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Abstract: The primary impediment to increasing the number of active agents in the AutoPilot network is band limiting. Band limiting arises from three primary sources: link saturation as a result of agent collaboration or Trader Place inquiries, link saturation as a result of multi-hop agent traversal and CPU saturation at the Service Place as a result of the agent arrival rate significantly exceeding their service rate. In the case of link band limiting, we must reduce messaging and optimize the agent’s selection of Service Places to minimize traversals. In the case of CPU band limiting, the agents must be able to avoid congested Service Places. To reduce messaging, the agents must reduce their dependence on the Trader and become more autonomous. In this paper we introduce a modified AutoPilot architecture consisting of Trader Place, Server Place, Router and Service Planner. We outline a preference based, agent mobility heuristic and support it with an initial set of test results demonstrating the optimal selection of Service Places subject to the minimization of time.  Notably, we demonstrate congestion avoidance as a second order effect of agent autonomy.

1. Introduction 

In order to scale the AutoPilot to 104 service places supporting 103 active agents, we must avoid band limiting the network. Band limiting has three principle sources: the number of messages associated with agent communication to the Trader Places, multi-hop transportation of agents between Service Places and Service Place CPU exhaustion. The mobility problem has both environmental traversal components. The traversal component has to assign the services requested by an agent to Service Places in a manner that minimizes the total time required to execute all services. The two components of time extending from the choice of service location are distance and waiting time at the Service Place before the CPU is assigned to the agent. We refer to this later time as local congestion. The distance factor is a function of network dynamics subject to some routing algorithm. For any given invocation, the router will select the "shortest distance" between the agent's current location and the next desired service location. We refer to this shortest distance as a network geodasic. We measure the diameter of the network by its longest geodasic. In order to minimize the time necessary to execute the agent's work flow, the service assignments must be computed in a global context consisting of all Service Places eligible to execute required services. If we consider each service selection as 

a possible move of the agent, then we want to minimize the sum of the distances of those moves, subject to local congestion. This problem is similar to determining how to cluster or assign multiple processes to a farm of distributed processors. We extend the assignment problem from [Lo88] and [Stone77], incorporating edge weights that are a function of agent perceptions. Service Place assignments must be consistent with the agent’s preferences for service cost, quality and accuracy. Service Place attributes are listed in Trader Place advertisements and are accessible to the agents. Given a set of Service Places from the Trader Place that offer the desired service, the agent must consider only those Service Places whose environmental attributes are consistent with its service completion requirements. The agent perceives these attributes through a filter of weights associated with the service set required for its mission. Since time, cost and quality do not normalize, optimization of these attributes falls to a class of problems known as multi-attribute programming [Moolaghasemi97]. 

Our formulation of mobility was approached in the following manner:

1. Obtain a solution for the assignment of services to Service Places

2. Obtain a solution to for agent's attribute based perception of Service Places

3. Integrate the results from (1) and (2) forming a mobility heuristic

4. Validate the heuristic by simulating situated multi-agents in a network of Service Places. 

The modified AutoPilot architecture includes the following: The agent carries a payload, algebraic signature and set of preferences for time to service, cost of service and quality of service. The Topologist maintains a set of geodasics associated with the set of Service Places in the network and responds to inquiries from the Service Planner. The Service Planner receives a request to produce a minimum time itinerary of Service Places fulfilling the attribute preferences of agents. The Service Planner requests the set of Service Places supporting the agent's signature from the Trader Place. 

2. Outline of the Agent Preference Heuristic

The Agent Preference Heuristic finds a Non-Dominated Set of Service Places According to Distance, Quality and Cost Weights of an individual agent.

Step 1.  Query the Trader to return all the eligible Service Places for the Service being considered.

For All Trader Place advertisements where Trader Place.Service = Software Agent.Current_service,  append the Trader Place entry to a Possible Moves List;

Step 2.  From the Trader Place query results determine the minimal components of any subsequent move to a Service Place as Time_to_initiate =  local congestion + transit (transmission) time.

Sort the Possible Moves list into ascending order on Time_to_initiate;

 := Min(PossibleMoves.Local congestion values);  // Trader now advertises local congestion

 := Min(Posible Moves.Transit_times)

// Router advertises geodasic to Service Place

LB := 

If all subsequent moves are worse than the lower bound and we can execute the service at this Service Place, then the agent should not move.


Service Places can be perceived as equivalent by attribute or time. We want to group these nodes into equivalence classes and submit them to the Service Planner.   

Step 3.  Compute the Time To Initiate Equivalence Class Size and assign each possible move to three equivalence classes corresponding to Time_to_initiate, cost of service (COS) and accuracy of service (QOS)

NumberClasses := Possible Moves[last entry]. Time_to_initiate Div LB;

The time equivalence class a service place belongs to is simply the integer quotient of its time to initiate divided by the equivalence class size. Since the class size is larger than the smallest time to initiate, the class numbers will be zero relative.

Create a null set for each time to initiate equivalence class, T0, T1,..., TNumberClasses-1;

In AutoPilot cost and accuracy are fixed at 100 classes each. 

Create a null set for each cost equivalence class, C0, C1,..., C99;

Create a null set for each quality (accuracy) equivalence class, A99, A98,..., A0;

Populate the equivalence class sets with the Service Places that support the next service desired. 

For All Possible Moves entries

Do   // assign the Service Place to its Classes according to its attributes ranks.

Begin  //assignment here means just adding the service place name to an appropriate equivalence class set of names.

Possible Moves Entry Service Place equivalence_class := Possible Moves Entry  Time_to_initiate Div LB 

// where Div is integer division

T[Possible  Moves Entry.Time_to_initiate Div  LB] := Possible Moves Entry.Serviceplace_name; 

 //Div is integer division

C Possible Moves Entry.Cost_of_service:= Possible Moves Entry.Service_place_name

A Possible Moves Entry.Quality_of_Service:= Possible Moves Entry.Service_place_name

End;

oD.

Once we have assigned the Service Places to equivalence classes, select a subset to submit to the mobility heuristic. The idea here is to present to the mobility heuristic a set of non-dominated nodes, i.e. a set of Service Places smaller than that of Possible Moves, from which an optimal solution can be generated quickly. Finding a non-dominated subset of nodes is a search problem in which we try to find a set of nodes that satisfy all three attribute weights (time, cost, accuracy) simultaneously. If we cannot find such a set, than the weights assigned to the criteria by the agent can be viewed as relaxations on the equivalence classes. Suppose we have weights wt = .3, wa = .6 and wc = .1. In trying to find a non-dominated subset, these weights represent the number of equivalence class relaxations in the search process. We would like to find a set of intersecting nodes from the lowest time, lowest cost and highest accuracy equivalence classes. The weights are interpreted in the search as follows. First order the weights lowest to highest:  wc = .1, wt = .3, wa = .6,.The ratio between the weights (1:3:6) specifies the number of moves to be made in one attribute's classes (3:1) before making a (2:1) move in the next attribute’s classes. In this example we will check 3 cost classes before trying the next time class. We will check two time classes before checking the next accuracy class. If we do not get an intersecting set of nodes from the first equivalence class of each attribute, (111) we examine the first class in accuracy and time, and the second class in cost (112). The search sequence is (111), (112), (113), (121), (122) ,(123), (211), (212), (213) ,(221), (222) ... and so on. The ratio of moves creates a collating sequence from which to conduct the search of equivalence classes over the three attributes.

Step 4.  Find a  non-dominated set of Service Places satisfying the Agent's preferences.

Let a3 be the attribute with the least weight, a2 the attribute with the middle weight and a1 the attribute with the greatest weight. 

We can determine a relaxation criterion for each weight as follows.

a3beforea2 := a2 Div a3; //search this many a3 classes before you examine the next a2 equivalence class.

a2beforea1 := a1 Div a2; // search this many a2 classes before you examine the next a1 equivalence class.

Now try to find a non-dominated or pareto optimal set of nodes from the attributes' equivalence classes. If the attributes cannot be simultaneously satisfied (i.e. a superior solution exists), relax the criteria according to the above ratios of the weights and search for a set intersection. If the search terminates without finding an intersection, submit the first equivalence class of the dominating attribute to the mobility decision heuristic.

Set pointers i,j,k to the first class of each attribute; //T0, C0, A99 

If Candidates := [Ti]∩[Cj]∩[Ak] ≠ ø Then 

Begin

Save this set as CandidatesServicename; 

MakeG(S)  //Go to the Service Place Selection Algorithm

End;

Else 

Adjust Class pointers according to the collating sequence of a3beforea2, a2beforea1 and try to find another intersection. 

If [(the last class of each attribute has been examined)& ([Ti]∩[Cj]∩[Ak] = ø)] Then 

return the entire set from the Trader Place rank ordered by the dominant attribute value. Candidates := (the sorted Possible Moves vector sorted by the attribute with the greatest weight) and Save this set as CandidatesServicename; 

If there is an equivalence class intersection, that non dominated set of Service Places is passed into the Service Place Assignment Algorithm.

3. 
Outline of the Service Assignment Heuristic

Step 1.  MakeG(S) 

Generate the interior graph (ordinary Graph) of services rooted in the next service of the remaining workflow signature for this agent. In this graph, the nodes are service names, and the edges are weighted by the payload size of each predecessor service to its successor services. 

Software Agent.Current_Service is the root node of the graph.

For each remaining service in the agent’s workflow signature 

Do  //create the interior graph as follows

Create an edge from Current_Service to each service name in the task set.

Now compute ci, as follows:

For each edge created, compute the weight of that edge as [Current_Service,Payload Size]*Payload Scaling Matrix[Next_service,task set.service_name]

; //i.e. the payload cost to go from service i to service j

oD; 

The root service has been connected to each service in the next task set. We must repeat the procedure for every service in the next task set to every service in its following task set until the entire workflow graph is built. 

Step 2.  MakeGP(S) 

In this step we have to connect each interior node (service name) to every service place that supports it. In order to reduce the computing time, we will only use the non dominated set of nodes for each service. The cost of an edge from a Service to a Service Place is computed as follows:
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Equation 1
Weight by Attributes

Step 3. ConnectSPs(Candidates) //incremenatlly build GP(S)

The input to this section is the graph G(S) and a set of Service Place records from the Possible Moves list that corresponds to a non dominated set of Service Place Candidates returned from the equivalence class search. 

For each Service Place Name in the Candidates set

Do

Begin

Generate a vertex for the Service Place in the Candidates set if it is not already in the graph;

Generate an edge from Current_service in G(S) to the Service Place vertex just generated.

Compute xi,q for the the (Service, Service Place) as above;

End;

Weigh each (Service, Service Place) edge wi,q as
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Equation 2

Service-Service Place Cost
Od; //this service is now connected to all its service places in the non dominated set

RootNode := FALSE; //no subsequent pass can be for the root node of G(S).

LastService := Current_service; 

For all remaining nodes of the interior graph G(S) 

Do

Pick the next interior node in G(S) and assign the vertex's name as Next_service.

TemporaryPayloadSize := TemporaryPayloadSize * Payload Scaling Matrix[LastService,Current Service] factor;

GetLocations(Next_service);

PickCandidates(PossibleMoves)

ConnectSPs(Candidates)

oD; //end of procedure MakeGP(S)

Step 4. Assign Services To Service Places(GP(S)) 

The input to the service place assignment algorithm is the graph GP(S) and the sets of Candidates generated for each service name in procedure MakeGP(S). 

Take the non dominated sets of Service Places and concatenate them, first service to last;

Remove any duplicate Service Place names from the concatenated list; 

This list is the order in which we will consider the Service Places in the service assignment problem. Remove the first ServicePlace from the list. It is partition SP. The remaining service places on the list constitute partition 
[image: image3.wmf]SP

.

For each Service Place in the concatenated list 

DO  // until all services are assigned or no new services are assigned in the pass

CreateGM(GP(S))

Begin

 From GP(S) create a two processor network SP, 
[image: image4.wmf]SP

.

SP is a service place name removed from the concatenated List and 
[image: image5.wmf]SP

consists of {List - SP}.

For each service name in the interior graph

Begin

If Service Name is connected to SP then weight of the (SP,Service Name) edge is as already computed in a previous pass. 

Sum the weights of other edges originating from Service Name in GP(S);

Create an edge from the service name to 
[image: image6.wmf]SP

 in the two node network. 

Assign the sum of those weights to (Service Name, 
[image: image7.wmf]SP

)

End; // This is now graph (GM)

End;

oD;

Apply the Max Flow/Min Cut Algorithm to this two node network. The services "to the left" of the cut are assigned to SP.

Next delete the assigned tasks from the two Service Place graph and re-compute edge weights

Step 5. CreateGM+1(GM) 

Construct a new SP, 
[image: image8.wmf]SP

network from the tasks that remain unassigned after application of the Max Flow/Min Cut algorithm as follows:

Delete all tasks assigned by the cut from GM;

Recompute xi,q for the remaining tasks according to the following equation
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Equation 3

Normalizing Weights After Service Assignment

where ci.j is the size of the payload as previously computed for each Service i that terminates in Servicej and was assigned to other Service Places than Service Place q, by previous passes of the algorithm. 
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is the original cost xi.q plus the payload costs between Servicei and all
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that precede Servicei in the workflow graph and were assigned to other Service Places than Service Placeq.

Recalculate wi,q the (Service,Service Place) edge weights using 
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Equation 4

Normalizing Service-Service Place Weights
If all the services were not assigned by this procedure, than the assignment problem falls outside the non-dominated sets which we used as candidate locations. We will use subsumptive rules to assign these services to service places as follows:

Step 6. Subsumption of Unassigned services

For each service in the unassigned set 

Do

Rule of minimizing communication costs

Interrogate the Software Agent Workflow signature. If the unassigned service is offered on the predecessor service’s Service Place assignment, then assign this service there.

 Rule of minimizing wait time

For the set of Service Place Entries in the Trader for this unassigned service, find the Service Place with the lowest local congestion time and assign the service to that Service Place

Rule of dominant rank

For the set of Service Place Entries in the Trader for this unassigned service, find the Service Place with the best value for the dominant weight of cost, time or quality. If the dominant weight is time, then this rule reduces to minimizing weight time above. In this case pick the next dominant weight cost or quality.

oD;

Step 7.  Write the set of Service/Service Place assignments to the Software Agent Service itinerary.
4.  Simulation of Agent Mobility

The purpose of the base line simulator is to validate the agent mobility decision and to see how the decisions effect the performance of Service Places. In particular, we were anxious to see if in the fully distributed and autonomous agent decisions would give rise to second order or emergent behavior corresponding to load leveling of the Service Places. The mobility heuristic outlined in Section 3 was implemented in a Service Place Simulation of a multi agent colony using the CSIM programming language. We configured an arbitrary global network from the ten largest US cities and the ten largest cities outside the United States. The cities in the network are

Tokyo
London
Moscow
Beijing

Sydney
New York
Los Angeles
Detroit

Houston
Chicago
Dallas
San Francisco

St. Louis
Denver
Atlanta
Madrid

Rome
Singapore
Panama City
Rio de Janeiro

Table 1

Simulator Network Cities

An arbitrary topology was defined for the twenty node network with diameter = 5 hops.

There is a single Trader Place. Trader Place updates are instantaneous in this simulation. That is, each time the local congestion in a Service Place is computed the Trader Place is updated. Link Speeds are assumed homogeneous across the network and are a simulation input variable. In the initial set of simulations performed, the link speed was set to 1 MBPS to prevent the network acting as a buffer for the Service Places. The mean service time is .5 seconds with exponential distribution, the mean agent inter-arrival time is .3 seconds with exponential distribution and the outer loop or iteration grain size is .1 seconds. The initial and final node designations for an agent are randomly generated. An agent service signature includes up to ten service task sets with each task set consisting of up to four services to account for non deterministic choice. If a task consists of multiple services, the simulator randomly selects one of the services in the task set to emulate non determinism in the work flow. The simulator also contains an arbitrary payload scaling matrix used to simulate the changes, both positive and negative, in the payload of an agent as it performs a series of services. The sponsor has advised us that in some cases the payload increases as a result of adding meta data to the initial agent payload, and in some cases decreases if the initial payload is abandoned by the agent and only the meta data is subsequently processed. The payload scaling factors range from approximately .02 to 2.8.

Four base cases were simulated.

1. Service Discovery (Heuristic Search) with equal preference for time, cost and quality

2. Agent Preference by Time to Initiate Service (distance + local congestion)

3. Agent Preference by Quality of Service (accuracy)

4. Agent Flooding in search of Second Order Effects

The results of these tests are shown below.

Test1: Service Discovery (Heuristic Search) with equal preference for time, cost, and quality

Purpose: to demonstrate

·  Agents can logically reason that if there is only a single instance of a service, the agent will visit that location.

· The mobility heuristics execute to completion when there is only one Service Place  to consider for each service

Configuration:

· single agent with service signature: S0;S1;S2

· Agent preferences are time to initiate service  = 0.33, cost of service = 0.33, and quality of service = 0.33.

· Service Place London offers S0, New York offers S1, and Sydney offers S2.

Expected Behavior:

Agent is expected to migrate to from Los Angeles, the entry point to London, New York and Sydney  regardless of Service Place conditions or preferences because each service is offered only at a single Service Place. Note that the entry node, Los Angeles, does not offer any of the services required by the agent.

Result:

Agent itinerary corresponded to expected behavior

Test2: Migration by Preference (Time to Initiate Service) Time to Initiate Service is the sum of distance and local congestion

Purpose: to demonstrate

·  Agents can discover services from the Trader according to their temporal preference.

· Agents can plan an itinerary subject to their perception of Service Places.

Configuration:

· single agent with service signature: S0;S1;S2;S3

· Agent preferences are time to initiate service = 1, cost of service = 0, and quality of service = 0.

· Service Places London, Sydney, New York, and San Francisco offer S0, and Sydney and San Francisco have the lowest time to initiate service.

· Only New York offers S1.

Only San Francisco offers S2.

Only Sydney offers S3.

Expected Behavior:

Agent is expected to migrate to Sydney or San Francisco first because

these cities are equivalent by agent preference.

The agent is then expected to migrate to New York, San Francisco and

Sydney according to Service Place conditions and preferences (namely

time to initiate service).

Result:

Agent itinerary corresponded to expected behavior.

Test3: Migration by Preference (Quality

Purpose: to demonstrate

·  Agents can discover services from the Trader according to their quality preference.

· Agents can plan an itinerary subject to their perception of Service Places.

Configuration:

· single agent with service signature: S0;S1;S2;S3

· Agent preferences are time to initiate service = 0, cost of service = 0, and quality of service = 1.

· Service Places London, Sydney, New York, and San Francisco offer S0, and London has the highest quality of service.

· Service Places London, Sydney, New York, and San Francisco offer S1, and New York has the highest quality of service.

· Only Service Places Sydney and San Francisco offer S2, and San Francisco has the highest quality of service.

Only Service Places Sydney and New York offer S3, and Sydney has the highest quality of service.

Expected Behavior:

Agent is expected to migrate to London, New York, San Francisco and Sydney according to Service Place conditions and preferences (namely quality of service).

Result:

Agent itinerary corresponded to expected behavior.

Test4: Network Second Order Effects as a result of multi-agent interaction 

Purpose: to demonstrate under network loading individual agent decisions aggregate to Service Place load-leveling in the absence of any central authority.

Configuration:

· 100 agents with random signatures of 10 services each

· All services offered at all Service Places

· Link speed set to 1 M bit/sec to prevent network links from acting as buffers.

· Service Place Attributes are all equal.

· Agent preferences are all equal.

· Arrival and departure nodes are randomly selected.

· Mean Service Time = 0.5 sec (exponentially distributed)

· Mean Inter-Arrival Time to Network = 0.3 sec (exponentially distributed)

· Grain Size = 0.1 sec

Expected Behavior:

All Service Places have characteristic performance of

· monotonically increasing CPU utilization

· approximately concave-up queue lengths

· linear-rising agent age to maximum CPU utilization

· approximate temporal coincidence.

These are characteristic functions of networks under load. 
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Result:

· Simulation was run for 1600 iterations

· 1000 independent mobility decisions were made at 20 locations

· over 160 seconds of simulated wall clock time

· Simulation terminated normally

· 13 of 20 nodes displayed the characteristic performance. Their graphs exhibited approximate temporal coincidence. 

· 7 nodes that did not demonstrate the characteristic performance resulted from an implementation error in the algorithm.

                                                     

 Uncongested

agent arrivals


              agent age in queue

                             CPU utilization

Figure 2

Simulated Service Place Performance 

The performance of the nodes in the simulation unaffected by the implementation error had graphs that were uncongested in the same temporal region during the simulation. These nodes did not exhibit the characteristic behavior of congestion as described above. We conclude that the failure to congest is a second order effect of the mobility heuristic.
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