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ABSTRACT

We consider the problem of securing communication in large
ad hoc networks, i.e., wireless networks with no fixed, wired
infrastructure and with multi-hop routes. Such networks,
e.g., networks of sensors, are deployed for applications such
as microsensing, monitoring and control, and for extending
the peer-to-peer communication capability of smaller group
of network users. Because the nodes of these networks,
which we term pebbles for their very limited size and large
number, are resource constrained, only symmetric key cryp-
tography is feasible. We propose a key management scheme
to periodically update the symmetric keys used by all peb-
bles. By combining mobility-adaptive clustering and an ef-
fective probabilistic selection of the key-generating node, the
proposed scheme meets the requirements of efficiency, scal-
ability and security needed for the survivability of networks
of pebbles (pebblenets).
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1. INTRODUCTION

Large collections of very small communication devices net-
worked in an ad hoc fashion will play a growing role in
future tactical and commercial telecommunication scenar-
ios. Such a class of networks is critical and unavoidable
for many important applications, both in the military and
the civilian fields, as they extend the ability to collect data,
and to monitor, and control the physical environment from
remote locations. As an example, consider a network of
sensors submerged in an ocean bed to detect debris after a
plane crash, or dispersed on the ground to collect data in a
contaminated area. Wireless connections among heteroge-
neous devices such as cellular telephones and laptops, print-
ers, PDAs, home appliances, etc., are another area where
such networks are gaining increasing popularity.
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Common features of all of these scenarios are the num-
ber (potentially thousands) of small, inexpensive, wireless
nodes, randomly scattered in 3-D space, and the dynamic
changes of the topology of the network. Topology changes
are not only due to the random and unpredictable movement
of the nodes, but also to nodes failure due to depletion of
on-board power or, in a military scenario, destruction by the
enemy. Nodes may also be added to replace the exhausted,
or destroyed, ones.

1.1 Pebblenets

Because of their potentially very limited size and large num-
ber, we will call the nodes of such large ad hoc networks
pebbles, and the corresponding networks pebble networks or
pebblenets. We anticipate each pebble to have embedded
processing, storage, communication, and positioning capa-
bility, the latter by means of on-board GPS devices or other
relative positioning mechanisms.! The processing capabili-
ties as well as the storage capacity are limited, so complex
computations (e.g., those required by strong asymmetric
cryptography) are not possible. Pebbles are battery pow-
ered, therefore all their activities must be energy-efficient.
Pebbles are tamper-resistant devices, thus the data they
store cannot be recovered if attempts are made to physically
break them. They are able to communicate with neighbor-
ing nodes in order to exchange data (short-range wireless
communications), thus “covering” a limited area surround-
ing it. From a communication perspective, pebblenets are
expected to be deployed as support (transport) networks to
extend peer-to-peer communication capability among mo-
bile users that cannot directly communicate with each other,
either for technological or detection reasons. For instance,
squads of robots sent to investigate a large area will use the
pebblenet infrastructure to communicate with each other in
case they are too far apart to communicate directly with one
another.

The nature of pebblenets and their applications, even in
the civilian scenario, e.g., industrial process control, envi-
ronmental or disaster monitoring, medicine, calls for secure
communications. The requirements of secure communica-
tion are confidentiality, integrity (and/or authenticity), and
availability. Confidentiality is the requirement that all com-

!GPS devices are not strictly necessary for the protocol pre-
sented in this paper. However, because of the domain of
applicability of pebblenets, we believe them to be a useful
complement of a node.
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munications be intelligible by authorized principals only. In-
tegrity is the requirement that all communications be mod-
ifiable by authorized principals only, and authenticity is the
associated requirement that communications be generated
by authorized principals only. Finally, availability is the re-
quirement that the service be available to its users when
expected.

1.2 Related Work

Various solutions for securing ad hoc networks have been
presented in the literature [15, 7, 13, 9]. In [15] the focus
is mainly on protecting routing from attacks such as denial
of service and service disruption by forged routing informa-
tion maliciously injected in the network. The distributed
nature of ad hoc networks and the use of cryptography pro-
vide the solution to the above problems. The key manage-
ment scheme proposed to support cryptographic operations
is based on a public key infrastructure (PKI) with a dis-
tributed certification authority. A set of n nodes cooperate
to implement a threshold cryptography scheme that allow
them to share the ability to sign certificates, thus tolerating
up to a certain number of corrupted nodes. Such a scheme
is too heavy for the type of nodes we consider, both from
the computational point of view and the storage point of
view, i.e., public key cryptography is computation intensive
and server nodes are supposed to store all the network nodes
certificates. An architecture for authentication in mobile ad
hoc networks is proposed in [7] for routers to authenticate
management messages. Authentication methods are avail-
able ranging from secret key to public key cryptosystems
with various types of certificates. The same considerations
of the previous case apply here too. In [13], “peanut nodes”
with small CPUs and batteries are considered for which only
strong symmetric cryptography is feasible. The issues of
availability, authenticity, integrity, and confidentiality are
examined. “Secure transient associations” are introduced
to address the issue of authenticity, as the association ex-
isting between pairs of principals, such as controllers and
devices, as long as there is a relationship between the two,
such as ownership or membership in a system. Associations
are transient so as to allow a device to change the system it
is part of without destroying the device. In [9] the authors
present an application of the PLAN active network program-
ming language [8] based on reflection, namely, the ability of
any programming language to treat pieces of code as data or
as code, depending upon the context. PLAN is used to im-
plements the VersaKey multicast key management scheme
[14]. However, because the devices considered in [9] are more
powerful than those comprising our pebblenets, we do not
consider this solution here.

1.3 Our Contribution

In this paper we propose a key management scheme for peb-
blenets that allows for the efficient exchange and update of
keys to secure traffic in a pebblenet. Similarly to [13], be-
cause of the limited computing power of the pebbles, we
only consider symmetric cryptography as feasible in peb-
blenets. Furthermore, because of the nature of the nodes,
their large number, and the type of applications where they
are deployed, it is sufficient to guarantee group membership
of the nodes rather than individual identity. Such a restric-
tion improves on system efficiency since group membership
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is verified using a single symmetric key for the entire group,
thus saving on storage space and search time, rather than
as many individual keys as there are members in the group
as required by individual authentication.

Pebblenets define dynamic groups as the number of pebbles
in a network may change due to “leaves,” i.e., pebbles dis-
appearing from the network because of exhaustion of their
battery power, etc., and “joins,” i.e., additions of new peb-
bles to replace the exhausted ones or to extend the network
coverage. Power limitations of pebblenets suggest to restrict
key management activities in order to preserve power. Un-
der these circumstances, periodic key updates are preferable
to those triggered by membership changes, e.g., leaves and
joins, when such changes occur quite frequently, especially in
large and highly dynamic groups [12]. By adequately tuning
the key update period, a trade-off is attained between the
conflicting goals of keeping a high security level and mini-
mizing the pebble power consumption. More secure systems
may require more frequent key updates, which implies more
activity, hence more power consumption. Mixed strategies,
where key updates occur periodically and also upon joins of
batches of new pebbles, are also possible.

Each pebble is equipped with a group identity key, which
guarantees group membership. Once a pebble is recognized
as part of the group, it participates in the key management
process, which is a network wide operation that involves all
the pebbles. Data traffic is protected using a global key
shared by all nodes, the Traffic Encryption Key, or TEK.
TEKSs are periodically refreshed, or updated, with a period
whose duration is a function of the security level required.
The key management scheme we propose realizes the peri-
odic generation of a new TEK for securing communication
throughout the pebblenet, and its secure distribution to all
the pebbles.

At each new re-keying one of the pebbles emerges as a key
manager that generates and distributes the new TEK to all
the other pebbles. Given the large number of pebbles, it
is not feasible to select the key manager among all pebbles.
Consequently, we partition the network into clusters, among
whose leaders the key manager is selected. The protocol is
comprised of two phases. First, the network nodes organize
into clusters with clusterhead and ordinary nodes. The clus-
terheads, which are only a small fraction of the total number
of pebbles, subsequently organize into a backbone. Finally,
a fraction of the clusterheads of the backbone is selected
among which the pebble is found that will generate the new
TEK.

The strength of our method relies on a secure, scalable clus-
terhead selection protocol which selects only a small fraction
of the pebbles in a distributed way. Thus, disregarding the
increasing number of pebbles, the key manager is selected
only among very few nodes. We actually reduce the number
of candidates for the key manager position further, by allow-
ing only some of them to participate in the key generation
and distribution process.

Given the nature of pebblenets, it is computationally un-
feasible to use centralized algorithms, i.e., algorithms that
require the knowledge of the entire network topology. A



solution has to be found that allows the clusterheads to de-
cide whether to participate in the key management protocol
knowing only little information about the current topology
of the network. This may prevent us from selecting a unique
clusterhead to be the key manager. Our proposed key man-
agement scheme succeeds in producing the needed unique
TEK by implementing an effective probabilistic mechanism
for the selection of the key-generating node. In the rare case
that more than one TEK is produced in the same re-keying
by different nodes, we propose an efficient method that en-
ables each pebble to retain the same one.

The proposed, periodic backbone construction mechanism
is general with respect to the communication protocols used
to deliver data in the pebblenet. It is to be used only for
the re-keying. The generated TEK is then used to encrypt
data traffic which is delivered where intended according to
communication protocols that may not need a backbone-like
pebble organization, or may need a different pebble organi-
zation.

This paper is organized as follows. Section 2 illustrates the
problem comnsidered in this paper and the systems it applies
to. Section 3 describes the proposed key management in
detail. Section 4 describes how network splits and additions
of pebbles are managed. Section 5 summarizes our contri-
butions and concludes the paper.

2. PROBLEM DEFINITION
2.1 The System

Pebbles are born equal since there is no way to guaran-
tee that a specific pebble will survive once they “hit the
ground.” Each pebble is equipped with a secret group iden-
tity key K¢r, the same for everyone, a one-way hash function
h, a secure key generation algorithm, and a strong symmet-
ric encryption algorithm [11]. The group identity key guar-
antees the authenticity of a pebble as a member of a group,
not its individual identity. Because pebbles are small de-
vices with limited computational capability, we believe that
group membership is sufficient for the uses of this type of
network. Were individual pebble identity a system require-
ment, more powerful devices should be envisioned as system
components. Furthermore, we assume that pebbles are hon-
est and there is no malicious pebble in the group.

Pebbles have a local identifier (ID) and are able to compute
a weight, i.e., a numerical value that expresses what the
current status of that pebble is. Such weights should ac-
count for node parameters such as mobility, battery power
level, distance from the other nodes, values related to the
surrounding environment (terrain, temperature, luminosity,
etc.) and many others, and their variations in time. For
instance, as introduced in [1, 2, 5], we assume the following
expression for the computation of node v’s weight:

Wy = E c; P;
iel

where the ¢;s are the (constant) weighing factors for the |I]
system parameters of interest P;.
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The tamper-resistance properties of the pebbles [10], im-
posed by the type of applications that will deploy them,
protect the network from adversaries trying to insert mali-
cious nodes in the network after capturing honest ones. An
adversary trying to gain access to the identity key by physi-
cally extracting it from the pebble, would definitely damage
it thus thwarting the attempt. Malicious nodes could not
then be recognized, therefore accepted, by the group, as
they do not have the identity key.

Tamper-resistant devices provide for a “safe” leave in that
when a pebble is no longer part of the network, for any
reason, it will not be able to access the traffic exchanged
after it left. This may happen either because the pebble is
no longer operative (i.e., it ran out of power) or because an
adversary broke it by tampering with it trying to gain access
to the group identity key. For this reason, the protocol we
propose in the next section will not consider leaves.

On the contrary, joins will be considered to account for
group enlargements aiming at replacing non-operative peb-
bles or adding new ones. The problem of merging different
sets of pebbles (such as those that occur after the network
splits) will also be considered.

2.2 The Problem

Secure pebblenets should guarantee data traffic confidential-
ity and authenticity. By data traffic we mean all the traffic
on the network, be it routing or application oriented traffic,
as opposed to control traffic, by which we mean messages
exchanged during the key management protocol.

Data traffic is encrypted by all pebbles using the same key,
the Traffic Encryption Key (TEK), which changes during
the network lifetime in order to protect the system from
cryptanalytic attacks and to cope with changes in the peb-
ble set due to “natural” pebble extinction. The problem we
consider in this paper is that of securely distributing and
updating the TEK among the pebbles, thus ensuring con-
fidentiality. As for pebble authenticity, this is provided by
the imprinted group identity key Kg;. For this reason, as
we will show in the next section, we limit as much as pos-
sible the use of K¢gr in order to minimize its exposure to
cryptanalytic attacks and generate keys from it that we use
to securely distribute the TEK. In general, it is not a safe
practice to have a single network-wide key from which a set
of other keys are derived. However, because of the limited
resources available at each pebble and the very short lifes-
pan of the derived keys—a round of the re-keying algorithm
each—we deem the use of a globally shared key cost-effective
and safe.

The dynamic nature of the group, due to pebble additions
and losses, imposes that a dynamic protocol be designed.
Such a protocol should offer provision for dynamic key man-
ager (a pebble) selection at start-up time and during the life
of the network. Because of the large number of pebbles in
the network, some form of complexity reduction is necessary
in order to minimize the amount of control traffic generated
by the key management operations. To this aim, we propose
a scalable key management mechanism based on mobility-
adaptive clustering, and an effective probabilistic selection
of the key-generating node.



3. THE RE-KEYING PROTOCOL

In this section we describe in detail the key management pro-
tocol to secure communication in large pebblenets. Because
of the nature of the pebblenet, the key manager must be dy-
namically designated at run-time and may change each time
the protocol is executed. The protocol is performed periodi-
cally, with the period being decided according to the needed
level of security. Selecting a different key manager each time
allows us to always select it among the fittest nodes for the
role. This also increases the overall security of the pebblenet
since the selection of the manager cannot be predicted.

The protocol is comprised of two phases.

1. The network nodes organize into clusters on which a
backbone is superimposed.

. A small number of the backbone nodes start generating
the new keys, which are then broadcast to all nodes.
Within finite time, each pebble has received the same
unique TEK.

The protocol operations of the first phase comprise the fol-
lowing steps.

1. Based on pebble weights recomputed each time the
protocol is executed, the pebblenet is partitioned into
clusters. Each cluster consists of one clusterhead, se-
lected among the nodes with the highest weight, hence
expectedly most suitable for an active role in the key
management process, and a (possibly empty) set of
non-clusterhead, or simply ordinary, nodes.

. The clusterheads organize themselves in a backbone,
which is guaranteed to be connected (if the pebblenet
is) in the face of node mobility and node/link failures.

The protocol operations for the second phase concern key
generation and distribution.

1. Only a few clusterheads in the backbone start the key
generation process. Possibly more than one (but at
least one) among these clusterheads eventually gener-
ates the new TEK, but exactly one TEK will become
the one that every pebble will use.

. Once it is generated, the new TEK is broadcast secu-
rely along the backbone to all the clusterheads, which
in turn securely transmit it to the ordinary nodes in
their clusters.

In the following we describe the details of the two phases.

3.1 First Phase

3.1.1 Secure Clusterhead Selection

Once the pebbles have settled, they start executing a se-
cure version of the clusterhead selection protocol. The orig-
inal protocol [1, 2], based on the construction of a mazimal
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weighted independent set in wireless networks [3], constructs
a partition of the pebblenet into clusters whose diameter is
at most two and in which no two clusterheads are neighbors.
Here, it has been modified in order to make use of secure
communications.

The clusterhead selection protocol is designed in such a way
that each pebble, by just knowing its own identifier (ID)
and weight, as well as the IDs and weights of its one-hop
neighbors, can autonomously decide its role, i.e., whether it
will be a clusterhead or an ordinary node. The basic rule
of the protocol is that a node can decide its role when all
the nodes with larger weight have already decided their own
role.

The whole clusterhead selection procedure comprises three
steps:

1. neighbor discovery;
2. clusterhead selection, and

3. “neighboring clusterheads,” discovery.

The three steps are described here for the generic ith re-
keying.

In the first step, each pebble makes its active neighbors
aware of its presence by broadcasting an initial HELLO mes-
sage, containing its ID and weight, encrypted using K% =
h(Ki '), ie., the key obtained by applying the one-way
function A to the backbone key K};l generated in the pre-
vious re-keying (the (i — 1)th) and initialized as Kp = Kqi.
This way we minimize Kgr exposure to cryptanalytic at-
tacks by circulating keys derived from it, rather than Kar
itself. Note that because the K3 is obtained by applying
the one-way function h, recovering K¢ from it is practi-
cally impossible. Pebbles may keep a local counter to know
how many times to apply h to Kgr in order to optimize key
versioning.

Each pebble p advertises its presence by broadcasting the
following message to all its neighbors Np:

p= Np: EK;;I (wp|IDp| MAC (K1, {wp|IDyp))).

Here M AC(k,{z)) is a keyed message authentication code
applied to message x using key k, and By, () is the en-

cryption of z using key K%. The symbol | indicates the
concatenation of two messages. Using the group key to com-
pute the MAC guarantees the integrity of the message and
the authenticity of its origin, i.e., the membership of the
transmitter pebble to the network. Note that the mere en-
cryption of the message using K% does not fully guarantee
the sender’s membership to the network, because an adver-
sary who had managed to recover K% from a cryptanalysis
of the traffic, could inject a similar encrypted forged mes-
sage. On the contrary, computing the MAC requires Kgr
that only network members have.



Notice that pebbles may also use HELLO messages to keep
their knowledge of the local topology up to date accord-
ing to the requirements of a given communication protocol.
Those HELLO messages should not be confused with the (se-
cure) ones described above, which instead are only used (for
topology discovery) to implement part of the first phase of
the proposed protocol.

Once the nodes have gathered information about their neigh-
bors, the second step begins. The clusterhead selection pro-
tocol proceeds now securely at each node using the following
rule: A node p broadcasts a message that communicates its
role only after each of its neighbors with larger weight have
decided their own role. The message used in this case is the
following;:

p= Np: Exi (wp|IDp|R|IMAC(Kar, {wp|I Dp|R)))-

This message is similar to the HELLO message, except for
the parameter R which defines the type of message. The
selection protocol makes use of two types of messages.

1. A message with R = CH is sent by a node p that
decides to be a clusterhead. This happens when p’s
weight is the biggest among those of its neighbors that
have not decided their role yet. This means that nodes
whose weight is bigger than p’s (if any) have already
decided that they will be ordinary nodes.

A message with R = v, v being a pebble different from
the sender, is broadcast by a node that is going to
be an ordinary node affiliated with the clusterhead v.
This always happens when a neighboring node v with
bigger weight has sent a message with R = CH. In this
case v is the sole clusterhead with which that node is
affiliating. (This implies non overlapping clusters, i.e.,
the fact that a node belongs only to one cluster.)

The total ordering of the pebbles’ weights guarantees that
there is always a node that starts the protocol, and also its
termination when a role has been assigned to each pebble.

Once the clusterheads have been selected, forming the set
C, each clusterhead c in C creates and communicates to its
cluster members M, a cluster key K, via the following mes-
sage:

¢= M. : By (ID:| K MAC(Kar, (ID:|K.))).

The key K will be used for all intra-cluster operations, in
particular it will be used to communicate the new TEK from
the clusterhead to each of its ordinary nodes.

The cluster key is also used in the third step of the clus-
terhead selection protocol, where the ordinary nodes com-
municate to their clusterhead information about other clus-
terheads at most three hops away. Clusterheads at most
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three hops away from each other are considered “neighbor-
ing clusterheads” (this being neighbors, in general, may be
non physical, i.e., two neighboring clusterheads may not be
able to receive directly each other transmissions). This infor-
mation is needed for the (secure) construction of a connected
backbone of clusterheads, and it requires each ordinary node
to broadcast a message to its own clusterhead.

In the case an ordinary node p is neighbor of two (or more)
clusterheads c1 and c2, having received their messages with
R = CH, it can now send (securely) this information to its
clusterhead, say c¢i. Furthermore, since ¢z has previously
received a message from p with R = ¢, it is aware of the
presence of ¢; two hops away.

In the case the ordinary node p: that belongs to the cluster
of a clusterhead ¢ is neighbor of another ordinary node p»
belonging to the cluster of the clusterhead cs, it received the
message from p, with which p, declared that it was joining
the cluster of ¢z. Thus, as before, it can (securely) send this
information to ¢i, making him aware of the presence of ¢
three hops away.

We illustrate the operations of the second step (the some-
what more involved step) of the described selection protocol
with the following example. We consider the 23 node peb-
blenet depicted in Figure 1 where the nodes IDs are identi-
fied with their weights. (For the sake of clarity, we assume
here that all the nodes are turned on at the same time.) Ini-
tially, nodes 18, 20 and 23 are the only ones that can make
a decision since there are no other pebbles in their neighbor-
hood with a larger weight. Thus, they declare themselves as
clusterheads by broadcasting a corresponding (secure) mes-
sage to their immediate neighbors. Upon receiving this mes-
sage, nodes 15 and 16 join the cluster led by node 18, nodes
1, 14 and 19 affiliate with node 20 and nodes 2, 10 and 22
join the cluster led by node 23. The join operation is per-
formed by a node by broadcasting a corresponding message
to all its neighbors (not just to the selected clusterhead).
At this point, nodes 12, 13 and 21 know that neighboring
nodes with larger weight have decided their role (namely,
they are ordinary nodes) and broadcast a “clusterhead mes-
sage” to all their neighbors. Knowing the largest clusterhead
in their neighborhood, nodes 3, 8 and 11 join node 12’s clus-
ter, nodes 7 joins the cluster of node 13 and nodes 4 and 17
affiliate with node 21. Node 9, that was waiting for a deci-
sion from node 11, is now aware that node 11 is not going
to be a clusterhead and broadcast that it is going to be a
clusterhead. Finally nodes 5 and 6 can make their decision:
they broadcast a message declaring that they affiliate with
node 9 as ordinary nodes. The selected clusterheads are the
squared nodes in the figure.

Notice that having different cluster keys, two neighboring
nodes in different clusters cannot communicate with each
other. As a matter of fact, there is no need for them to
communicate to implement the described key management
protocol. The two nodes may need to communicate in order
to forward data. In this case, they will use the latest TEK
generated.

Message and time complerity. The clusterhead selection
protocol described so far requires the transmission of n mes-
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Figure 1: A pebblenet is partitioned into clusters
(the squared nodes are the clusterheads).

sages for the neighbor discovery phase, n messages for se-
lecting the clusterheads [1], k¥ messages from the k < n clus-
terheads to their ordinary nodes to communicate the cluster
key, and n — k messages for the communication from the
ordinary nodes to their clusterhead about the clusterheads
at most three hops aways. This sums up to a message com-
plexity which is proportional to the number of pebbles (more
precisely, the number of messages is 3n). These messages are
also very short in length. Provided that the nodes’ weight is
polynomial in the number n of the nodes in the pebblenet,
to transmit the needed information a number of bits pro-
portional to logn is sufficient, with a small proportionality
constant.

In the case the network is synchronous and the nodes start
their operations all at the same time, it has been proven
that the number of rounds? needed to complete the cluster-
head selection protocols is bounded by twice the number of
selected clusterheads [3].

3.1.2  Secure Backbone Construction

The selected clusterheads start communicating to build a
backbone of clusterheads (CB) using K4 = h(K%) as the
encryption key for this phase. Note that because a one-way
function is used to derive a new key for this phase, forward
secrecy may be jeopardized if anyone were to compromise a
key at some point. On the other hand, backward secrecy,
and ultimately the group identity key, are guaranteed by
the one-way nature of the function. This allows the group
to safely use the group identity key Kgr for MAC compu-
tations without exposing it to direct cryptanalytic attacks.

In order to guarantee a connected backbone, each cluster-
head needs to be connected to all its neighboring cluster-
heads, namely, the clusterheads that are two or three hops
away. Connecting clusterheads that are at most three hops
away from each other is necessary and sufficient condition to
guarantee that, given a connected pebblenet, the resulting
backbone is connected as well, as proven in [6].

As described earlier, the information about the neighbor-

2 A round is the time required to broadcast a message from
a node to all its one-hop neighbors.
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ing clusterheads is provided to a clusterhead by its ordinary
nodes. This information is easily gathered during the se-
cure clusterhead selection step by the ordinary nodes and
its transmission to their clusterhead c¢ is secured by using
the cluster key K.

The backbone is then obtained by connecting each cluster-
head, either virtually (by implementing the connection over
at most three physical one-hop links) or physically (by using
directional antennas), with all its neighboring clusterheads.
The backbone resulting by connecting the clusterheads in
Figure 1 is depicted in Figure 2 (the thicker links are the
backbone links).

[
15

Figure 2: The secure communication structure im-
posed by the backbone of clusterheads.

3.2 Second Phase: Key Generation and Dis-
tribution

The TEK used to encrypt data traffic is changed on a reg-
ular basis to ensure security. Furthermore, to increase the
security level, an indirection level may be used so that the
current TEK is actually used to encrypt a session key, which
is used to encrypt the data payload. Since the session key is
generated for each message and distributed along with the
payload it encrypts, we only consider the problem of updat-
ing the TEK. The frequency of TEK changes depends on
the level of security desired in the network. We assume that
such a value, being of interest for the user, is derived from
a coded parameter each pebble is equipped with.

A key manager is necessary that initiates the procedure.
For the reasons explained above, the key manager should
be one of the nodes better equipped for this role, which is
expressed by a node’s current weight. Hence, the compe-
tition for being a key manager is among the clusterheads
only. A natural choice would be to have the clusterhead
with the largest weight to take care of the TEK generation.
However, as a result of the previous phase, no clusterhead
knows who such an “absolute leader” is, since each cluster-
head has only a local knowledge of the backbone topology.
The most a clusterhead can check is whether it can be a
potential key manager (PKM) based on its weight being
larger than its backbone neighbors’. For instance, in the
pebblenet of Figure 2, only node 23 will be a PKM, since
all the other clusterheads have at least a backbone neighbor
with larger weight. However, node 23 is only aware of hav-



ing a weight bigger than its only backbone neighbor (node
21). Since gathering information about which clusterhead
has the largest weight among all the clusterhead can be too
expensive in terms of network and pebbles’ resources, each
PKM is eligible to generate and distribute the new TEK. In
an attempt to avoid to have multiple PKMs generating the
TEK, the key generation is started after an exponential de-
lay with average A, which is a coded parameter each pebble
is equipped with. Once the TEK is generated it is imme-
diately broadcast to all the clusterheads in the backbone.
There is a chance are, of course, that two or more PKMs
can generate and start the distribution of a new TEK be-
fore receiving each other’s TEKs. We call this event a col-
lision. Since each clusterhead generates a random number
drawn from an exponential distribution with average A, the
probability of a collision, is very low.®> However, because of
the network size, two or more distant PKMs might indepen-
dently initiate the procedure before they become aware of
each other having generated a new TEK. In this case the
collision is resolved as follows.

At the end of the ith secure backbone construction (which is
related to the ith rekeing), and after waiting for its exponen-
tially distributed delay, a PKM c generates the new TEK t¢
and broadcasts it to the other clusterheads encrypting the
corresponding message using the current backbone key K%:

¢ = CB: By (IDchwe|t'| MAC(Ker, (IDe|welt'))).

(With ¢ = CB we indicate the secure, multi-hop broadcast of
the new TEK ¢* throughout the backbone.) A clusterhead ¢
that receives the message above reacts in the following way.
If ¢ is not a PKM or it is a PKM whose local timer has not
gone off yet (i.e., the exponential delay has not expired yet)
or it has been reset, then it will retain t*, considering it as
the new TEK, only if w, is larger than the weight of all the
PKMs that have generated the TEKs in the current (ith)
re-keying and received so far (if any). If ¢’ is a PKM and it
has not reset its local timer, it resets it at this time. In the
case ¢’ is a PKM that has already generated and sent out a
TEK, it will ignore the received one if w. > w., otherwise
it will keep the received one as the current TEK. In case
the two weights are the same, we can use the largest node
ID as the tie breaker. Because the backbone is connected,
all clusterheads will eventually receive a TEK that will be
the same for everyone. At this point, each clusterhead ¢
distributes to the ordinary nodes in its cluster M, the new
TEK t by using the cluster key K::

¢ = M, : Egi(ID|t'|MAC(Kgr, (IDc|t"))).

Simulation results in pebblenets with up to 2000 nodes show
that the potential key managers are a very small fraction of
the clusterheads (which, in turns are a very small fraction of
the number of the pebbles [4]). Figure 3 shows the average
number of PKMs. This number is basically dominated by
the logarithm of n, n being the number of pebbles.

3 The exponential delay adopted here is like Ethernet expo-
nential back-off after a collision.
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Figure 3: Average number of potential key man-

agers (PKM) in pebblenets with 2000 nodes.

(Simulation results with confidence level of 95% with a pre-
cision within 5% refer to connected networks of pebbles ran-
domly and uniformly scattered in the plane.)

In this section we have focused on the generation and secure
distribution of the TEK. Since the keys used for its distribu-
tion and for the cluster construction are derived from Kgr
by applying h an adequate number of times, there is no need
to distributed them. Each node can recompute the key it
needs based on the counter 7 of the number of times it has
executed the protocol.

4. SPLITS AND JOINS

In this section we briefly outline solutions for the problems
of when a network is partitioned into multiple connected
components (splits) and when one or more pebbles are added
to the network (joins).

In the first case, the re-keying process described above works
correctly in each of the connected components into which the
pebblenet is divided. (A connected component is a separate
network with a smaller number of pebbles.)

When a new set of pebbles join the network, they initiate a
new round of the protocol by sending out a HELLO message
as described in Section 3.1.1. The nodes from the previous
batch that are still active will reply using the current ver-
sion of K, which the newcomers can derive by applying A to
Kcr a sufficient number of times. Once they have synchro-
nized with the other nodes, the clusterhead and backbone
construction proceed as described.

A problem may arise with splits when, with the introduction
of new pebbles, two formerly separated connected compo-
nents become a single component where the nodes are now
using different TEKSs. In this case the problem can be solved
by securely disseminating the TEK generated by the peb-
ble with the largest weight among the key managers of the
connected components. In this case too, the TEK can be
securely broadcast by encrypting it with the key h™ (Kar),
where m is the largest exponent currently used in either
group for the respective series Kg, Kp.



5. CONCLUSIONS AND FUTURE WORK

The paper introduced a solution for the problem of secure
communication in large ad hoc networks of small, resource-
constrained nodes, termed pebbles. For these networks that
require symmetric key encryption as the only feasible so-
lution for secure communication, we proposed a key man-
agement scheme for the periodic generation of a new traffic
encryption key (TEK). To this aim, among the large number
of pebbles, only a small fraction of nodes is selected among
which a further small set is selected whose nodes compete
for being the key manager. This competition is finally de-
cided probabilistically, by having each competing node using
an exponential delay function to determine when and if to
start the key generation and distribution process. Efficient
solutions for the case in which more than a TEK is traveling
the network, as well as for “splits” and “join” situations, are
also provided.

The presented work concerns the definition and a prelim-
inary study of the problem of securing communication in
pebblenets. Future research directions include a thorough
evaluation of the secure backbone construction phase with
an emphasys on the corresponding overhead, and of the re-
sources needed for computing and distributing the new gen-
erated keys. Other issues concern the test of the effectiv-
ity of our probabilistic mechanism in selecting only one key
manager at each re-keying.
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