Detecting Botnets Using a Collaborative Situational-aware IDPS

M. Lisa Mathews', Anupam Joshi' and Tim Finin'

LDepartment of Computer Science & Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD,

Keywords:

Abstract:

USA
{mathl, joshi, finin} @umbc.edu

intrusion detection, situational-aware, botnet detection

Botnet attacks turn susceptible victim computers into bots that perform various malicious activities while
under the control of a botmaster. Some examples of the damage they cause include denial of service, click
fraud, spamware, and phishing. These attacks can vary in the type of architecture and communication protocol
used, which might be modified during the botnet lifespan. Intrusion detection and prevention systems are
one way to safeguard the cyber-physical systems we use, but they have difficulty detecting new or modified
attacks, including botnets. Only known attacks whose signatures have been identified and stored in some form
can be discovered by most of these systems. Also, traditional IDPSs are point-based solutions incapable of
utilizing information from multiple data sources and have difficulty discovering new or more complex attacks.
To address these issues, we are developing a semantic approach to intrusion detection that uses a variety of
sensors collaboratively. Leveraging information from these heterogeneous sources leads to a more robust,
situational-aware IDPS that is better equipped to detect complicated attacks such as botnets.

1 INTRODUCTION

Botnets have the potential to cause substantial dam-
age to the various hosts and networks they target
or affect. They are a pervasive type of attack in
which bots perform various malicious activities while
under the control of a botmaster. A few of their
well known consequences are denial of service, click
fraud, spamware, and phishing (Thuraisingham et al.,
2008; Feily et al., 2009). To make matters even more
interesting, they can be difficult to detect. Bailey et
al. summarized this well when they said botnets “can
propagate like worms, hide from detection like many
viruses, attack like many stand-alone tools, and have
an integrated command and control system” (Bailey
et al., 2009). The destructive effects of botnets have
lead the Obama Administration to propose giving the
Department of Justice the ability to issue injunctions
for attacks where at least 100 computers have been
hacked (Prince, 2015).

Current state-of-the-art intrusion detection and
prevention systems (IDPSs) are recognized as hav-
ing limitations that lessen their effectiveness in deal-
ing with attacks, especially those of a more sophis-
ticated nature. Conventional IDPSs are typically
point-based solutions incapable of utilizing informa-
tion from other sources, even if this data was available
for them to use. They are limited in the attacks they

can identify by the signatures stored in their database.
They cannot detect zero day type attacks, attacks that
use low-and-slow vectors, or other complicated at-
tacks such as botnets. Many times an attack is only
revealed by post facto forensics after some damage
has already been done.

We tackle the limitations mentioned above by cre-
ating a collaborative situational-aware IDPS that uses
a variety of information sources to detect attacks. The
collaborative aspect comes from the fact that multi-
ple sensors are employed, both traditional and non-
traditional. Traditional sensors encompass the vari-
ous hardware and software available to scan and/or
monitor hosts and networks, such as Snort or Nor-
ton Antivirus or less conventional tools such as Pro-
cess Explorer. Other types of IDPSs might gather in-
formation from different sensors, but some only in-
clude sensors from a single vendor, and most simply
dashboard the information that is acquired. For the
IDPS we are developing, incorporating specific prod-
ucts or vendors is not important, and the information
is stored in a knowledge base for system integration.
The goal is to have some combination of hardware
and software that provides a clear picture of what is
happening on the hosts and network. This would a
network administrator to use the tools they already
have available to them. By nontraditional sensors,
we mean online sources in the forms of vulnerability

databases, forums, blogs, etc., that contain structured
and unstructured textual descriptions of potential vul-
nerabilities or exploits. These descriptions are often
for unpatched vulnerabilities, such as those from the
National Vulnerability Database (NVD), that attack-
ers could potentially use to target affected systems.

Information gathered from these different chan-
nels is stored as facts into a knowledge base using
a W3C standards based ontology that has been de-
veloped in house. In addition, high level rules, the
kind that are typically used by an analyst as they look
at data for evidence of attacks, are also encoded in
the same ontology. The IDPS that emanates from
the various sources working in conjunction is well
armed to stop complex attacks such as bonets. This
paper describes our overall approach and a prelimi-
nary version of this system that detects botnets. We
validate the system by using a variety of cues to de-
tect two botnets, namely Skynet and W32/Vobfus, aka
W32/Changeup.

The rest of this paper is organized as follows. Sec-
tion II details the background of the IDPS along with
a brief botnet overview. Section III goes over the re-
lated work. Section IV describes the system setup and
validation, and Section V contains the results. Section
VI provides the concluding remarks.

2 Background

2.1 IDPS

Intrusion detction systems (IDSs) are a popular
method for defending cyber-physical systems against
various threats. Basically, they passively observe host
and/or network data and show an alert when anoma-
lous behavior is detected. An IDS will not take any
action against a potential threat; instead, it stores
these observations in a log file and shows an alert.
Intrusion Prevention Systems (IPSs) are more active
and will attempt to thwart any intruders from harm-
ing a system. Combining these two systems forms a
more robust defense mechanism known as an IDPS.
In previous work, we presented a novel approach
to intrusion detection and prevention by making an
IDPS situationally-aware (More et al., 2012) and col-
laborative (Mathews et al., 2012). The essence of this
IDPS is to take the data gathered from traditional sen-
sors and add to that the data gained from nontradi-
tional sensors, like online forums or Twitter feeds,
analyze this data, and create additional facts and in-
formation expressed using an ontology we created. In
combination with rules, also expressed using terms

Context/Situation

@ Alerts

Traditional Sensors
l'ﬁ Traffic Flow r Non Traditional “Sensors”

Classifiers

Qf-
Network Activity} € PSPS At jid]
Monitors ST rrisioos B
Security Vulnerability Chatrooms Forums/Blogs
Host Based Hardware Databases
Activity Security

Monitors Sensots

Figure 1: Our architecture supports situation awareness
by integrating and analyzing data extracted from multiple
sources, both traditional and nontraditional. The results are
represented in a knowledge-based system and reasoned over
to detect potential attacks. Taken from (Mathews et al.,
2012).

from this ontology, that are normally used by ana-
lysts to detect attacks post facto, the system can in-
fer if a situation is indicative of an attack. The use of
heterogeneous and diverse data sources can provide a
wider picture of the system activities and information
related to potential attacks that are being discussed,
and thus, better help detect zero day attacks for which
signatures do not exist.

The designed framework can be split into two
main sections. The first involves the gathering of data
from different channels such as online web sources,
logs from existing IDS/IPS systems, host-based ac-
tivity monitors, network activity monitors, and hard-
ware security sensors. The second section employs
an ontology to model both the intrusions in terms
of their defining characteristics and the various hosts
and networks of a system in terms of their properties
and behavior. This information is stored in a knowl-
edge base as a set of rules, and a reasoner is used
to extract additional information from this knowledge
base. The system architecture designed for this col-
laborative situation-aware IDS (More et al., 2012) is
depicted in Figure 1. The components of the second
section will be described in the next few paragraphs.

The ontology used in this work is one focused on
cybersecurity concepts and is an extension of a previ-
ous ontology developed in house (Undercoffer et al.,
2003). The classes present in this current ontology al-
low an attack to be represented in terms of its means
and consequences and a system to be represented by
its host and network properties. The means of an at-
tack is the method in which it is executed, such as
a buffer overflow. The consequence would be the
end result, which could be denial of service (DoS)
for the previous means. Examples of system prop-
erties modeled by the ontology include operating sys-

tems, processes running, and IP addresses. As stated
in our previous work, the knowledge base is built up
by encoding the information as Web Ontology Lan-
guage (OWL (Bechhofer et al., 2004)) and Resource
Description Framework (RDF (Manola et al., 2014))
assertions. We serialize these using Notation-3 (N3
(Berners-Lee and Connolly, 2014)) triples of the form
(subject predicate object) that asserts that the relation
p holds between s and o (Mathews et al., 2012).

The reasoning logic component takes the output
from the various data channels, knowledge base as-
sertions, rules, and information representation prop-
erties of the ontology to infer the presence of an at-
tack. This reasoner allows for additional facts to be
inferred, either from rules, or from the structure of the
ontology. Take for example a triple that describes a
network activity such as “ComputerA sendsPacketTo
ComputerB”. As humans, we understand that this
can also be expressed as “ComputerB receivedPack-
etFrom ComputerA”, but with the use of the reasoner
and an owl:inverseOf statement relating sendsPack-
etTo and receivedPacketFrom, the system knows this
as well.

2.2 Botnets

Most of the top-rated IDPSs implemented to defend
computer networks will not be able to stand up to
newly published attacks, especially the more compli-
cated ones such as botnets. A botnet consists of a bot-
master, or botmasters in some cases, that gains control
of its victims through various methods, turning these
compromised computers into its bots, short for robots
(Feily et al., 2009; Bailey et al., 2009). One property
of botnets that distinguishes them from other types of
malware is their use of command and control (C&C)
servers. The bots will continue to receive instructions
from its botmaster while the botnet lives on, usually
through a backdoor. Different botnets have different
architectures and communication protocols, and these
can in fact change during the course of the attack. In
the past, these attacks have utilized a more central-
ized structure for communication amongst the mem-
bers of the botnet, while more recent designs have im-
plemented a decentralized architecture using peer-to-
peer (P2P) communication.

Skynet, discovered in December 2012, was a com-
plex botnet with different mechanisms in place to add
stealth and fly under the radar while performing ma-
licious activities including execution of a distributed
DOS, illegal Bitcoin generation, and procurement of
online login credentials (Constantin, 2012). As seen
with other botnets, Skynet is a variant of another bot-
net, in this case Zeus. The supposed inventors of this

attack had possibly created nearly one million dol-
lars in Bitcoins using a modified Zeus banking tro-
jan and infested more than 12,000 computers by the
time they were caught in December of 2013 (Kumar,
2013; Constantin, 2012). Its use of Tor to hide its In-
ternet Relay Chat (IRC) C&C communication makes
identifying the servers and bots more difficult. Tor
is a specialized software that provides traffic encryp-
tion and anonymity by dispersing its users’ traffic over
several relays, thus hiding the location of its users and
making traffic analysis a challenge (Guarnieri, 2012).
The IDPS described in this paper would be able to
detect this attack using the combination of traditional
and nontraditional sensors as described without hav-
ing components specifically designed for botnet de-
tection.

3 Related Work

In prior work, we described our efforts in creating
a situational-aware IDPS framework and also pre-
sented the details for a network traffic based classi-
fier that shows promise for detecting malicious traffic
(Mathews et al., 2012; More et al., 2012). Sharma
et al. (Sharma et al., 2013) designed and validated a
framework that contains several modules for monitor-
ing various parameters that indicate the occurrence of
data exfiltration, examples of which include network
usage and DLLs called. Monitoring these parameters
would allow a system to be profiled in terms of its
normal behavior for all layers, i.e., from hardware up
to application.

There have been many papers published that fo-
cus on botnet detection and even a few survey papers
that cover the different detection techniques. The pa-
per by Feily et al. (Feily et al., 2009) provides an
overview of botnet detection methods while covering
the basics of the botnets including the terminology,
characteristics, and infection life cycle. The authors
of this survey state that botnets can be classified ac-
cording to their command and control architecture,
which they also emphasize is the defining property
of these attacks that also provides anonymity for the
botmaster. The four detection methods they summa-
rize and then go on to compare and contrast are sig-
nature based, anomaly based, DNS based, and min-
ing based. The evaluation criteria included determin-
ing whether the detection method could identify un-
known bots, whether it was protocol and structure in-
dependent, if it could deal with encrypted command
and control channels, the ability to detect these bot-
nets in real-time, and the accuracy of each method.
According to the authors, the most promising botnet

detection techniques are those based on a data min-
ing approach and another that utilizes a DNS based
method. Data mining detection techniques try to iden-
tify the C&C traffic that is required for these attacks.
DNS based methods seek to identify DNS traffic that
occurs during a botnet’s life cycle. We tried a pure
data mining approach to identify various botnets, but
the results showed that different botnets exhibit dif-
ferent patterns and implementing additional sensors
rather than just a network traffic analyzer would stand
a better chance at detection.

While some detection techniques focus on one
specific type of botnet, others try to analyze different
kinds in order to find similar characteristics. Algo-
rithms that are created as a result of studying botnets
of a specific type can sometimes be restrictive in the
sense that they can only be applied to those specific
botnets, as mentioned in the botnet survey paper (Bai-
ley et al., 2009). They described the changes botnets
have gone through while still having the end goal of
turning their targets into zombies, or bots.

Other researchers have studied cross-analysis bot-
net results. For example, Shin et al. studied one bot-
net that uses auto-self propagating techniques and two
that are non-auto-self-propagating (Shin et al., 2011).
Their experiments examined properties like the ge-
ographical distribution of infected networks and the
remote accessibility of networks to detect botnets of
both similar and different propagation type. Due to
the recognition of these attacks as a serious concern
and their complex attack vectors, many research ef-
forts result in elaborate algorithms or system com-
ponents that are designed to detect and possibly de-
ter botnet attacks. They usually do not work well on
other types of attacks. Examples of these types of sys-
tems include the works of Gu et al. (BotMiner, Bot-
Sniffer, BotHunter, and BotProbe) (Gu et al., 2009).
Many of these algorithms also require the use of deep
packet inspection (DPI), which looks at the payload
information of a packet and can be considered in-
trusive and raises privacy concerns. Our approach
demonstrates how a collaborative, situational aware
IDPS could detect different kinds of attacks includ-
ing, but not limited to, botnets.

Allowing an IDPS to understand the context or
situation in which an attack can occur can go a log
way in preventing different kinds of attacks from oc-
curring, not just the ones whose signature is in a
database. While situational awareness might be ap-
plied to more physical domains, the potential of its
implementation in the cyber realm is starting to be
realized. The authors of idsNETS (Mancuso et al.,
2012) realized this and are developing a system to
test how users with varying degrees of cyber secu-

rity knowledge understand this concept by seeing how
they defend a system/network against multiple at-
tacks, some more harmful than others. Their work fo-
cuses on studying studying situational awareness in-
stead of its implementation.

Squicciarini et al. have also realized the useful-
ness of a situational aware intrusion detection system
(Squicciarini et al., 2014). What we call an attack,
they refer to as a case or incident. Their system, Rea-
sONets, incorporates information from host and net-
work sensors, which results in information similar to
what is gathered in previous work done by us (Math-
ews et al., 2012), (Sharma et al., 2013). These authors
also use Snort, stress the importance of a reasoner and
knowledge base, and incorporate DNS blacklists as
examples of sources of additional information, simi-
lar to our previous work (More et al., 2012), (Math-
ews et al., 2012).

3.1 Data Mining Approach to Botnet
Detection

After our initial research lead us to believe that a data
mining approach would be best, we decided to try
studying different botnet pcap files to identify var-
ious patterns that exist. A pcap file contains net-
work packet data that is captured while the network
is running. The botnets studied were W32/SDbot
(McRee, 2006), Kelihos/Hlux botnet (Mila, 2013),
and Skynet/Tor (Mila, 2012).

In order to apply data mining techniques to the
botnet pcap files, we used two free and open-source
products. Wireshark is a popular network proto-
col analyzer that can capture traffic on a network
and open previously obtained pcap files (Wireshark,
2015). RapidMiner is a data mining software that
provides a user-friendly GUI environment for ap-
plying data mining and machine learning techniques
and visualizing the output (RapidMiner, 2015). The
fields/attributes chosen to be exported were the source
IP address, destination IP address, protocol, packet
length, destination port, source port, and ExpertInfo.

The ExpertInfo field that is produced by Wire-
shark is similar to other intrusion detection systems
alerts. There are five values that an individual instance
can have: NULL, Chat, Note, Warn, Error. NULLs
occur for normal traffic while Chats occur with traffic
that might be considered normal but there is some-
thing unusual, but not alarming, regarding the work-
flow. Notes occur for packets that are suspicious but
not strongly so. The Warn value is seen for activity
perceived as out of the ordinary and should be taken
as a warning. An Error value is the worst rating indi-
cating a serious problem.

OpenFilein Exportin csy Fill in empty values
Wireshark farmat weith “MULLY

Create separatefilesfor
each Expertinfotype

Perfarm stratified
samplingonfiles

Combine Decision Cross- Wisual
results Tree Walidation Analysis

Figure 2: Block diagram of methodology

!

Figure 2 represents the block diagram showing
how each botnet pcap file is preprocessed and ana-
lyzed. Looking at the confusion matrix for each file,
Chats seem to be the most difficult to classify prop-
erly. The NULL class has the best results with very
few misclassified instances appearing since they were
hand-selected specifically so that only normal traffic
would be included. The Note, Error, and Warn classes
were mixed; half the time the instances were classi-
fied correctly for the most part, and the other half they
were not.

When looking at the resulting decision tree and
observing the paths from the root to the leaf nodes
along with the intermediate attributes, there is no dis-
cernible pattern for the attribute values. The Proto-
col and Source and Destination Port attributes were
in all but one of the decision trees. The Destination IP
Address attribute appeared only in one tree, and the
Source IP Address did not appear at all. The main
pattern observed was for the PacketLength attribute
value, which varied for the different branches of each
tree. However, a split was often seen on the value 57.
When looking at the files for each botnet and order-
ing by PacketLength, it was seen that in many cases
a value of 54 bytes would have TCP ZeroWindow
listed as part of the Info column. This occurs when
the sender is told that the destination cannot accept
more information for the moment. While this could
be used as part of a rule/policy to detect botnets, this
pattern alone would not catch them since it can also
be observed in nonbotnet traffic. No obvious pattern
or trend was perceived regarding the depth or num-
ber of nodes in the tree and the accuracy. This fail-
ure to detect patterns at the syntax level in attributes
that would enable classification provides support to
our overall approach of using semantically rich repre-
sentations and reasoning to detect attacks.

4 Current System Setup and
Validation

4.1 Current Setup

We tested the prototype system described above
against a sophisticated botnet attack using the vari-
ous components we have created or utilized for the
IDPS. Actual binaries were desired to recreate the at-
tack since, along with the shortcomings listed in the
previous section, it is difficult to ascertain the timing
of events in a pcap that someone else has created.
In other words, the particular times or more accu-
rate knowledge of the packets where important events
take place is not always easily determined. Also, it
is often the case that the exact system configuration,
such as the operating system and what vulnerable ap-
plications were installed, is not mentioned. Instead,
we found the executables for the Skynet botnet, also
knows as Trojan.Tbot, from the contagio site (Mila,
2012).

The text processing module described in (Math-
ews et al., 2012) and the host parameter monitoring
system described in (Sharma et al., 2013) were uti-
lized for system validation. Even though the Skynet
botnet was discovered in December of 2012, the at-
tack was still infecting victim computers when the al-
leged creators were arrested one year later (Kumar,
2013). Virtual machines (VMs) were set up to run
the botnet in a sandboxed environment with the mod-
ules of the IDPS described in this paper in place. Ad-
ditionally, Symantec and Microsoft write-ups of the
W32/Vobfus attack were found and sent through the
text processing module. A summary of the results will
be provided below.

4.2 Text Processing Module Results

As described earlier, textual sources can provide dis-
cussions on new attacks where formal signatures are
not yet available from AV providers or vendors. Con-
sider the text below, which is a response taken from
an entry on the Reddit website to the question of how
to detect Skynet.

Look for unusual Internet Explorer and sv-
chost processes. Also if you don’t regularly
use Tor you’ll find a “tor” folder in %App-
Data% as well as a custom directory with a
random name in %AppData% as well, con-
taining a copy of the malware. You can also
watch for anything listening locally on 42349
and 55080 (botherder, 2012).

74 Python 2.7.6 Shell (= [5 [
Eile Edit Shell Debug Optiens Windows
Help

>3 N

[[a'Lock', u'C'],
[a'unusual', u'QC"],
[u'Internet', u'SCFIWARE,'],
[a'Explorer", u'SCOFIWARE, '],
n'svchostc' ' FROCESS!'
[u'processes', u'C'],
[u'Blsc', w'C'],
[a'regularly', u'0'],
n'use', n'Q!

u'Tor', 'SOFTWARE'],
[u'll', u'0'l,
[u'find', u'0'l,
[u'tor', 'SOFTWARE'],
[a'folder', u'C'],
[w'%", w'0"],
[u'BppData', u'C"'],
[a's', w'o'l,
[a'well', u'C'],
[a'custom', w'Q'],
[u'directory', u'C'],
[@'random', w'C'],
[a'name', u'C'],
[u'%", w'O'],
[u'ZppData', u'C"'],
[w'%", w'0C"],
[a'well', u'C'],
[a',", u'o"l,
[@a'containing', u'0'],
[u'copy', u'0'],
[u'malware", u'C"'],
[a'¥ou', u'C'],
[a'alsc', u'C'],
[u'watch', u'C'],
[w'anything', w'C'],
[@a'listening', u'0'],
[a'locally', u'Q'],
[u'42343', w'0'],
[wu'55080', u'0']]

>

-
Ln: 43|Col: 4

e

Figure 3: Output from Reddit post sent through Security
NER

Our text processing module can analyze this de-
scription and extract information that can aid in as-
serting the fact that host process modification indi-
cates the presence of a botnet. Passing the response
text through our NER (named entity recognizer) re-
sults in the identification of the relevant processes
and software as shown in Figure 3. In our ontology,
‘showsInfectionSigns’ and ‘opensPort’ are properties
of the class ‘Process’; ‘DistributedCode’ is a sub-
class of ‘MaliciousCodeExecution’, which is a sub-
class of the ‘Means’ class; and ‘DistributedCode’ has
the object property of ‘resultsIn’ with the class ‘Bot-
netAttack’, which is a subclass of ‘Consequence’. A
rule that accounts for this threat, like the one in Fig-
ure 4, could say that if a host-based sensor detects a
process flagged as showing infections signs (as de-
tected by the process monitoring module), and there
are open ports 42349 and 55080 (as shown by some

[IDPS:webText_Reddit001 IDPS:hasProcess ?Process
IDPS:webText_Reddit001 IDPS:hasPort ?Port
IDPS:webText_Reddit001 IDPS:hasTerms ?0therTechnicalTerms
IDPS:scannerLog_2 IDPS:hasProcess ?Process
IDPS:hostSensor_1 IDPS:hasProcess ?Process
IDPS:hostSensor_1 IDPS:showsInfectionSigns “True”
IDPS:scannerLog_2 IDPS:opensPort ?Port

IDPS:hostSensor_1

=>

IDPS:anomalousDataOutFlow “True”]

[IDPS:System_001 isUnderAttack “botnet”
IDPS:attack hasMeans MaliciousCodeExecution
IDPS:attack hasConsequence BotnetAttack
IDPS:attack hasConsequence DenialofService
IDPS:attack hasConsequence LossofIntegrity |

Figure 4: This rule, serialized as N3, asserts RDF triples
describing a potential attack based on the presence of triples
representing the state of the system and recent events.

network monitoring tool), and that there is an abnor-
mal amount of data flow observed in behavior such
as a large spike in network activity or connection at-
tempts to/from previously unseen IP addresses (as de-
tected by Wireshark), a botnet attack is likely occur-
ring.

Several parameters need to indicate abnormal ac-
tivity in order for the IDPS to throw suspicion on
this botnet. It is important that all of the indicators
are present to reduce the possibility of false positives.
One instance of a low level alert might not be of inter-
est to anyone, but if all the indicators are present, this
warrants at least additional investigation by a network
administrator.

In order to identify the malicious behavior of a
botnet, several tools and applications need to be in
place. These are used by the host and network pa-
rameter monitors mentioned earlier. Detecting Skynet
would involve the use of host monitors to detect pro-
cess behavior and registry modifications and network
monitors to detect suspicious port openings and ab-
normal traffic behavior.

Figure 5 shows a screenshot of ProcessExplorer,
which has been incorporated into the host parameter
monitor, as it detects the disguised svchost.exe pro-
cess that is created after one of the Skynet files is
executed. During later executions of the botnet in-
side a new VM, the disguised process was sometimes
shown as IEXPLORER.exe. Symantec had posted
a writeup of Trojan.Tbot in their Security Response
section where the describe the technical details of
this trojan including modifications seen on an infected
system (Spasojevi, 2012). Their analysis of the botnet
listed the creation of a rogue svchost.exe process, but
interestingly did not mention anything about the In-
ternet Explorer process. False negatives would most
likely occur if their signature to detect Skynet needed
the discovery of the disguised process and didn’t in-
clude IEXPLORER .exe.

Figure 6 shows a screenshot of Regshot which
compares two snapshots of a host’s registry to detect

Process FID
"1 System Idle Pracess 0
=] System 4
" Irterrupts n'a
B [smss.exe 3E8
[carss exe 524
= _ﬂj winlogon, exe EOS
= [zevices.exe Eq2
W4 WHonS ervice exe a20
[Flsasz.ene G54
= [zvchost.exe 264
[T wmiprese. exe 2004
[wmiprese. exe 1695
[F] zvchost.exe 952
= [svchost exe 1048
[wscntfp.ene 1244
[swchost.exe 1092
¥ apateDNS . exe 1363
- Fiegzhot-»86-4M5] exe 12
= zvchost. exe 216
= o
LIMYEU, EXe 2456
[swchast. exe 172

Figure 5: Process Explorer showing disguised svchost.exe

any modifications including keys that were deleted
and added, values that have been deleted and added,
and values that have been modified. There were 382
modifications noted while the VM was allowed to run,
and this was without a Tor client or Bitcoin account
set up. While this might not be a big deal consider-
ing registry values can change with legitimate or nor-
mal activity, it is still something that could be of in-
terest when other suspicious host or network behavior
is observed. Netcat was used to listen on ports 42349
and 55080 and showed a connection attempt on port
42349.

Posts from Microsoft’s Malware Protection Cen-
ter and Symantec provided information on the
W32/Vobfus, aka W32/Changeup, malware including
the different attack vectors and operating systems af-
fected (Young et al., 2009; Diaz and Estavillol, 2010).
Victim computers are infected through removable me-
dia and network drives where an autorun.inf file, an
AutoRun configuration file, is set to execute a copy
of the worm once the drive is accessed. The worm
will copy itself and the corresponding autorun.inf file
to any removable and network drives found on the
newly compromised machine. It will then attempt
to download additional malware from remote loca-
tions through a few specific ports to different exe-
cutables under the %UserProfiles% folder with ran-
dom file names. Registry keys are modified so that
the malware runs each time the computer is restarted.

~res-x86 - Notepad

File Edit Formak Wiew Help

Regshot 1.9.0 x86 ANSI
Comments :
Datetime:
Computer:
Username:

HEUNS-1-5-21-1400082233-1708537768-
HEUMNS-1-5-21-1400082233-1708537768-
HEU%S5-1-5-21-1409082233-1708537768-

values deleted: 231

HEU%S-1-5-21-1409082233-1708537768-

Figure 6: RegShot showing indication of registry modifica-
tion

The worm may also attempt to modify registry keys
so that its location is hidden and Windows updates
are disabled. The output from sending the Microsoft
technical information text through the NER is shown
in Figure 7.

4.3 Host and Network Modules Results

The IDPS outlined in this paper has the different host
and network sensors along with the modules to an-
alyze them in place to flag an alert when suspicious
activity is discovered. This should help alleviate the
burden of network administrators who might moni-
tor these different tools individually. In Figure 8, the
window on the right shows the RDF assertions gener-
ated during the course of the attack. The window on
the left shows the highlighted assertion regarding the
disguise of the svchost.exe process.

VirusTotal provides an online service where files
and URLs will be sent through several antivirus and
antispamware engines and blacklists and provides a
report on any suspicious content (VirusTotal, 2015).
The results of the old VirusTotal scans uploaded onto
the contagio site show that many of the Skynet files
had a low detection rate when passed through several
IDSs/IPSs a few weeks after the attack was discovered
in December 2012 (Mila, 2012). This indicates that
relying on one sensor to detect all attacks is not ideal.
When running the bontnet files against the site as of
April 2015, some of the malware detection engines
still do not flag the files as malicious.

Having forensic style rules that can detect various
complicated threats and are not limited to one partic-

& rdf_assertions

File Edit Yiew Favorites Tools Help

2 [& iy g BE =

o &5

& rmain.py _i] & 5\tHelper py Jl = corfiguration py _.1 = instrumentation. oy 4 =] assertions_04-15-2014_06'08.rdf ﬂl

Folders

@Back T &l

) Fl e = ‘? P ! Search =

T
Address i!_) CiPunestCodel Thesisirdf_assertions

1 <?xml version="1.0"2>
<rdf:RDF
wuw. w3 . 0rg/1999/02/22-rdf-syntax-ns#"

®xmlns:rdf="http:

¥mlns:ebgids="http:

ehiguity. umbe. edu/ontologies/2013/4/IDS0Ontology. owll>

|] assertions_04-15-2014_04'45, rdf
.assertlons 04-15-2014_05'54, rdf
EI assertions_04-15-2014_06'01, rdf

s_(1 re

File and Folder Tasks &

Em Rename this file

<ebgids:showsInfectioniigns rdf:datatypes=
</ebgids:Process>
</rdf:RDF

2
3
&l
= <ebgids:Process rdf:sbout=
6
.
g8

"http://localhost/puneet/resource/svehost . exe™s =
"hoop://uww, wl, oo/ 2001/ ENLSchemafboolean>true</ehgids:shoveInfect ionSigns>

_& Mo this File

I

Figure 8: RDF assertions generated

o>

[u'The', u'0'],
[u'worm', u'
[u'writes
[u'Butorun', u'MEANS, '],
[u'configuration', u'MEANS, '],
[

[

[

r

o]
', u'o']l,

u'file', u'MEANS, '],
u'named', u'o'],
u'autorun.inf', 'BROCESS'],
[W'Win32Vobfus', u'MEANS,'],
[a'changes', u'MEANS,'],
[a'following', u'MEANS,'],
[u'registry', u'MEANS,'],

g Y
[u'entries', u'MEANS, '],
[u'prevent', u'MEANS, '],
[u'changing', u'MEANS,'],

ging

[u'hidden', u'MEANS,'],
[w'files', u'MEANS,'],
[u'folders', u'MEANS,'],
[u'displayed', u'0'],

[u'Downloads', u'MEANS,'],
[u'runs', u'MEANS, '],
[u'malware', u'MEANS, '],
[W'The', u'0O"']

[’ remote , U'CONSEQUENCES, '],
[u'"hosts', 'PROCESS:
[u'address', u'Q0'],
[u'hardcoded', u'0'],
[u'variants', u'Q'],

[u 'blnary , u'o'l,

[u ',HO]

[u'varies', u'0'],

[’ malware , u'CONSEQUENCES, '],
[u'author', u CONSEQUENCES 1,
[u'releases', u'CONSEQUENCES, '],
[u'new', u'0'],

[u' blnarles , U'CONSEQUENCES, '],

Figure 7: Output from Microsoft technical information on
W32/Vobfus sent through Security NER

ular threat would give an IDPS an advantage in dis-
covering attacks whose specific signatures have not
yet been created. Take for example the rule created
after extracting text from the Reddit post regarding
Skynet. Since the attack behavior for W32/Vobfus, as
described above, is similar to that observed in Skynet,
the same rule constructed earlier should be able to de-
tect this additional attack as well.

5 Conclusion

In this paper, we substantiated the need for a collabo-
rative, situational-aware IDPS to detect sophisticated
attacks. The IDPS outlined is capable of gathering
data from traditional as well as nontraditional sources,
extracting the relevant information, and storing that
information in a knowledge base as facts. When used
in conjunction with domain expert rules put in place,
malicious host and network activity will have a better
chance of being detected.

Initial experiments were conducted using several
pcaps, but a few significant drawbacks made us switch
to finding actual binaries. The complex attack of
choice was the Skynet botnet, aka Trojan.Tbot. Old
VirusTotal scans of the botnet files reveal that upon
discovery of the attack in December of 2012, many
of the popular IDS/IPS engines failed at identifying
them as a threat. The text processing module is ca-
pable of extracting the necessary information to cre-
ate a useful rule to detect botnets, not just specific
to Skynet. Several applications, such as ProcessEx-
plorer and registry monitors, that have been incorpo-
rated into the IDPS described in this paper would de-
tect the host and network changes that are checked by
the rule created to identify the attack.

As part of our future work, we will study the num-
ber of false positives and false negatives generated by
our IDPS compared to other systems and modify our
system as needed. Any bottlenecks that occur while
gathering information from the different sensors will
need to be dealt with. Adding a confidence metric or
assigning weights to the different rules in the knowl-
edge base is also a possible future contribution.

REFERENCES

Bailey, M., Cooke, E., Jahanian, F., Xu, Y., and Karir,
M. (2009). A survey of botnet technology and de-
fenses. In Conference For Homeland Security, 2009.
CATCH’09. Cybersecurity Applications & Technol-
ogy, pages 299-304. IEEE.

Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks,
1., McGuinness, D. L., Patel-Schneider, P. F., and
Stein, L. A. (2004). OWL Web Ontology Language
Overview. http://www.w3.org/TR/owl-features.

Berners-Lee, T. and Connolly, D. (2014). Notation3
(N3): A readable RDF syntax. http://www.w3.0rg/
TeamSubmission/n3/.

botherder (2012). Skynet, a Tor-powered botnet straight
from Reddit. http://www.reddit.com/r/netsec/
comments/1l4etfq/skynet_a_torpowered_
botnet_straight_from_reddit/.

Constantin, L. (2012). Tor network used to command
Skynet botnet. http://www.pcworld.idg.com.au/
article/444088/tor_network_used_command_
skynet_botnet/.

Diaz, Jr, E. and Estavillol, P. (2010). Win32/Vobfus.
http://www.microsoft.com/security/portal/
threat/encyclopedia/Entry.aspx?Name=Win32%
2fVobfus.

Feily, M., Shahrestani, A., and Ramadass, S. (2009). A sur-
vey of botnet and botnet detection. In Emerging Se-
curity Information, Systems and Technologies, 2009.
SECURWARE’09. Third International Conference on,
pages 268-273. IEEE.

Gu, G., Yegneswaran, V., Porras, P., Stoll, J., and Lee,
W. (2009). Active botnet probing to identify obscure
command and control channels. In Computer Secu-
rity Applications Conference, 2009. ACSAC’09. An-
nual, pages 241-253. IEEE.

Guarnieri, C. (2012). Skynet, a Tor-powered botnet straight
from Reddit. http://community.rapid7.com/
community/infosec/blog/2012/12/06/skynet-
a-tor-powered-botnet-straight-from-
reddit.

Kumar, M. (2013). Alleged Skynet Botnet creator ar-
rested in Germany. http://thehackernews.com/
2013/12/alleged-skynet-botnet-creator-
arrested.html/.

Mancuso, V. F., Minotra, D., Giacobe, N., McNeese, M.,
and Tyworth, M. (2012). idsnets: An experimen-
tal platform to study situation awareness for intru-
sion detection analysts. In Cognitive Methods in Sit-
uation Awareness and Decision Support (CogSIMA),
2012 IEEE International Multi-Disciplinary Confer-
ence on, pages 73-79. IEEE.

Manola, F., Miller, E., and McBride, B. (2014). Rdf 1.1
Primer. http://www.w3.0rg/TR/rdfll-primer/.

Mathews, M. L., Halvorsen, P., Joshi, A., and Finin, T.
(2012). A collaborative approach to situational aware-
ness for cybersecurity. In Collaborative Computing:
Networking, Applications and Worksharing (Collab-
orateCom), 2012 8th International Conference on,
pages 216-222. IEEE.

McRee, R. (2006). http://holisticinfosec.org/
toolsmith/files/nov2k6/toolsmith.pcap.

Mila (2012). Dec. 2012 Skynet Tor botnet / Trojan.Tbot
samples. http://contagiodump.blogspot.
com/2012/12/dec-2012-skynet-tor-botnet-
trojantbot.html.

Mila (2013). Trojan Nap aka Kelihos/Hlux status
update by DeepEnd Research and samples.
http://contagiodump.blogspot.com/2013/
02/trojan-nap-aka-kelihoshlux-status.html.

More, S., Matthews, M., Joshi, A., and Finin, T. (2012).
A knowledge-based approach to intrusion detection
modeling. In Security and Privacy Workshops (SPW),
2012 IEEE Symposium on, pages 75-81. IEEE.

Prince, B. (2015). Obama administration proposes
giving courts more power to issue botnet injunc-
tions. http://www.securityweek.com/obama-
administration-proposes-giving-courts-
more-power-issue-botnet-injunctions.

RapidMiner (2015). http://rapidminer.com/.

Sharma, P., Joshi, A., and Finin, T. (2013). Detecting
data exfiltration by integrating information across lay-
ers. In Information Reuse and Integration (IRI), 2013
IEEE 14th International Conference on, pages 309-
316. IEEE.

Shin, S., Lin, R., and Gu, G. (2011). Cross-analysis of bot-
net victims: New insights and implications. In Re-
cent Advances in Intrusion Detection, pages 242-261.
Springer.

Spasojevi, B. (2012). Trojan.Tbot. http:
//www.symantec.com/security_response/
writeup.jsp?docid=2012-120716-2955-99.

Squicciarini, A. C., Petracca, G., Horne, W. G., and Nath,
A. (2014). Situational awareness through reasoning
on network incidents. In Proceedings of the 4th ACM
conference on Data and application security and pri-
vacy, pages 111-122. ACM.

Thuraisingham, B., Hamlen, K. W., Khan, L., and Masud,
M. M. (2008). Data mining for security applications.
In Embedded and Ubiquitous Computing, IEEE/IFIP
International Conference on, volume 2, pages 585—
589. IEEE.

Undercoffer, J., Joshi, A., and Pinkston, J. (2003). Mod-
eling computer attacks: An ontology for intrusion de-
tection. In Recent Advances in Intrusion Detection,
pages 113-135. Springer.

VirusTotal (2015). https://www.virustotal.com/en//.

Wireshark (2015). http://www.wireshark.org/.

Young, E., Honda, H., and Bell, H. (2009). W32.Changeup.
http://www.symantec.com/security_response/
writeup. jsp?docid=2009-081806-2906-99.

