
Malware

M alware authors often use encryption or pack-
ing (compression) methods to conceal their
malicious executables’ string data and code.
These methods—which transform some or

all of the original bytes into a series of random-looking
data bytes—appear in 80 to 90 percent of malware sam-
ples.1 This fact creates special challenges for analysts who
use static methods to analyze large malware collections, as
they must quickly and efficiently identify the samples and
unpack or decrypt them before analysis can begin. Many
tools, including the packing tools themselves, are generally
successful at automatically unpacking or decrypting mal-
ware samples, but they’re not effective in all cases. Often-
times, the tools fail to recognize and reverse the
transformation scheme or find the original entry point in
the malware binary. Many malware samples thus remain
packed or fully encrypted, and analysts must identify them
for manual analysis and reverse engineering. 

The difficulty of recognizing these transformed bytes
can vary greatly, depending on the transformation
scheme’s strength and the original bytes’ statistical nature.
However, stronger transformation schemes—such as
Triple DES encryption—typically produce less pre-
dictable sequences. This principle serves as the basis for
Bintropy, a prototype binary-file entropy analysis tool
that we developed to help analysts conveniently and
quickly identify encrypted or packed malware. Bintropy
operates in multiple modes and is applicable to any file.
Here, we focus on files in the Windows Portable Exe-
cutable (PE) format, which comprises the format of the
majority of malware executables. 

Bintropy uses an established entropy formula to calcu-
late the amount of statistical variation of bytes in a data

stream. Specifically,
it sums the frequency
of each observed byte value (00h – FFh) that occurs in
fixed-length data blocks, and then applies the entropy for-
mula to generate entropy scores. Higher entropy scores
tend to correlate with the presence of encryption or com-
pression. Further, to compensate for the variety of known
packing and encryption tools and the varying degree of
transformations they produce, we developed a methodol-
ogy that uses Bintropy to discriminate between native exe-
cutables and those that have been packed or encrypted.
Our methodology leverages the results obtained from
training Bintropy over different sets of executable file types
to derive statistical measures that generalize each file type’s
expected entropy ranges. The methodology compares the
malware executable’s entropy traits—which Bintropy
computes—against the expected ranges to determine if
the malware is packed or encrypted. 

Here, we describe the Bintropy tool and methodol-
ogy. We also discuss trends associated with malware en-
cryption and packing, which we discovered by applying
the tool and methodology to a corpus of 21,576 PE-
formatted malware executable files obtained from a lead-
ing antivirus vendor. 

Approach and technical analysis
Following a description of entropy and its measurement,
we describe how we use entropy analysis to identify
packed or encrypted malware executables. We then offer
results from testing our methodology. 

Entropy analysis
Information density, or entropy, is a method for measur-
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ing uncertainty in a series of numbers or bytes.2 In tech-
nical terms, entropy measures the level of difficulty or the
probability of independently predicting each number in
the series. The difficulty in predicting successive num-
bers can increase or decrease depending on:

• the amount of information the predictor has about the
function that generated the numbers, and

• any information retained about the prior numbers in
the series. 

For example, suppose we had a sequence of n consecutive
numbers in a Fibonacci series, which is a sequence of
numbers computed by adding the successive sums of the
preceding two numbers in the series. If we had knowl-
edge of how the Fibonacci function worked or saw
enough numbers in the series to recognize the pattern,
we could predict the series’ next number with absolute
certainty. In effect, the entropy changes when the predic-
tor applies prior knowledge or relevant knowledge
gained to determine the probabilities of successive num-
bers in the series. Thus, receiving information about the
generator function reduces the entropy by the value of
the information received.3

Although a sequence of good random numbers will
have a high entropy level, that alone doesn’t guarantee
randomness. For example, a file compressed with a soft-
ware compressor—such as gzip or winzip—might have a
high entropy level, but the data is highly structured and
therefore not random.4 Simply observing entropy will
not necessarily provide enough information to let the
observer distinguish between encryption and compres-
sion unless the observer knows how the data was gener-
ated. We can compute the entropy of a discrete random
event x using the following formula2:

,

where p(i) is the probability of the ith unit of information
(such as a number) in event x’s series of n symbols. This
formula generates entropy scores as real numbers; when
there are 256 possibilities, they are bounded within the
range of 0 to 8. 

Bintropy: A binary entropy analysis tool
Bintropy is a prototype analysis tool that estimates the like-
lihood that a binary file contains compressed or encrypted
bytes. Specifically, the tool processes files by iterating
through fixed-length data blocks in the binary, summing
the frequency of each block’s observed byte values (00h –
FFh). From this, it calculates the block’s entropy score. In
addition to individual block entropy scores, Bintropy cal-
culates other entropy-related file attributes, including the
average and highest entropy scores. Finally, Bintropy for-

mulates an overall confidence score by using a rule-based
methodology to analyze the block entropy scores against a
set of predefined entropy attribute metrics. 

Bintropy has two modes of operation. In the first, the
tool analyses the entropy of each section of PE-formatted
executables, as specified in the executable’s header. This
helps analysts determine which executable sections might
be encrypted or packed. A standard compiler-generated
PE executable has standard sections (such as .text, .data,
.reloc, .rsrc). However, many packing tools modify the
original executable’s format, compressing the standard sec-
tion’s code and data and collapsing them into the one or
two new sections. In this mode, Bintropy calculates an en-
tropy score for each section it encounters. It doesn’t calcu-
late a score for the header section, which in our experience
is unlikely to contain encrypted or compressed bytes.

Bintropy’s second operational mode completely ig-
nores the file format. Instead, it analyzes the entire file’s en-
tropy, starting at the first byte and continuing through to
the last. With a PE-formatted file, users can thus analyze
the entropy of code or data hidden at the end of a file or in
between PE-defined sections (cavities), which is where
stealthy file-infecting samples, such as W32/Etap (http://
vil.nai.com/vil/content/v_99380.htm), typically hide.

Entropy metrics and
confidence-scoring methodology
There are currently hundreds of different packing algo-
rithms, each of which employs popular compression
and/or encryption algorithms such as Huffman, LZW,
and polymorphism to protect executable files.5 However,
our entropy analysis objective is not to model the trans-
formations of any specific packing or encryption tool.
Rather, it is to develop a set of metrics that analysts can
use to generalize the packed or encrypted executable’s
entropy attributes and thus distinguish them from native
(nonpacked or unencrypted) ones. As such, our method-
ology computes entropy at a naïve model level, in which
we compute entropy based only on an executable byte’s
occurrence frequency, without considering how the
bytes were produced.

Experiments. To develop a set of entropy metrics, we
conducted a series of controlled experiments using the
Bintropy tool. Our goal was to determine the optimal
entropy metrics for native executable files and files con-
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taining data transformations produced by encryption and
packing algorithms. The experiments consisted of four
separate tests, with training data sets for native, com-
pressed, and encrypted executable files, as well as a set for
plain text files for additional comparison.

The native training set consisted of 100 Windows 32-
bit PE executables, which we alphabetically selected
from the default “systems” folder on a Windows XP Ser-
vice Pack 2 OS environment. The packed training set rep-
resented a diverse set of packing algorithms; we
generated these executables by applying UPX (http://
upx.sourceforge.net), MEW1.1 (http://northfox.uw.
hu/index.php?lang=eng&id=dev), and Morphine 1.2
(www.hxdef.org) packing transformations to three sepa-
rate copies of the native executables. To generate the en-
crypted training set, we applied Pretty Good Privacy (PGP;
www.pgpi.org/doc/pgpintro) file encryption to the na-
tive executables. 

We also performed a series of tests using different-
sized blocks. The tests determined that 256 bytes is an
optimal block size. Tests using larger block sizes, such as
512 bytes, tended to reduce the subjects’ entropy scores
when encryption existed only in small areas of the exe-
cutable. Our experiments also showed that executables
generally contain many blocks of mostly (or all) zero-
value data bytes, which compilers commonly generate to
pad or align code sections. This technique can greatly re-
duce an executable’s entropy score, because it increases
the frequency of a single value. To compensate for this
characteristic, we altered Bintropy to analyze only
“valid” byte blocks—that is, blocks in which at least half
of the bytes are nonzero. 

Results. We applied the Bintropy tool to each of the four
training sets to compute individual entropy measures for
each set’s files. We configured Bintropy to process files in
256-byte-sized blocks and to ignore the executables’ for-
mat. For each file, the tool computed an average entropy
score and recorded the highest block entropy score.
Using standard statistical measures, we then aggregated
the data for each data set, computing each set’s respective
entropy and highest entropy score averages. For each data
set’s average and highest entropy scores, we computed a
confidence interval—the interval between two numbers

(low and high bounds) with an associated probability p.
We generated this probability from a random sampling of
an underlying population (such as malware executables),
such that if we repeated the sampling numerous times and
recalculated each sample’s confidence interval using the
same method, a proportion p of the confidence interval
would contain the population parameter in question. 

Using the training data results (see Table 1), we derive
two entropy metrics based on the computed confidence
intervals for average and highest entropy. Using a 99.99
percent confidence level, executables with an average en-
tropy and a highest entropy block value of greater than
6.677 and 7.199, respectively, are statistically likely to be
packed or encrypted. These two values are the lower
confidence interval bounds of the entropy measures we
computed for packed executables, and form the basis for
our methodology for analyzing malware executables for
the presence of packing or encryption. If both the Bin-
tropy computed average file entropy and highest entropy
block score exceed these respective values, we label a
malware executable as packed or encrypted.

Limitations of the approach
It’s infeasible to absolutely determine if a sample contains
compressed or encrypted bytes. Indeed, Bintropy can pro-
duce both false positives and false negatives. False negatives
can occur when large executables—those larger than
500kbytes—contain relatively few encrypted or com-
pressed blocks and numerous valid blocks, thereby lowering
the executable file’s average entropy measure. False positives
can occur when processing blocks that score higher than
the packing confidence interval’s lower bound, but the
blocks’ bytes contain valid instruction sequences that coin-
cidentally have a high degree of variability. 

Using the statistical results computed from our packed
training data set, we calculated our confidence-interval-
based methodology’s expected false positive rate. We
treated the packed data sets as a matched pairs t-distribu-
tion because the underlying system files were the same
and, therefore, the only randomization was that of the
packer. We used these intervals as the entropy filter on
unknown input samples. We applied a standard t-test to
the data set and calculated a Type I error’s significance
level—in this case, the false positive rate—to be 0.038

DATA SETS AVERAGE 99.99% CONFIDENCE HIGHEST ENTROPY 99.99% CONFIDENCE
ENTROPY INTERVALS (LOW TO HIGH) (AVERAGE) INTERVALS  (LOW TO HIGH)

Plain text 4.347 4.066 – 4.629 4.715 4.401 – 5.030

Native executables 5.099 4.941 – 5.258 6.227 6.084 – 6.369

Packed executables 6.801 6.677 – 6.926 7.233 7.199 – 7.267

Encrypted executables 7.175 7.174 – 7.177 7.303 7.295 – 7.312

Table 1. Computed statistical measures based on four training sets.
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percent. This value indicates the likelihood of an un-
packed or unencrypted sample passing through the con-
fidence-interval filter. To compute the expected false
negative rate, we calculated the statistical likelihood that a
packed sample falls outside our 99.99 percent confidence-
interval range (that is, within the .01 percent range). Be-
cause we’re concerned only about packed executables
with entropy scores below the interval’s lower bounds,
we halve this value to obtain the expected false negative
rate of .005 percent. 

Finally, sophisticated malware authors could employ
countermeasures to conceal their encryption or com-
pression use. For example, they could make encrypted
bytes generated using strong cryptography look less ran-
dom by padding the bytes with redundant bytes. They
could also exploit our approach by distributing en-
crypted bytes among invalid blocks, such that the blocks
remained invalid. Such countermeasures could reduce
the executable’s entropy score, and thereby limit Bin-
tropy’s effectiveness.

Entropy trends
As mentioned, we identified entropy trends by running
Bintropy and applying our confidence-interval method-
ology to a corpus of 21,567 malware Windows32-based
PE executables from a leading antivirus vendor’s collec-
tion from January 2000 to December 2005. We orga-
nized the resulting malware samples by the year and
month in which the vendor discovered them. 

Our analysis computes the entropy of a malware exe-
cutable’s PE sections and analyzes the trends of packed or
encrypted PE sections (as identified by our methodol-
ogy) across a large time span. With the exception of the
header section, we analyzed all sections identified in the
malware executables. Further, we performed the analysis
without regard to any particular section’s purpose or
“normal” use. This enabled us to analyze code or data,
hidden in or appended to any of the identified sections. 

Our trend analysis features the top 13 PE sections that
exceeded the packing lower-bound confidence interval
threshold in aggregate. These sections comprised eight
standard PE sections and five packer-generated sections.
The eight standard sections—.text, .data, .rsrc, .reloc, .rdata,
.idata, CODE, and DATA—are created by default by most
PE-generating compilers. The remaining five sections—
.aspack, UPX1, UPX2, pec1, and pec2 are created by
packing technologies that replace the default PE-formatted
sections and their bytes with custom ones. However, be-
cause other packers reuse the default sections, the packers
that created the nondefault sections highlighted in our
analysis are not necessarily the most prevalent packers in use. 

Section packing trends over time
Figure 1 shows which sections were the most often
packed or encrypted for a given year. We calculated each

section’s percentages by totaling the section’s encrypted
or packed occurrences and dividing that number by the
total number of sections that were packed or encrypted
that year. 

In 2000, .reloc was the most often packed or en-
crypted section. This section’s popularity steadily de-
clined across the remaining years, with only a slight
increase in 2005. The second most-packed section in
2000 was UPX1, which is generated by the very popular
UPX packing tool. Due to UPX’s prevalent use in nu-
merous W32/GAOBOT and W32/SPYBOT variants,
the presence of the UPX1 section in the data set increased
over the next few years, peaking in 2002. Thereafter, its
prevalence steadily decreased, but UPX1 remained the
most popular of all the sections we identified as packed
across this six-year period, followed by the .text section,
which is where the compiler writes most of a program’s
executable code. 

Evidence of packing in the .rdata section increased
in popularity from 2000 through 2005. In 2000 and
2001, packing of the .text, .data, and .rsrc sections was
very prevalent, and then decreased in 2002; the sec-
tions then steadily increased to peak in 2005. Packing
in the CODE, DATA, and .idata sections show no clear
trends over the study period. UPX2, pec1, and pec2
were the least-prevalent of the sections we identified as
being packed; they were at their lowest in 2003 and
were relatively more popular at the time period’s be-
ginning and end.

Additional packing trends
Figure 2 shows the annual number of packed or en-
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Figure 1. Percentage of encrypted or packed sections over a six-year
period. UPX1 was the most prevalent of the packed sections across
the period, followed by the .text section. 
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crypted sections for each section type. This graph clearly
shows the packing or encrypting trends of particular sec-
tions across the years. One of the most notable trends is
the increased packing of the .text, .data, .rsrc, and espe-
cially the .rdata sections across the period. It also shows
UPX1’s overall prevalence and the lack of a perceivable
trend for the CODE, DATA, and .idata sections.

Figure 3 is an accumulation of Figure 2’s data, show-
ing the most commonly packed and encrypted sections
over the six-year period. This graph helps delineate each
section’s exact popularity over the entire period com-
pared to the previous graphs. As Figure 3 shows, the six
most commonly packed sections, in order, were .text,
UPX1, .data, .rsrc. .idata, and .rdata. 

Figure 4 depicts each section’s average entropy high-
scores attribute accumulated over the six-year period.

This graph accounts for only those samples that were
above the packing confidence interval’s lower bound.
The overall average entropy value for all other non-
packed sections was approximately 4.1. The graph paints
a fairly consistent picture: entropy levels increased from
2000 through 2005 for nearly every section and type of
packing/encryption. The exceptions were the DATA
section and pec1, which trended up-down-up, and
pec2, which trended down. This data indicates that the
variability of the bytes that the packing and encryption
technologies produced generally increased throughout
the six-year period.

O verall, the Bintropy tool proved useful for analyzing
and generating statistics on malware collections that

contained packed or encrypted samples. It analyzed PE
sections of the malware binaries in detail, providing a
quick statistical prediction of the existence of significant
data randomization, thereby accurately identifying
packed or encrypted malware samples. The tool was also
successful in identifying encrypted sections and provid-
ing statistical data on large-sized malware sample collec-
tions at a low level of detail. 

The advantage of using entropy analysis is that it offers
a convenient and quick technique for analyzing a sample
at the binary level and identifying suspicious PE file re-
gions. Once the analysis identifies sections of abnormal
entropy values, analysts can perform further detailed
analysis with other reverse-engineering tools, such as the
IDAPro disassembler. 

Our research goal was to develop a coarse-grained
methodology and tool to identify packed and encrypted
executables. However, a more fine-grained approach
might be useful in identifying the particular transformation
algorithms that malware authors apply to their malware. To
improve Bintropy’s entropy computation beyond simple
frequency counting, such an approach might further ex-
amine the algorithms and the statistical attributes of the
transformations they produce to develop profiles or
heuristics for fingerprinting their use in malware. 
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Related work

Using entropy to measure randomness or unpredictability in an

event sequence or series of data values is a well-accepted sta-

tistical practice in the fields of thermodynamics and information

theory.1,2 In malicious code analysis, researchers have used

entropy analysis in various applications. Julien Olivain and Jean

Goubault-Larrecq developed the Net-Entropy tool to identify

anomalous encrypted network traffic that might indicate a

network-based attack.3

Closer to our own research, a few tools analyze Portable

Executable (PE) file entropy. WinHex (www.winhex.com/winhex/

analysis.html) is a commercially available tool that uses entropy to

identify common file types, including plain text, jpeg, and binary.

Portable Executable Analysis Toolkit (PEAT) is a tool suite that lets

analysts examine a Windows PE file’s structural aspects.4 PEAT

provides byte-value entropy scores for each PE segment’s parti-

tioned section. It then normalizes these entropy values against

each window’s total entropy. This helps analysts identify section

portions that drastically change in entropy value, indicating

section-alignment padding or some other alteration of the original

file. To use PEAT effectively, analysts must have some domain

knowledge about PE files, viruses, and other system-level concepts,

as well as some experience working with PEAT.

We’ve extended PEAT’s segment entropy score approach and

created a detection tool for automatically identifying encrypted or

packed PE executables with a certain degree of confidence.

Bintropy has a similar fidelity of analysis capability, but accu-

mulates the information to provide a quick statistical prediction for

the existence of significant data randomization, which indicates

encryption or packing in large file collections that include exe-

cutable files. Analysts can also use Bintropy to perform a more in-

depth analysis of any particular PE-formatted file section.

Finally, a group of hackers developed and maintains the PEiD

analysis tool (http://peid.has.it). According to its Web site, the tool

can identify the signatures of more than 600 packing tools. PEiD

has an option for analyzing executable files’ entropy. However, its

developers don’t provide detailed documentation on its implemen-

tation or underlying methodology.
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Figure 4. Annual average entropy high scores for each section
type. The technologies’ strengths generally increased over the
study period.
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