadi. On abstract task models and conversation poli-

cies. In Working Notes of the Workshop on Specifying and Implementing Conver-

sation Policies, pages 89{98, Seattle, Washington, May 1999.

20. A. El Fallah-Seghrouchni, S. Haddad, and H. Mazouzi. A formal study of interac-

tions in multi-agent systems. In Proceedins of ISCA International Conference in

Computer and their Applications (CATA `99), April 1999.

21. A. El Fallah-Seghrouchni and S. Haddad H. Mazouzi. Etude des interactions bas�ee

sur l'observation re�epartie dans un syst�eme multi-agents. In Herm�es, editor, Pro-

ceedings of JFIADSMA `98, Nancy, France, November 1998.

22. Amal El Fallah-Seghrouchni and Hamza Mazouzi. A hierarchial model for in-

teractions in multi-agent systems. In Working Notes of the Workshop on Agent

Communication Languages, IJCAI '99, August 1999.

23. Jaques Ferber. Les Syst�eme Multi-Agents. InterEditions, 1996.

24. Tim Finin, Yannis Labrou, and James May�eld. KQML as an agent communica-

tion language. In Je� Bradshaw, editor, Software Agents. MIT Press, 1997.

25. FIPA. FIPA 97 speci�cation part 2: Agent communication language. Technical

report, FIPA - Foundation for Intelligent Physical Agents, October 1997.

26. H. Robert Frost. Java Agent Template. Online Documentation:

http://cdr.stanford.edu/ABE/JavaAgent.html, 1999.

27. Alan Galan and Albert Baker. Multi-agent communications in JAFMAS. InWork-

ing Notes of the Workshop on Specifying and Implementing Conversation Policies,

pages 67{70, Seattle, Washington, May 1999.

28. General Magic. Introduction to the Odyssey API, 1998.

29. T. Holvoet. Agents and petri nets. The Petri Net Newsletter, (49):3{8, 1995.

30. T. Holvoet and P. Verbaeten. Synchronization speci�cations for agents with net-

based behavior descriptions. In Proceedings of CESA '96 IMACS Conference,

Symposium on Discrete Events and Manufacturing Systems, pages 613{618, Lille,

France, July 1996.

31. Tom Holvoet and Thilo Keilmann. Behavior speci�cation of active objects in open

generative communication environments. In Hesham El-Rewini and Yale N. Patt,

editors, Proceedings of the HICSS-30 Conference, Track on Coordination Models,

Languages and Systems, pages 349{358. IEEE Computer Society Press, January,

7{10 1997.

32. Tom Holvoet and Pierre Verbaeten. Using petri nets for specifying active objects

and generative communication. In G. Agha and F. DeCindio, editors, Advances in

Petri Nets on Object-Orientation, Lecture Notes in Computer Science. Springer-

Verlag, 1998.

33. N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, M. E. Wiegand,

C. Voudouris, J. L. Alty, T. Miah, and E. H. Mamdani. Adept: Managing business

processes using intelligent agents. In Proceedings of BCS Expert Systems Confer-

ence (ISP Track), Cambridge, UK, 1996.

34. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use, volume Volume 1, Basic Concepts of Monographs in Theoretical Computer

Science. Springer-Verlag, 1992.

35. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use, volume Volume 2, Analysis Methods of Monographs in Theoretical Computer

Science. Springer-Verlag, 1994.

36. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practi-

cal Use, volume Volume 3, Practical Use of Monographs in Theoretical Computer

Science. Springer-Verlag, 1997.

37. Thilo Kielmann. Designing a coordination model for open systems. In

P. Ciancarini and C. Hankin, editors, Coordination Languages and Models: Pro-

ceedings of COORDINATION '96, number 1061 in Lecture Notes in Computer

Science, pages 267{284. Springer, Cesena, Italy, 1996.

38. K. Kuwabara. AgenTalk: Coordination protocol description for multi-agent sys-

tems. In Proceedings of the First International Conference on Multi-Agent Systems

(ICMAS '95). AAAI/MIT Press, 1995.

39. Kazuhiro Kuwabara, Toru Ishida, and Nobuyasu Osato. AgenTalk: Describing

multiagent coordination protocols with inheritance. In Proceedings of the 7th IEEE

International Conference on Tools with Arti�cial Intelligence (ICTAI '95), pages

460{465, 1995.

40. Yannis Labrou. Semantics for an Agent Communication Language. PhD thesis,

University of Maryland Baltimore County, 1996.

41. Yannis Labrou and Tim Finin. Comments on the speci�cation for FIPA '97

AGENT COMMUNICATION LANGUAGE. Internet document, 1997.

42. Yannis Labrou and Tim Finin. A proposal for a new KQML speci�cation. Tech-

nical report, UMBC, 1997.

43. Yannis Labrou and Tim Finin. Semantics and conversations for an agent commu-

nication language. In Proceedings of the Fifteenth International Joint Conference

on Arti�cial Intelligence (IJCAI '97). Morgan Kaufman, August 1997.

44. C. Lakos and S�ren Christensen. A general systematic approach to arc extensions

for coloured petri nets. Technical Report R93-7, Department of Computer Science,

University of Tasmania, Hobart, Tasmania, August 1993.

45. D. B. Lange and M. Oshima. Programming and Deploying Agents with Java.

Addison-Wesley, Reading, MA, 1998.

46. Fuhua Lin, Douglas H. Norrie, Weiming Shen, and Rob Kremer. Schema-based

approach to specifying conversation policies. In Working Notes of the Workshop

on Specifying and Implementing Conversation Policies, Third International Con-

ference on Autonomous Agents, pages 71{78, Seattle, Washington, May 1999.

47. D. L. Martin, A. J. Cheyer, and D. B. Moran. Building distributed software sys-

tems with open agent architecture. In Proceedings of the Third Internations Con-

ference on Practical Applications of Intelligent Agents, London, 1998.

48. Francisco Martin, Enric Plaza, and Juan Rodr�iguez-Aguilar. Conversation proto-

cols: Modeling and implementing conversations in agent-based systems. In Work-

ing Notes of the Workshop on Specifying and Implementing Conversation Policies,

pages 49{58, Seattle, Washington, May 1999.

49. M. Merz and W. Lamersdorf. Agents, services, and electronic markets: How do

they integrate? In Proceedings of the IFIP/IEEE International Conference on

Distributed Platforms, Dresden, Germany, 1996.

50. P. Mockapetris. RFC 1034: Domain names - concepts and facilities, 1987.

51. P. Mockapetris. RFC 1035: Domain names - implementation and speci�cation,

1987.

52. Daniel Moldt and Frank Wienberg. Multi-agent-systems based on coloured petri

nets. In Proceedings of the 18th International Conference on Application and The-

ory of Petri Nets (ICATPN '97), number 1248 in Lecture Notes in Computer

Science, pages 82{101, Toulouse, France, June 1997.

53. Scott Moore. On conversation policies and the need for exceptions. In Working

Notes of the Workshop on Specifying and Implementing Conversation Policies,

pages 19{28, Seattle, Washington, May 1999.

54. M. H. Nodine and A. Unruh. Facilitating open communication in agent systems:

the InfoSleuth infrastructure. In Michael Wooldridge, Munindar Singh, and Anand

Rao, editors, Intelligent Agents Volume IV { Proceedings of the 1997 Workshop on

Agent Theories, Architectures and Languages, volume 1365 of Lecture Notes in

Arti�cial Intelligence, pages 281{295. Springer-Verlag, Berlin, 1997.

55. M. H. Nodine and A. Unruh. Facilitating open communication in agent systems:

The InfoSleuth infrastructure. Technical Report MCC-INSL-056-97, MCC, April

1997.

56. Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C. Collis. ZEUS:

A toolkit for builing distributed multi-agent systems. Applied Arti�cial Intelli-

gence, 13(1):129{186, 1999.

57. H. Van Dyke Parunak. Visualizing agent conversations: Using enhanced dooley

graphs for agent design and analysis. In Proceedings of the Second International

Conference on Multi-Agent Systems (ICMAS '96), 1996.

58. Y. Peng, T. Finin, Y. Labrou, R. S. Cost, B. Chu, J. Long, W. J. Tolone, and

A. Boughannam. An agent-based approach for manufacturing integration - the

CIIMPLEX experience. International Journal of Applied Arti�cial Intelligence,

13(1{2):39{64, 1999.

59. Charles Petrie. JATLite. Online Documentation: http://java.stanford.edu/, 1998.

60. Jeremy Pitt and Abe Mamdani. Communication protocols in multi-agent systems.

In Working Notes of the Workshop on Specifying and Implementing Conversation

Policies, pages 39{48, Seattle, Washington, May 1999.

61. M. Purvis and S. Crane�eld. Agent modelling with petri nets. In Proceedings of

the CESA '96 (Computational Engineering in Systems Applications) Symposium

on Discrete Events and Manufacturing Systems, pages 602{607, Lille, France, July

1996. IMACS, IEEE-SMC.

62. Inc. Reticular Systems. AgentBuilder: An Integrated Toolkit for Constructing In-

telligent Software Agents, revision 1.3 edition, February 1999.

63. Y. Shoham. AGENT-0: A simple agent language and its interpreter. In Proceedings

of the Ninth National Conference on Arti�cial Intelligence, volume 2, pages 704{

709, Anaheim, California, 1991.

64. Yoav Shoham. Agent{oriented programming. Arti�cial Intelligence, 60:51{92,

1993.

65. S. R. Thomas. The PLACA agent programming language. In M. J. Wooldridge

and N. R. Jennings, editors, Proceedings of the ECAI '94 Workshop on Agent The-

ories, Architectures and Languages: Intelligent Agents I, Lecture Notes in Arti�cial

Intelligence, pages 355{370. Springer-Verlag, Berlin, 1994.

66. T. Vollmann, W. Berry, and D. Whybark. Manufacturing Planning and Control

Systems. Irwin, New York, 1992.

67. Thomas Wagner, Brett Benyo, Victor Lesser, and Ping Xuan. Investigating inter-

actions between agent conversations and agent control components. In Working

Notes of the Workshop on Specifying and Implementing Conversation Policies,

pages 79{88, Seattle, Washington, May 1999.

68. James White. Mobile agents. In Je�ery M. Bradshaw, editor, Software Agents.

MIT Press, 1995.

69. Frank Wienberg. Multiagentensysteme auf def Basis gef�arbter Petri-Netze. PhD

thesis, Universit�at Hamburg Fachbereich Informatik, 1996.

70. Terry Winograd and Fernando Flores. Understanding Computers and Cognition.

Addison-Wesley, 1986.

71. Min-Jung Yoo, Walter Merlat, and Jean-Pierre Briot. Modeling and validation

of mobile agents on the web. In Proceedings of the International Conference on

Web-Based Modeling & Simulation (SCS Western MultiConference on Computer

Simulation), San Diego, California, January 1998.

This article was processed using the LATEX macro package with LLNCS style

