
Key Management Protocols for Wireless Networks

Mukesh Singhal, Rendong Bai, Yun Lin,
Yongwei Wang, Mengkun Yang, Qingyu Zhang

 Lab for Advanced Networking
 Department of Computer Science

 University of Kentucky
 Lexington, KY 40506

Abstract

Key management is a critical issue for both wired and wireless secure communications. In
this paper, we investigate a variety of key management protocols used mainly in wireless
networks environments with different features. In particular, we review those for two-party
communication, wired group communication, and wireless group communication. We analyze
these protocols for security vulnerabilities against attacks. We also analyze the pros and cons of
each protocol and give performance comparisons among related approaches.

Keywords: Key management, wireless networks, group communication, security.

1. Introduction
Many emerging network applications, such as video conferencing, pay-per-view media

distribution, real-time information services, collaborative work, are based on group
communications. They require efficient delivery of data from one or more sender(s) to a group of
receivers. Many of these applications distribute sensitive information and hence require
provisions for secure data transmission and membership management.

The current multicast service in the Internet successfully provides an efficient, best-effort

data delivery to large groups [Dee88]. However, it does not provide data confidentiality.
Furthermore, it provides little control over who can participate in a group. Any user can join or
leave a multicast group and any user can send data to a multicast group. An attacker can intercept
and modify packets easily because copies of plaintext traverse many more links than those of a
unicast communication. Thus, a secure group communication service is necessary to ensure that
only authorized members can get access to group data and only authorized members can send
information to the group. Cryptographic mechanisms are used to satisfy such requirements.
Specifically, messages are encrypted by senders using a group key that is only known to group
members. The overall security of the group communication totally depends on the secrecy and
strength of the group key. Therefore, group key management is a critical issue in secure group
communication.

Generally, group key establishment protocols can be classified into key agreement and key

distribution. Key agreement is also called contributory key establishment. It means that all

 1

participants take equal part in the key generation and guarantee for their part that resulting key is
fresh. Key distribution means that the key is generated by one party and distributed to all other
participants. Key distribution is more suitable to large groups.

The group key management system must be able to cope with the demands of various

applications. Besides confidentiality, integrity, and authenticity requirements, the following
features are desirable in a group key management system for dynamic groups.

- Scalability. The size of a multicast group may vary from a few to tens of thousands. The rate of
join/leave requests and the expected lifetime of a member may vary largely in different
applications. The group key management system should not make arbitrary assumptions about
group size. Membership changes should only affect a small subset of members so that the system
can support large dynamic groups.

- Forward and backward secrecy. Forward secrecy means that a departed member can't access
future data after it has left the group. To keep forward secrecy, the system must change the group
key after a current member leaves, or is evicted from the system. Backward secrecy means that a
joining member can't access past group data. To keep backward secrecy, the system must change
the group key after a new member joins. The process of establishing new group key securely
upon membership changes is referred to as group rekeying.

- Reliability. Since IP Multicast only provides best-effort data delivery, rekeying messages may
be lost or delayed. If a receiver didn't get the rekeying information, it can't decrypt messages
encrypted with the new group key. More seriously, if the sender missed new group key, data may
be exposed to departed members because the sender still uses old key to encrypt group data. So
the system must provide reliable transport of rekeying messages, or provide a recovery
mechanism for a member to get missed rekeying messages in a timely manner.

- Resistance to attacks. Since we assume the network infrastructure is insecure, unauthorized
members may eavesdrop on the group communication. A subset of departed members may
collude to try to discover new group keys. A subset of current members may collude to try to
discover the keying material of other valid members to impersonate the victims. Thus, a key
management system should be resistant to attacks from both inside and outside the group.

- Protocol Independence. To be applicable as widely as possible, the system should not make any
assumption about underlying multicast protocols and routing algorithms.

Recently, mobile computing has become very popular due to dramatic decrease in weight
and cost of mobile devices, and the increase of bandwidth and new wireless services. Introducing
mobile users into group communications greatly improves the flexibility, availability of group
applications. However, power, storage, and bandwidth limitations restrict the ability of mobile
users to participate in the group as fixed hosts. The broadcast nature of wireless medium makes
attacks easier, and host mobility increases the complexity of membership dynamics. The group
key management system must consider the following issues in mobile wireless environments:

- Simplicity. The system only requires little additional software/hardware in mobile hosts.

 2

- Efficiency. To make the optimal use of limited processing and communication resources, the
system must be both communicationally and computationally efficient.

- Robustness. The system should be able to work gracefully in case of communication
disruptions and minimize the effect as far as possible.

- The role of base stations. Except in ad hoc networks, all mobile hosts rely on base stations to
relay their communication. "What kind of role should the base station play?" and "To what
degree we can trust them?" are two important questions.

In case of ad hoc networks which have no pre-existing infrastructure, secure group
communication is more complex. The lack of infrastructure means the lack of central entities,
fixed routers, name servers, certificate authorities, and so on. Thus standard key management
techniques in wired networks can not be applied straightforwardly. The network topology of ad
hoc networks may change rapidly, so any protocol bound closely with network topology is not
suitable. These are all concerns we should take into account when going a further step into ad
hoc environments.

A variety of protocols for secure group communication have been proposed in literature in

recent years. We summarize some of the representative protocols in this survey. We briefly
introduce these protocols and examine their pros and cons. The rest of this paper is organized as
follows. In Section 2, we describe the necessary background on mobile networks and
cryptography. In Section 3, we introduce some typical key management protocols for two-party
communications. In Section 4, we discuss several key management protocols for group
communications. In Section 5, we describe key exchange protocols in wireless networks and we
draw some conclusions in Section 6.

2. Background

2.1 The Specific Nature of Mobile Environments
Security, authentication and access control are vital features that must be present in any
communications network. These features are more important in case of wireless mobile
communications than in wired communications because of the widely shared nature of the
wireless medium. In fact, the mobile wireless environment has some specific characteristics
which influence the feasibility and efficiency of the security protocols:
− The unique characteristics of the wireless medium. A wireless link is likely to be limited in

bandwidth. Also the error rates on a wireless link is much higher than that of a wired link.
− Different types of communication paths involved, one of which is radio link, particularly

vulnerable to attack.
− Location privacy. Any leakage of specific signaling information on the network can lead to

an eavesdropper to approximately “locate” the position of a subscriber and thus hindering
the subscriber’s privacy.

 3

− Computational limitation. Compared with typical communications devices, the mobile
station is limited in computational power. In fact, mobile and base stations have different
levels of computational power.

2.2 Mobile Security Requirements
The following presents the requirements in radio link security [BM98]:
− Mutual authentication of the mobile and base stations.
− Confidentiality and integrity of the information exchanged between the mobile and base

station.
− Confidentiality of the identity of the mobile station.
− Acceptable cost of the computation involved to the mobile station.

Compared with radio link security, the end-to-end security between mobile users and their
communications partners typically includes confidentiality and integrity of user data, non-
repudiation. The detailed requirements will vary depending on the applications.

2.3 Cryptography
Traditional cryptography is based on the sender and receiver of a message knowing and using the
same secret key: the sender uses the secret key to encrypt the message, and the receiver uses the
same secret key to decrypt the message. This method is known as secret-key or symmetric
cryptography. The main problem with this method is having the sender and the receiver agree on
the secret key that an eavesdropper will not be able to determine.

The second class of cryptography methods is public-key cryptography or asymmetric
cryptography. In a public-key cryptosystem, every entity has a pair of keys: a public key and a
private key. Data encrypted with the public key can be decrypted only with the corresponding
private key. The public key is published, so that anyone can encrypt messages with it. But the
private key is kept secret, thus only the key owner can decrypt the messages correctly. That's the
essence of public-key cryptography introduced by Diffie and Hellman in 1976.

Key management consists of a set of techniques and procedures supporting the
establishment and maintenance of keying relationships between authorized parties. A keying
relationship is the state wherein communicating entities share common data (keying material) to
facilitate cryptographic techniques. This data may include public or secret keys, initialization
values, and additional non-secret parameters [MOV96].

The vast majority of key agreement protocols are based on Diffie-Hellman key exchange
protocol. Diffie-Hellman key exchange protocol is a typical contributory key exchange protocol
in which the session key is established from the contribution components provided by all the
entities in the communication group.

The following table demonstrates how the Diffie-Hellman key exchange protocol works.
The goal is for Alice and Bob (two entities in communication) to agree upon a shared secret that
an eavesdropper will not be able to determine. This shared secret is used by Alice and Bob to
independently generate keys for symmetric encryption that will be used to encrypt the data

 4

stream between them. The "key" aspect of this approach is that neither the shared secret nor the
encryption key ever travel over the network.

Alice and Bob agree on two numbers "p" and "g" "g" is called the base or generator
Alice picks a secret number "a" Alice’s secret number = a
Bob picks a secret number "b" Bob’s secret number = b
Alice computes her public number :
 x = ga mod p

Alice’s public number = x

Bob computes his public number:
 y = gb mod p

Bob’s public number = y

Alice and Bob exchange their public numbers Alice knows p, g, a, x, y
Bob knows p, g, b, x, y

Alice computes ka = ya mod p ka = (gb mod p)a mod p
 =(gb)a mod p
 = gba mod p

Bob computes kb = xb mod p kb = (ga mod p)b mod p
 = (ga)b mod p
 = gab mod p

Alice and Bob then agree on the session key
kab = ka = kb

gba mod p = gab mod p
i.e., ka = kb

Table 1: Diffie-Hellman key exchange protocol.

There are requirements on the numbers picked (e.g., minimum size, ranges, etc.), which is
known as “Diffie-Hellman parameters”. The value of p should be larger than 2 and g should be
an integer that is smaller than p. Besides, a and b should less than p-1.

2.4 Terminology and Notations
The following notations will be used throughout the paper unless noted otherwise:
M : mobile entity
B : base station

:PK x
+ x’s public key

:PK x
− x’s private key

:)(xCert x’s certificate

xN : random challenge generated by x
:}x{ K x encrypted with key K

abk : session key between a and b
:s shared secret

xr : random value chosen by x

XT : time stamp issued by X
:N number of protocol parties (group members)
iM : i-th group member; }N,...,1{i∈
:h height of a tree

:v,l 〉〈 v-th node at level l in a tree

iT : ’s view of the key tree iM

 5

iT̂ : ’s modified tree after membership operation iM
:q,p prime integers

:α exponentiation base

3. Key Establishment in Two-Party Communications
In this section several protocols for establishing a secret key between two nodes are discussed.
These protocols provide link-level security for mobile communication. That is security is
provided in a machine-to-machine manner, compared with end-to-end security. These protocols
also form the basis of establishing a secret key among a group of nodes.

3.1 Beller-Chang-Yacobi Protocols
Beller et al. [BCY91][BCY92][BCY93][BM98] proposed a series of protocols which combine
asymmetric and symmetric cryptographic algorithms in order to meet the specific requirements
imposed by the asymmetry of the computational power between a mobile host and a base station.
The public key cryptosystem underlying BCY protocols uses Modulo Square Root (MSR)
technique in which encryption and decryption are implemented by calculating a modulo square
and a modulo square root, respectively. Computation power involved is acceptable for a mobile
station.

BCY protocol family includes three variants: Basic MSR protocol, Improved MSR (IMSR)
protocol, and MSR+DH protocol. Each has different feature related to security.

The Basic MSR protocol works as follows:

1. B M: B, +
BPK

2. M B: +
BPKBMk }{

3. M B:
BMkMCertM)}(,{

Firstly, the base station B sends its public key to the mobile station M. M then uses
to encrypt the session key and sends it to B. Only the base station can decrypt the session
key using its private key. At the same time, the mobile also sends its identity and certificate
encrypted by for authentication to the base station. Messages in steps 1 and 2 are based on
public key cryptography while message in step 3 uses secret key cryptography.

+
BPK +

BPK
BMk

BMk

In fact, this protocol doesn’t allow authentication of the base station at the mobile host.
This means, anyone can masquerade as the base station and initiate a session with a mobile host
by sending his own public key and id in step 1.

To address this problem, the IMSR protocol adds , the certificate of the base
station, in the first message. Besides this feature, the IMSR protocol is the same as the Basic
MSR protocol.

)(BCert

The IMSR protocol works as follows:
1. B M: B,)(, BCertPK B

+

2. M B: +
BPKBMk }{

3. M B:
BMkMCertM)}(,{

 6

Upon receiving message 1, the mobile decrypts using the public key of the Certificate
Authority (CA), and then it verifies the identity of the base station. The owner of a certificate
should keep its certificate secret from other mobile users and eavesdroppers to prevent others
from masquerading.

)(BCert

Note that the IMSR protocol is not immune to replay attack. If a malicious attacker copies
messages nd , replays them later after the session between M and B

ends, the base station can not determine if these messages indeed came from M . Even if the
attacker doesn’t know and can’t do anything further, at least the session initiated by the
attacker will be incorrectly charged to M. Situation might be worse if the old session key is
obtained by the attacker, since using it to decrypt message the attacker can
acquire , which is all it needs to masquerade as M.

+
BPKBMk }{ a

BMkMCertM)}(,{

BMk

BMk

BMkMCertM)}(,{
)(MCert

MSR + DH protocol works as follows:

1. B M: B,)(, BCertPK B
+

2. M B: +
BPK

k}{ , kM MCertPKM)}(,,{ +

This protocol adopts the idea of Diffie-Hellman protocol. The session key is not transmitted
directly. and are exchanged to establish a shared secret s between B and M using
Diffie-Hellman technique (Please refer to Section 2.3 for the details). The session key is
calculated as encryption of k with s.

+
BPK +

MPK

With improved security, the protocol requires more computation since both parties need to
calculate a full modular exponentiation to establish the session key.

3.2 Beller-Yacobi Protocol
The Beller-Yacobi protocol [BM98][BY93] adds a challenge to address the replay problem in
the previous protocols. The reason why this algorithm is preferred is that the digital signature is
used on the challenge at the mobile and signature can largely be executed before choosing the
message to be signed, i.e., the mobile can do most of the work when idle. The protocol runs in
the following steps:

1. B M: B,)(, BCertPK B
+

2. M B: +
BPKBMk }{

3. B M:
BMkBN }{

4. M B: {M,
BMM

kPKBM NMCertPK }}{),(, −
+

The first two messages are same as in the IMSR protocol. Upon receiving the encrypted message
from M in step 2, B decrypts the message and gets the session key . Then B sends to M a
challenge (a large random number) encrypted using . The mobile then signs using its
private key and return it to B together with its id, public key , and certificate, all encrypted
with . Finally, B decrypts this message using and decrypts using and checks
if the is the one expected.

BMk

BN BMk BN
+
MPK

BMk BMk BN +
MPK

BN
This protocol is resistant to replay attacks. If an attacker replays a message , it

can not get the correct since it doesn’t know . Even if it knows an old session key and

+
BPKBMk }{

BN BMk

 7

can get the correct , it still can not generate correct since it doesn’t know the private

key of M. In both of the cases, the attacker can not respond with the correct message in step 4.
BN −

MPKBN }{

However, if an attacker is a registered user of B, and at the same time it can talk with M
as a base station, it can succeed in spoofing as M as follows:
A is an attacker.

1. B A: B,)(, BCertPK B
+

2. A B: +
BPKBAk }{

3. B A:
BAkBN }{

4. A M: A,)(, ACertPK A
+

5. M A: +
APKAMk }{

6. A M:
AMkBN }{

7. M A: {M,
AMM

kPKBM NMCertPK }}{),(, −
+

8. A B: {M,
BAM

kPKBM NMCertPK }}{),(, −
+

A starts a session with B and gets the random naunce for the session. Then A turns to initiate
a talk with M pretending as a base station. In this way, A gets the critical message {M,

 from M and forwards it to B after encrypting it using the session key

. B can not detect the threatening standing between M and it.

BN

}}{),(, −
+

MPKBM NMCertPK

BAk
 An improved BY protocol fights this attack by signing not only but together with the
session key and the ids of the mobile itself and the base. It works as follows:

BN

1. B M: B, ,)(, BCertPK B
+

BN
2. M B: +

BPKBMk }{ , −
+

MBM PKBMBkM kNMBhashMCertPKM)},,,({,)}(,,{

3. B M:
BMkBN }{

Thus, the attacker A standing between M and B like above can’t succeed by just forwarding the
message containing M’s signature which is acquired in another session with M, even if A
chooses the same session key with B as the one with M . BAk AMk

1. B A: B, ,)(, BCertPK B
+

BN
2. A M: A, BA NACertPK),(,+

3. M A: +
APKAMk }{ , −

+

MAM PKAMBkM kNMAhashMCertPKM)},,,({,)}(,,{

Now the message that B is expecting from A is
 +

BPKBAk }{ , −
+

MBA PKBABkM kNMBhashMCertPKM)},,,({,)}(,,{

The first two parts can be generated by A from message 3. However A can’t generate the last
component correctly. So A can’t masquerade as M talking with B.

3.3 Aziz and Diffie’s Protocol
The Aziz and Diffie protocol [AD94] [BM98] uses both public-key and secret-key cryptography
techniques. The public-key cryptography provides the means for session key setup and
authentication. Secret-key cryptography is used to provide privacy for bulk data transmission.
The protocol works as follows:

 8

alg-list: a list of flags representing secret-key algorithms provided by the mobile;
sel-alg: the flag representing the particular algorithm selected by the base station;

MB XX , : are contribution components for the session key provided by B and M,
respectively.

1. listaNMCertBM M lg_,),(:→
2. { }(){ } −++→

BMM PKMPKBPKB listaNaselXhashaselXBCertMB lg_,lg,_,lg,_,}{),(:

3. M B: −+++
MMBB PKPKBPKMPKM XXhashX)}}{,}({{}{

,

First, M sends to B its certificate, a challenge and a list of algorithms. The certificate binds the id
of M with M’s public key. Using corresponding CA’s public key, B can decrypt and
get the public key of M. is to avoid replaying attacks. B responds with its certificate and
session key contribution component encrypted by , and the preferred algorithm. To avoid
the man-in-the-middle attack, a digest of vulnerable items is calculated and appended to the
message. Similarly, M responds to B with its contribution component for the session key. With
the knowledge of both contribution components, both sides can calculate the session key.

)(MCert

MN
+
MPK

In the phase of session key establishment, the mobile has to perform two computationally
expensive operations based on public key cryptography: one decryption to get in step 2, and
one encryption to do the digital signature in step 3.

BX

In [M95], Meadows showed a possible attack on this protocol as follows.
 A is an attacker who is also a registered user of B.

1. listaNMCertBM M lg_,),(:→
2. listaNACertBA M lg_,),(:→
3. { }(){ } −++→

BAA PKMPKBAPKBA listaNaselXhashaselXBCertAB lg_,lg,_,lg,_,}{),(:

4. { }(){ } −++→
BMM PKMPKBAPKBA listaNaselXhashaselXBCertMA lg_,lg,_,lg,_,}{),(:

5. { }(){ } −++→
BMM PKMPKBMPKBM listaNaselXhashaselXBCertMB lg_,lg,_,lg,_,}{),(:

(intercepted and discarded by A)
6. M B: −+++

MMBB PKPKBPKMPKM XXhashX)}}{,}({{}{
,

A sits between M and B. Just after M starts a session with B, A initiates another talk with B by
replaying M’s challenge . Then A forwards to M the B’s contribution component for the
session key between A and B (steps 3,4) while discarding the B’s contribution component for the
session key between M and B. Thus, the mobile calculates the session key with and
while the base station calculates that with and . This means the mobile and the base
station agree on the session key with different values and they can’t do the following encryption
and decryption correctly.

MN

BAX MX

BMX MX

3.4 Park’s Protocol
Park’s protocol [BP98][P97] is a modified version of an earlier protocol by Yacobi and Shmuely
[YS89] and it works as follows:

1. B M: (In the Yacobi-Shmuely protocol, “ ” is sent.) BB rPKg +−

BB rPK +−

2. M B: MM rPK +−

 9

The public keys of two sides are and respectively. The session key

is , which is calculated by M as and by B as

−−+ = BPK
B gPK

−−+ = MPK
M gPK

MBrr
BM gK = MBB r

B
rPK

BM PKgK)(++−=
BMM r

M
rPK

BM PKgK)(++−

=
Compared with the Yacobi-Shmuely protocol in which both the mobile host and the base

station have to do two exponentiation operations, this protocol require the mobile M to perform
only one exponentiation operation, which makes it more suitable for key establishment in
wireless environments.

In [MM98], an attack is shown upon the Park’s protocol. Suppose an attacker A knows an
old session key and stores the exchanged information , , which
was to established . A can masquerade as B successfully as follows.

MBrr
BM gK = BB rPKg +−

MM rPK +−

BMK
BMK ' is the new session key.
1. A M: BB rPKg +−

2. M A: '
MM rPK +−

3. A: () – () = ; '
MM rPK +−

MM rPK +−
MM rr −'

BM
rr

B
rPK

BM KPKgK MMBB −++−=
'

)(' MBMMBBB rrrrPKrPK ggg −−+ −−

=
'

)(
'
MBrrg=

In the same way the Yacobi-Shmuely protocol can be attacked in both directions due to
its symmetry of the message exchange.

In fact, anyone A can run the protocol like B together with M by constructing the first
message as . The steps followed as normal, i.e., A and M
should agree on a session key finally. M takes the communication partner as B,
however, it is NOT B actually. In another word, there is no authentication of B at M.

ABABA rPKrPKr
B ggggPK +−−−+ −−

== 11)()(
MArr

AM gK =

3.5 ASPeCT Protocol
ASPeCT [BP98][HP98] is the abbreviation of Advanced Security for Personal Communication
Technologies. This protocol is used within the third generation mobile communications system,
also known in Europe as UMTS (Universal Mobile Telecommunications System) for secure
billing between a mobile user and a value-added service provider (VASP). The protocol is in fact
divided into two separate component protocols: Authentication and Initialization Protocol,
Payment Protocol. The former does authentication in various degrees between the user and the
VASP, establishes the session key and initializes the subsequent payment protocol. The latter is
responsible for making payments for a value-added service. Due to the subject of this paper, we
just discuss the Authentication and Initialization Protocol, which is based on asymmetric
cryptography.

The protocol uses three functions h1, h2 and h3 that are implemented using one-way hash
functions. A trusted third party (TTP) is involved to work as a certificate authority. k is a
temporarily used key computable by TTP. = is the public key contained in Cert(B).
ch_data is the charging information. pay_data is the data needed to initialize the Payment
Protocol. T is a time stamp.

+
BPK bg

The following are the steps of the protocol:
1. M B: , TTP Mrg kMid }{ ,
2. B M: kBMBB BCertTdatachBrKhr)}(,,_),,,(,{ 2

 10

3. M B:
MBM

M
KPKB

br datapaydatapayTdatachBrggh }_,)}_,,_,,,,({{ 3 −

Between steps 1 and 2, the process is omitted that B consults the TTP for the public key of M
(TTP also includes the value of k and a time stamp T in the respond message). In step 2, B sends
the charging information to M. In step 3, M signs its payment and sends to B. The hashing
operation avoids message compromise during transmission without detection. The time stamp
added in the message aims at preventing replay attacks. Signature prevents repudiation. The
session key is calculated by M as and by B as

.
)))((,()))((,(11

Mrb
B

Mr
BBMB grhPKrhK == +

))(,(1
bMr

BMB grhK =

3.6 Accelerating Key Establishment Protocols for Mobile Communication
Public-key cryptosystems have more advantages than secret-key cryptosystems, but they are not
fully utilized because of their computational overhead and the low computing power of a mobile
station. Lee et al. [LHYC98] proposed techniques for accelerating some of the above key
establishment protocols between a mobile station and a base station. The basic idea is to enable a
mobile station to borrow computing power from a base station without revealing its secret
information. The proposed techniques use SASC (server-aided secret computation) protocol,
which can be used to significantly accelerate RSA signature generation. The objective of SASC
protocols is to enable the client to efficiently compute ms mod n with the aid of the server, where
m is a message, s is private key, and n is the product of two large primes.

Lee et al. proposed techniques for several key establishment protocols, and we will
describe the acceleration of improved BY scheme. A mobile station need to execute two public
key operations and a private key operation in this key establishment protocol (section 3.2). The
operation that requires extensive computation is the signature generation of the mobile station
using its private key. The approach to overcome this problem is to make use of the
precomputable property of ElGamal algorithm. Their insight is as follows: When the mobile
station generates the signature , the signature can be precomputed and stored

in advance as it is independent of the message h(B, M, N
1)},,,({ −

MPKB xNMBh

B, x) to be signed.
The precomputation (gr mod p) uses Beguin and Quisquater's server-aided DSS (Digital

Signature Standard) scheme [BQ95], which is a splitting-based technique. The session random r
(the secret of mobile station) is decomposed into several pieces and sent to the base station. The
latter computes exponentiation for every piece and returns them to the mobile station, and the
mobile station combines these results to get the signature. The precomputation works as follows:

1. The mobile station randomly chooses xis and bis which satisfy , where 0 ≤

x
∑ −

=
=

1

0

m

i iibxr

ibi ≤ h, and then, it sends bis to the base station.
2. The base station computes , for 0 ≤ i ≤ m-1, and then, it returns them to the

mobile station.
pg ib mod

3. The mobile station computes pgg ii xbm

i
r mod)(1

0∏ −

=
≡ .

The analysis shows that this approach can present outstanding accelerating performance.
However, it still remains an open question whether it is possible to accelerate significantly RSA
signatures using an insecure server with the possibility of active attacks: that is, when the server
returns false values to get some part of secret. Moreover, the rapid advances in computing power
of hardware have been resulting in drastic improvements in large-number arithmetic

 11

computations. So the bottleneck probably will shift from computation to other issues such as
communication delay.

4.Key Management Protocols for Group Communication

4.1. Tree-Based Key Management
With the rapid development of deploying secure group communication services over the Internet,
scalability is becoming a critical issue, especially when the group size is very large. In this
section, we will focus our discussion on improving the scalability of key distribution and
management, for purpose of accommodating frequent membership changes in large groups.

In tree-based key management, keys are organized into a tree hierarchy, based on different
construction strategies. The basic consideration for employing this kind of hierarchy is to reduce
the rekeying cost by localizing the effects of member joins or leaves, and therefore, provide
higher scalability for secure communications in large dynamically changing groups. Two
categories of keys are included in this kind of methods: (1) the group session key for encrypting
messages exchanged among group members, and (2) the auxiliary keys used for securely
distributing and updating the group session key in an efficient way.

4.1.1.Model
A communication group with N members , has a trusted server, called group
controller C (or in short controller), who is responsible for managing group memberships, as
well as the services related with key distribution and update, such as maintaining the key
hierarchy, generating new keys, and initiating rekeying process. At any point, group member(s)
can join or leave (either de-registration or removal by the controller) the group at will, and
there’s always a mechanism for C to detect these membership changes and initiate the key
distribution accordingly. For example, in order to join, a member sends a join request to the
controllerC , which in turn verifies the client’s credentials and securely sends group session key
and necessary auxiliary keys to the new member. As for de-registration or removal, the controller
distributes new generated keys, to prevent old members from compromising future
communications.

NMMM ,,, 21 L

Simple Key Distribution Center (SKDC) [HMR97] is one of the simplest solutions for
group key management, in which controller shares an individual secret key with each
group member . Secret group session key is encrypted by and distributed sequentially
to . When a new member joins, the cost is not too high, since the new group key
can be encrypted by old group key and multicast to ; gets from a
unicast rekeying message encrypted by . However, when a member leaves, we cannot use
old group key to encrypt the new key , since the removed member also knows .
Instead, has to be encrypted by each remaining member’s individual key and unicast
separately. Apparently this approach does not scale up with the group size, since it requires
encryptions and rekeying messages.

C iCk ,

iM iCk ,

iM 1+NM 'Gk

Gk NMMM ,,, 21 L 1+NM 'Gk

1, +NCk

Gk 'Gk Gk
'Gk iCk ,

N
N

We can see that communicating the new group session key in a scalable and secure way,
especially when members leave, is definitely a non-trivial task. More recent research literatures

 12

explored the scalability problem in group key distributions, based on different novel models or
hierarchies. Iolus is the one of them, which addresses scalability problem by dividing a large
group into multiple subgroups and employing a hierarchy of group security agents. We will
discuss it in a subsequent section.

Another approach that we will discuss in this section divides the whole communication
group into several subgroups, based on different strategies. Every subgroup is recursively
decomposed into smaller subgroups. Each subgroup has a secret key shared by all its members to
provide secure communications among them. The key corresponding to the whole group is the
group session key K that we are interested in. The keys shared within other subgroups are called
auxiliary keys, since their ultimate goal is only to help encrypt and distribute the group session
key efficiently. The hierarchy of these subgroups naturally leads to a tree rooted at the group
session key, with keys as internal tree nodes and group members as leaves. By employing key
trees, it enables combining more than one member’s rekeying messages into only one encrypted
message and multicasting it, and therefore, substantially reduces the overhead on the controller
as well as on the network traffic, compared with SKDC. We call this kind of approaches as tree-
based key management and distribution. In the rest of this section, we describe several tree-based
approaches ([WGL97], [CE99], [GS98]), with especial focus on their corresponding cost on
encryption, messaging, and storage.

4.1.2 Group Key Management Using Key Graphs (KG)
Wong et al. [WGL97] discussed the scalability problem in key management for group
communications, generalized the solutions based on secure subgroups by introducing key graphs,
and formalized the notation of secure subgroups. Based on how to group the rekeying messages
after a join/leave happens, three different rekeying strategies, i.e., user-oriented, key-oriented,
and group-oriented, are proposed. The analysis and comparisons on their different effects on
complexity are also presented.

4.1.2.1 Key Graph Notations
The notion of a secure group is formalized as a triple ()RKU ,, , where

• U is a finite and nonempty set of group members,
• K is a finite and nonempty set of keys, and
• is a binary member-key relation. KUR ×⊂

Group controller knows the member set U and the key set K, and is responsible for
maintaining the member-key relation R. Two functions are associated with each secure
group () : RKU ,,

() (){ RkMkMkeyset ii ∈= , } , which is the set of all keys held by member , and iM
φφ =)(keyset ;
() (){ RkMMkuserset ii ∈= , }, which represents the set of all members holding key k.

Figure 1 presents a key graph, where
() { }1234,234122 , kkkMkeyset =
() { }1234,2343 kkMkeyset =
() { }11 Mkuserset =

 13

() { 2112 , MMkuserset = }.
Here is the key shared by members jik L { }ji MM ,,L

Apparently, each member holds two kinds of keys: group session key and some auxiliary
keys. All group members are partitioned into several subgroups recursively, and all members
belonging to a same subgroup share the same auxiliary key. A subgroup key is different from
other subgroup keys, which ensures that members outside a group have no way to decrypt the
communications within it.

k1234 = kG

key nodes

Figure 1: A key graph

The consideration of using auxiliary subgroup keys lies in the observation that when a

member leaves the group, only those subgroups that belongs to need to change the
corresponding keys, i.e., . All other subgroups keep their subgroup keys intact and
use them to encrypt new keys for future use. Thus by localizing and restricting the effect when a
member joins or leaves, we are able to reduce the overhead. In a word, properly constructing
subgroups, utilizing auxiliary keys to encrypt rekeying messages, and then multicasting them to
subgroups respectively, can result in substantial decrease in encryption cost and overhead on
network traffic.

iM iM
(iMkeyset)

4.1.2.2 Rekeying Process
When a join happens, the controller initiates a rekeying process, so that new member(s) can join
the secure message transmission in the group, while being unable to decrypt previous
communications in that group. When member(s) leave, rekeying process updates the group
session key to prevent members who have left the group from compromising the future group
communications. Wong et al. presented three rekeying strategies, i.e., user-oriented, key-
oriented, and group-oriented, which are based on how to construct the rekeying messages and
group the encryptions. Next, we explain these rekeying strategies and illustrate them, referring to
Figure 2.

User-Oriented Strategy

k12 k234

k1 k2 k3 k4

member nodes M1 M2 M3 M4

 14

 During the rekeying process, every member ()NiM i ,,1, L= updates some of its old keys with
new keys denoted by the set , which the member needs for future communication and
rekeying process. In the user-oriented approach, the controller C puts ’s new key set in
a single rekeying message, and then encrypts it by an auxiliary key. The auxiliary key used for
encryption here is chosen in such a way that it is shared by the largest one () among all

those groups satisfying

new
iK

iM new
iK

maxU

() ()()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=≠−== NjxkeysetMkeysetandKKMU
j

j
new
i

new
jj ,,1, LI φ ,

where φ=x when member joins, and x is the member that left the group when a leave happens.
The purpose for finding the “largest” such group is to minimize the encryption cost, by
combining the constructions of rekeying messages encapsulating the same content to the greatest
extent. Finally, in order to reduce traffic overhead, rekeying messages are multicast, which can
only be decrypted by members holding the proper auxiliary keys.

 An example: When joins the group, the following actions are executed: 9M
 C { } {

819161 :,,
−−→ kkMM }L

}

}

{ } {
787899187 ,:, kkkMMC −→

{ }
9789919 ,: kkkMC −→

When joins, group changes to 9M { 81 ,, MM L { }91 ,, MM L , and subgroup { }87 , MM
changes to { . So M and M need to be granted not only the new group session
key , but a new subgroup key k as well. belong to subgroups whose
compositions are not affected by M ’s join, and therefore, only need to receive the new session
key . All the rekeying messages are generated and multicast by the controller C.

}987 ,, MMM 7

)

}
}

8

(91−= kkG 789 61 ,, MM L

9

Gk
 An example: When leaves the group, the following actions are executed: 9M

{ } {
12381321 :,, kkMMMC −→

{ } {
45681654 :,, kkMMMC −→

{ }
778817 ,: kkkMC −→

{ }

878818 ,: kkkMC −→

When leaves the group, cannot use the old group session key 9M 61 ,, MM L ()91−= kkG to
encrypt the new session key k , because M knows the old key k . Instead, k and

 are used to encrypt the new session key, so that M has no way to decrypt rekeying
messages. and need to update the keys used in the subgroup previously including M ,
as well as the session key shared in the whole group.

(81' −= k)G 9 G 123

456k 9

7M 8M 9

 15

k1-8 = kG

k123 k456 k78

k1 k2

Figure 2: An example

Key-Oriented Strategy
For a group, once a join or leave happens, the set of keys to be updated during the rekeying

process are determined accordingly. In the key-oriented approach, each rekeying message only
contains a single new key. In order to minimize the encryption cost, the controller C chooses an
auxiliary key to encrypt a rekeying message such that as many members as possible that need the
new key contained in the message hold this auxiliary key.

 An example: When joins the group, the following actions are executed: 9M
{ } {

819181 :,,
−−→ kkMMC L }

{ } { }
9919 : kkMC −→

k4

M2 M6M5 M4

k3 k5 k6 k7 k8

M1 M3 M7 M8

M9 leaves M9 joins

k1-9 = kG

k789k123 k456

k1 k2 k4

M2 M6M5 M4

k3 k5 k6 k7 k8 k9

M1 M3 M7 M8 M9

 16

{ } {
7878987 :, kkMMC → }

)

{ } { }
97899 : kkMC →

New group session key is needed by every group member. The largest subgroup
that shares an auxiliary key () is

(91−= kkG

81−k { }81 ,, MM L , so is encrypted by . New subgroup
key is to be held only by { , and the largest group shares an auxiliary key ()
is { , so old subgroup key is used to encrypt new subgroup key . Newly joined
member gets the new session key and the new subgroup key from messages
encrypted by its individual key .

Gk 81−k

789k }
}

}
}

987 ,, MMM 78k

87 , MM 78k 789k

9M Gk 789k

9k
 An example: When leaves the group, the following actions are executed: 9M

{ } {
12381321 :,, kkMMMC −→

{ } {
45681654 :,, kkMMMC −→

{ }
7787 : kkMC →

{ }
78817 : kkMC −→

{ }
8788 : kkMC →

{ }
78818 : kkMC −→

When leaves, we cannot use the old session key to decrypt any rekeying
messages, in order to prevent from getting knowledge about the new keys. So the new group
key has to be encrypted by subgroup keys , or , where first of all the new
subgroup key should be delivered to and , encrypted by and , respectively.

9M 91−k

9M

81−k 123k 456k 78k

78k 7M 8M 7k 8k

Group-Oriented Strategy
In group-oriented approach, the controller C tries to let a rekeying message to contain as

many new keys as possible. New keys are encrypted by appropriate subgroup keys, which are
chosen in such a way that the encryption cost is kept as low as possible. When a join happens,
the new group is made up of the old group and a new member, so the controller will construct a
rekeying message for each of these two subgroups. When a leave happens, the new group is just
a group excluding the leaving members, so the controller will group together all new keys
encrypted by appropriate auxiliary keys and multicast in the new group. The main consideration
for adopting group-oriented strategy is to take advantage of multicasting to reduce the network
overhead.

 An example: When joins the group, the following actions are executed: 9M
{ } { } { }

7881 7899181 ,:,, kk kkMMC
−−→ L

{ } { }
9789919 ,: kkkMC −→

When a new member joins, the whole group is made up of the subgroup { }
that shares a key , and the subgroup

9M 81 ,, MM L

81−k { }9M that holds the key . The controller C constructs
and distributes two rekeying messages designated for these two groups, respectively.

9k

 An example: When leaves the group, the following actions are executed: 9M

 17

{ } { } { } { } { } { }
8778456123 787881818181 ,,,:,, kkkkk kkkkkMMC −−−→ L

The controller C constructs and sends out rekeying messages to all remaining members
, using appropriate auxiliary keys to encrypt different new keys, with the goal to

minimize the encryption cost by choosing keys shared by as many members as possible. When a
member receives the rekeying message, it uses the keys in its keyset to extract those new keys
that it is supposed to know, while preventing it from knowing other new keys that should not be
exposed to it.

{ 81 ,, MM L }

4.1.2.3. A Remark
Wong et al. consider star, tree and complete graph topology, and presents cost analysis of them,
although we only discuss tree topology here. For more details, refer to [WGL97]. Compared with
SKDC approach, the number of rekeying messages and the encryption costs are substantially
decreased. The numerical results for storage complexity are given in Table 2. The rekeying
complexity, when a member joins or leaves using three different rekeying strategies, is listed in
Table 3, where h is the height of the key tree with degree d, and N is the group size. Intuitively,
each user needs to store h keys.

Table 2: Storage complexity of KG protocol (tree topology)

Total number of keys maintained in the whole group
1

1
1 −

−
− d

N
d

d

Number of keys held per user 1log += Nh d

User-oriented strategy Key-oriented strategy Group-oriented

strategy

Join Leave Join Leave Join Leave
Number of
rekeying messages

1log += Nh d

()()11 −− hd ()12 −h

()()11 −− hd 2 1

Encryption cost () 1
2

1
−

+hh () ()
2

11 −− hhd ()12 −h

()1−hd ()12 −h

()1−hd

Table 3: Rekeying complexity of KG protocol (tree topology)

As we can see from Table 2 and Table 3, the controller needs to maintain keys, and
each user stores keys, and the encryption cost when a member joins is proportional to

, and the encryption cost for a leave is

()NO
(NO log)

() ()NOO log~1 () ()NONO 2log~log . Note the
undesirable encryption cost ()NO 2log is introduced by using user-oriented strategy when a
member leaves, but we can easily avoid this relatively higher cost by choosing an alternative
strategy, i.e., key-oriented or group-oriented. Hence, compared with previous SKDC approaches,
where we have complexity of both encryption and rekeying messaging proportional to N, KG
method substantially improves the scalability of the key distribution and management for group
communications.

However, there remains some space for improvement. For example, Wong et al. [WGL97]
didn't address how to construct the key tree and how to choose h to optimize the overall
performance. Another problem is the controller has to maintain ()NO keys, which puts a heavy

 18

burden on both controller’s storage as well as computation. Next we describe another key-tree-
based method which reduces the number of keys maintained by the controller to , while
resulting in similar rekeying complexity.

(NO log)

)

4.1.3 Group Key Management using Boolean Function Minimization
Techniques (BFMT)
Chang et al. [CE99] developed a method for group key management that is based on a
interesting and novel idea of defining a user ID (UID), in form of n-bit binary string, for each
user. The set of keys held by a user is entirely determined by its UID. Since any two users must
differ with each other’s UID in at least one bit, when one of them leaves the group, other users
can always get the new group key from the rekeying messages encrypted by key(s) not held by
the leaving one.

Since we only need bits to represent a UID, not only the number of keys held by
each user is , but also the number of keys maintained by the controller C is
reduced to . Thus, this new method achieves a substantial improvement over the key
graph (KG) approach discussed in the previous section, where the controller has to maintain

 keys.

Nn log=
() ()NOnO log=

(NO log

()NO
Since multiple members may leave within a short period of time, especially for the

applications with high frequency of changes, it is better not to rekey after every member leaves,
under the assumption that the harm on the communication secrecy caused by a little bit delay in
updating the group session key is acceptable. Rather we can batch these membership changes
periodically, encrypt the rekeying messages by keys not held by all those leaving members, in
order to reduce the overhead on encryption and distribution of new keys. Chang et al. [CE99]
explored this cumulative member removal by utilizing minimization techniques in Boolean
algebra to decide the auxiliary keys used for encrypting rekeying messages.

4.1.3.1 UID and Key Pair Notations
The whole group maintains n auxiliary key pairs, and ik ik , where i ranges from 0 to 1−n .
Each key pair corresponds to one bit in UID. Besides the group session key , n keys are

assigned to every member such that, member holds if ith bit of its UID is "1", or
Gk

jM ik ik if ith
bit of its UID is "0". A UID and corresponding key assignment for a group of members is
illustrated in Figure 3.

 19

2k

Figure 3: A key t
This key tree roots at the node with group se

its internal nodes and group members as its le
the figure. For example, member has UID 1

keys ,

jM

5M

2k 1k , and , plus that is shared by all
denoted by the nodes along its path to the root.

0k Gk

4.1.3.2 Rekeying Process
In general, both and auxiliary keys update w
member can no longer understand the future comm
group changes are batched together and the rek
timeout. We call such a rekeying process as a rou
denoted as , and the auxiliary keys as

Gk

()rkG ()rki a

 Individual Member Removal
In order to update , the controller comp

is encrypted by the keys that are “complemen
Referring to Figure 3, for example, if leav

()rkG

5M

() { }0125 ,, kkkMkeyset = . can be (1+rkG)
(){ } (){ } ({)}

012
1,1,1 kGkGkG rkrkrk +++) and multic

know any of these keys, it can not decrypt the mul

M2 M1 M3 M0

1k

0k 0k

1k

0k 0k

000 001 010 011

 20
Gk

ree based on UIDs
ssion key , with auxiliary keys and Gk ik ik as
aves. Each member has a UID as illustrated in
01, which decides that it possesses auxiliary

 members. All the keys held by a member are

henever a leave happens, so that the leaving
unications in the group. In batching approach,
eying processes are initiated every specified
nd. For the rth round, the group session key is
nd ()rki .

utes a new session key . The new key
tary” to the ones of the departing member.
es the group, the “complementary” keys are

(1+rkG)

encrypted using these three keys (i.e.,
ast to all group members. Since M does not
ticast rekeying message to get the new session

5

M6M5 M4 M7

1k

0k 0k

2k

1k

0k 0k

100 101 110 111

key. On the other hand, any other member’s UID differs in at least one bit with the UID of ,

therefore, possesses
5M

()jMkeyset such that () () φ≠jMkeysetMkeyset I5 , where . This
ensures any other member can decrypt at least one data chunk in the rekeying message.

5≠j

To make sure that the departing member is not able to use its auxiliary keys to decrypt
future session key updates, auxiliary keys are also updated using one-way hash function f:

. () () ()()1,1 +=+ rkrkfrk Gii

Removal of Multiple Members
Instead of removing the members one by one and sequentially generating and sending

rekeying messages individually for every removal, under certain circumstances, it is more
desirable to batch removals periodically, in order to minimize the number of rekeying messages
as well as encryption cost.

Suppose and leave the group. Without batching, a total of 2*3=6 messages will be
sent out, since messages encrypted by 3 auxiliary keys respectively are to be generated in each of
the 2 rounds. In the cumulative scheme, the minimum set S of auxiliary keys, which are not held
either by or , is computed by using minimization technique in Boolean algebra. In our

example,

0M 4M

0M 4M

() { 0120 ,, kkkMkeyset = } and () { }0124 ,, kkkMkeyset = , so

{ } () ()4001 , MkeysetMkeysetkkS I== . Using keys in S to encrypt new session key ensures
none of the departing members can figure out ()1+rkG , while all other remaining members can
always determine it.

We can resort to Boolean functions minimization techniques to compute the set S , when
 and leave. In Table 4 and Figure 4, the corresponding Boolean member function and its

Karnaugh map minimization of membership function are illustrated, where input is the
UID of a member, output “0” designates for “leaving” the group and “1” for “remaining” in the
group, and “X” means UID for is currently not assigned since has already been
removed from the group. Apparently, the result is

0M 4M

012 XXX

5M 5M

01 XX + , which corresponds to the set
. { }01, kkS =

4.1.3.3 A Remark
This method has some interesting features.

First, it’s easy to understand, since it utilizes the most common computer science idea, i.e.,
using binary string to represent a member and designing the rekeying process accordingly. It
simplifies the rekeying message generation and distribution algorithm. It just needs to compute
the complementary key set S of the departing members and multicast the new session key
encrypted by auxiliary keys in set S. Therefore the number of rekeying multicast message is only
1. As for the encryption cost, it is at most () ()NOnO log= , where n is the number of auxiliary
key pairs, since it is enough to have n bits to represent all N users.

Second, it proposes the idea of batching rekeying messages and efficiently solved the
minimization of encryption number by borrowing minimization technique from Boolean algebra.

However, it does not present a satisfactory solution to control the high cost, which is
proportional to the group size N , for reconstructing the key tree and reassigning the auxiliary

 21

keys, due to the increasement of UID length, resulting from the group expansions. The ()NO
complexity may severely limit the scalability of this method.

Input

(X2X1X0)
Output

000 0
001 1
010 1
011 1
100 0
101 X
110 1
111 1

Table 4: Boolean member function

Figure 4: Karnaugh map minimization of membership function

4.1.4 Group Key Management Using One-Way Function Trees (OWFT)
McGrew et al. [WS98] proposed an algorithm based on one-way function trees to establish
group session key when memberships change. In this method, each node x in the binary key tree
has both an unblinded key and a blinded key . The basic observation is that each blinded
key is computed from a well-known one-way function

xk xk '
()xx kgk =' , using the unblinded key on

this node as the parameter. Hence even some other node x′ has knowledge about the blinded key
, it has no way to figure out the unblinded key because of the “one-way” feature of the

function. Details on how to take advantage of this observation to construct a key tree and
improve the scalability of key management for large dynamic groups are to be presented later.

xk ' xk

The interesting idea of this approach is that the group session key is not delivered directly
to each member; rather, members can calculate it “bottom-up” whenever a member joins/leaves,
which results in key changes on the path from that member to the root.

In this method, the number of keys maintained in the system is ()NO , the number of keys
stored at each member is , and the multicast rekeying message number is . (NO log) ()NO log

 22

4.1.4.1 One-Way Function Tree
In this method, the controller maintains a binary tree, in which all group members located at leaf
nodes, but leaves are not necessarily members. Every node x (including leaves) is associated with
two keys: an unblinded node key and a blinded node key , which are computed using a
well-known one-way function

xk xk '
g and a “mixing” function : and f ()xx kgk =' ,

()() ()()() () ()()xrightleftxrightxleftx kkfkgkgfk x ′′== , , , where left(x) and right(x) denote the left and right
children of x. From this rule, with the unblinded key of a node and the blinded node of its sibling,
we can always derive the unblinded key of its father.

Figure 5: One-Way Function Tree

In the OWFT method, each member knows and only knows all blinded keys of sibling
nodes to those nodes along its path to the root. Based on the blinded keys a member knows and
the unblinded key of itself, it can compute all the unblinded keys along the path from itself to the
root in a bottom-up way. Figure 5 illustrates a one-way function tree, where member knows
all the blinded keys on nodes in black and unblinded key of itself (gray node M

3M
3), therefore the

unblinded keys on all other gray nodes on its path to root can be derived and known to . The
unblinded key associated with the root which is regarded as the group session key is finally
computed independently by every member.

3M

With the “one-way” feature of the function g , even though a node’s blinded key is
exposed to nodes who are not its descendents (members), there’s no way for them to figure out
its unblinded key, and therefore, it is used as the secure session key of the subgroup consisting of
all its descendents.

4.1.4.2 Rekeying Process
The problem remained is, whenever group member(s) join or leave, it is necessary to update and
securely communicate the blinded keys to appropriate member set. Next, rekeying process is
outlined.

M2 M5 M4M1 M3 M0

 23

r

u

Figure 6: Member Joins/Leaves

Adding a Member
Figure 6 illustrates a situation when a member joins. What the controller does is to

choose a leaf node
newM

x , and replace it with a new internal node x′ with two children, one of which
is x itself and the other is . The subgroups affected by this join are descendent sets of the
nodes in gray color, and therefore, the unblinded keys on these gray nodes need to be updated so
that backward secrecy is ensured.

newM

To compute the new group session key, nodes storing the old versions of the updated
blinded keys should be informed their new versions. For example, node y should be given the

M2 M4M3

M4M3

r

u

M2

z

M1 M0

v y x'

Mnew

v y

z

x

M0 M1 M5

M4

Mnew joins Mnew leaves

x

 24

updated blinded keys of node zk ′ z . The set of nodes that needs zk ′ is
, which exactly consists of z’s sibling u and all descendents of u.

This new blind key is included in a rekeying message, encrypted by the unblinded key of
u, and then multicast to set .

{ 3210 ,,,,,, MMMMyvuS z = }
zk ′ uk

zS

Removing a Member
Figure 6 also presents a situation when a member leaves. Node is removed and

replaced by
newM x′

x . All the keys along the path from x to root r are updated. Accordingly, using the
same method as when a join happens, the updated blind keys securely delivered to the nodes who
stored old versions of them.

4.1.4.3 A Remark
The most novel idea of OWFT is to improve the key management scalability by getting around
the direct delivery of group session key by maintaining a one-way function tree and computing
the group key independently by each member. The number of rekeying messages and encryption
complexity are determined by the number of subgroups that need the updated blinded keys.
Since the number of updated blinded keys, each of which corresponds to a subgroup that needs
updated keys, is at most h (height of tree), the number of the rekeying multicast message, as well
as the encryption cost is . McGrew et al. also showed that the number of keys
stored in the system is and the number of keys stored at each member is .

() ()NOhO log=
()NO ()NO log

However, in OWFT, the controller has to maintain the membership information of 12 −N
subgroups, since each node in the tree corresponds to a subgroup consisting of itself and all its
descendents. The non-trivial maintenance work imposes a heavy load on the controller and may
limit the scalability of this algorithm in large group applications.

4.1.5 A Performance Comparison
We now present the performance comparison between KG, BFMF and OWFT.

 KG(Tree Topology) BFMT OWFT
Total number of keys
maintained in the
system

()NO ()NO log ()NO

Number of keys
stored on each user

()NO log ()NO log ()NO log

Number of multicast
rekeying messages

Group-Oriented: ()1O ()1O ()NO log

Encryption cost () ()NOCostNO 2loglog ≤≤ ()NO log ()NO log
Table 5: A performance comparison

We can see that BFMT has the smallest encryption complexity and rekeying messaging
complexity among the three, while reducing the number of keys maintained on the controller
from to . Also, in KG and OWFT, algorithms are relatively more complex;
while in BFMT, no subgroup membership information is maintained, and the algorithm just need

()NO (NO log)

 25

to compute the complementary key set S of the departing members and multicast the new session
key encrypted by keys in set S, which is much easier and straightforward.

4.1.6 A Remark
Basically, key-tree-based approaches improve scalability by reducing encryption cost and the
number of rekeying messages, at the cost of larger storage space, due to introducing auxiliary
keys, which are shared by members belonging to a same subgroup.

The ultimate goal of adding auxiliary keys and organizing them as a tree architecture, is to
ensure that, when new members join or old members leave the group, some rekeying messages
can be encrypted aggregately using subgroup keys and multicast to all members in the
subgroups, rather than encrypted and unicast to each member separately.

Several novel approaches have been explored and proved to succeed in achieving higher
scalability, as mentioned above. However, the controller still remains the single point of failure.

4.2 Tree-based Group Diffie-Hellman protocols

4.2.1 TGDH Protocol

Key-tree-based secure group communication protocols come in two different categories: server-
based (or centralized) key distribution protocols and contributory key agreement protocols. The
former is suitable for large groups while the latter is suitable for small groups. The protocols
mentioned in Section 4.1 belong to the server-based category, because they have a group
controller.

TGDH [KPT00] is a contributory group key agreement protocol that unifies two important
trends in group key management: 1) key trees to efficiently compute and update group keys and
2) Diffie-Hellman key exchange to achieve provably secure and fully distributed protocols. The
result yields a simple, secure and efficient key management solution.

Figure 7 gives an example of TGDH key tree model.

 26

<0,0>

The root is at level 0 and the lowest leaves are at level h. The tree is binary, every node has

either two children or it is a leaf node. Every leaf node <h, v> (0 ≤ v ≤ 2l – 1, each level l hosts
at most 2l nodes) is associated with a member Mi of the group. Each node <h, v> in the tree has a
key K<l, v> and a blinded key (α is the exponentiation base). Every member M><=><

 vl,K
 vl, BK α i at

node <h, v> knows every key along the path from <h, v> to <0, 0>. This path is called the
member’s key-path, denoted as KEYi

* for a member Mi. In figure 7, member M2’s key-path is
KEY2

* = {<3,1>, <2,0>, <1,0>, <0,0>}. M2 knows all the keys along it’s key-path, {K<3,1>, K<2,0>,
K<1,0>, K<0,0>}, and M2 knows all the blinded keys of the tree, BK2

* = { BK<0,0>, BK<1,0>, …,
BK<3,7>}. Actually every member Mi knows all the blinded keys of the tree.

Every key K<l, v> is of the form , where K>++<>+< 12v 1,l2v 1,l KKα <l+1, 2v> and K<l+1, 2v> are the keys
of left and right child of node <l, v>, respectively. So in order to calculate K<l, v>, we need to
know the key of one child and the blind key of the other child. This is essential for TGDH key
calculation.

K<0,0> is the group secret (group key) shared by all members. The group key K<0,0> in

Figure 7 is .
><><

><><
><><

><><><><
><>< ===><

7,36,32,21,21,30,33,22,21,20,2
1 1,0 1, KK

0,0

KKKKKKKKKK

K
αα αααα ααα

As an example, M2 can compute K<2,0>, K<1,0>, K<0,0> using it’s own key and the blinded
keys BK<3,0>, BK<2,1> and BK<1,1>. To simplify the protocol description, the term co-path is
introduced, denoted as COi

*, which is the set of siblings to each node in the key-path on tree Ti of
member Mi. In other words, every member Mi at leaf node <l, v> can derive the group secret
K<0,0> from all blinded keys on the COi

* and its own key (session random) K<l,v>.
In TGDH protocol, a group member might take on a special role, “housekeeping”. For

example, it can be involved to compute a key and broadcast the blinded keys to the group. This
member is called the sponsor. The sponsor is not a privileged entity, and it is different for the
group controller or group leader in previous protocols. The criteria for selecting a sponsor
member vary in different membership events (join, leave, etc.).

TGDH includes protocols in support of the following operations: join, leave, merge,
partition and key refresh. Due to space limitation, we will only discuss join and leave protocols.

M3 M4

M1 M2 M5 M6

<1,0>

<2,0> <2,1>

<3,0> <3,1>

<1,1>

<2,2> <2,3>

<3,6> <3,7>

level l = 0

level l = 1

h = 3

level l = 2

level l = 3

N = 6

Figure 7: Tree notations for the TGDH protocol

 27

Join Protocol
A new member Mn+1 initiates the protocol by broadcasting a join request message that

contains its own blinded key BK<0,0>. When the current group members receive this message,
they generate a new intermediate node and a new member node, and promote the new
intermediate node to the parent of its node and the new member node. After updating the tree,
only the sponsor can compute the group key, since it is the sibling of the joining node. After
computing the group key, the sponsor broadcasts the new tree which contains all blinded keys.
All other members update their tree using this message, and compute the new group key.

Tree T3̂

Figure 8 shows an example of member M4 joining the group. The sponsor M3 performs

the following actions:

1. Renames node <1, 1> to <2, 2>,
2. generates a new intermediate node <1, 1> and a new member node <2, 3>,
3. promotes <1, 1> as the parent node of <2, 2> and <2, 3>,
4. computes the new group key K<0,0>,
5. broadcasts the new tree which contains all blinded keys to the group.

Upon receiving the broadcast message, every member can compute the group key.

Leave Protocol
Assume that we have n members and a member Md leaves the group. In this case, the

sponsor is the sibling node of Md. If the sibling is not a leaf node, the sponsor is the right-most
leaf node of the subtree which has the sibling node as root of the subtree. In the leave protocol
(Figure 9), every member updates its key tree by deleting the node of Md and its parent node. The
sponsor picks a new secret share, computes all keys on its key path up to the root, and broadcasts
the new blinded keys of its key path to the group. This information allows all members to
recompute the group key.

New Intermediate Node

New Member

M3 M1 M2

Sponsor

M3

M4 M1 M2

<0,0>

<1,0>

<2,0> <2,1>

<1,1>

Figure 8: Tree update in a join operation

<0,0>

<1,0>

<2,0> <2,1>

<1,1>

<2,2> <2,3>

Tree T3

 28

Tree T5̂

Assuming the example of Figure 9, if member M3 leaves the group, every member deletes

node <1, 1> and <2, 2>. After updating the tree, the sponsor M5 picks a new key K<2,3>,
recomputes K<1,1>, K<0,0>, BK<2,3> and BK<1,1>, and broadcasts the updated tree with BK5P

*. Upon
receiving the broadcast message, all members compute the group key, since the broadcast
message contains every blinded key. Note that M cannot compute the group key, because its
share is no longer in the group key and M picks a new key share.

3

5

4.2.2 STR Protocol

STR [KPT2001] protocol is based on the consideration that the rapid advances in computing
have resulted in drastic improvements in large-number arithmetic computations. Thus the bottle
neck is shifting from computation to communication. STR protocol tries to allow more liberal
use of cryptographic operations while attempting to reduce the communication overhead, which
dominates in a WAN environment.

STR is basically an "extreme" version of TGDH, where the key-tree structure is completely
imbalanced or stretched out.

M5 M1 M2 M5 M1 M2

<0,0>

<1,0>

<2,0> <2,1>

<1,1>

Figure 9: Tree update in a leave operation

<0,0>

<1,0>

<2,0> <2,1>

<1,1>

<2,2> <2,3>

Tree T5

<2,2> <2,3>

M3

M4

<3,6> <3,7>

M5

 29

IN<4> k4, bk4 ri : Mi’s secret key
LN<4> bri : Mi’s blinded session random,

i.e. pi modrαIN<3> k3, bk3

Like TGDH, the STR protocol uses a tree structure that associates the leaves with

individual random session contributions of the group members. Every internal (non-leaf) node
has an associated secret key and a public blinded key. The secret key is the result of a Diffie-
Hellman key agreement between the node's two children (k1 is an exception and is equivalent to
r1). ki (i>1) can be computed recursively as follows:

ppbrp iiii kk
i

r
i modmod)(mod)(bk k 11 r

1i
−− === − α , if i>1.

The group key is the key associated with the root node. So the group key in Figure 10 is:
123

4r
4 k

rrr ααα= mod p
Similar to TGDH protocol, STR also needs a sponsor member, and the selecting of sponsor

varies in different membership events.
STR defines protocols for member join, member leave, group merge and group partition.

We will only discuss member join and member leave protocols.

Join Protocol
Assume the group has n members {M1, … , Mn}. When a new member joins the group, a

new root node is created for the group tree, with the following two children, the old root on the
left and the new member on the right. The new member Mn+1 broadcasts a join request message
which contains its own blinded session secret brn+1. At the same time, the current group’s
sponsor (Mn) computes a blinded version of the old group key (bkn) and sends the old tree BT<n>
to Mn+1 with all blinded keys and blinded session randoms.

Then, each Mi increments n = n + 1 and gets the new key tree structure. Now every
member can compute the group key:

• All the old members know the old group key, they can use the old group key and the
new member’s blinded session random.

• The new member uses the blinded old group key and its own session random.

Leave Protocol
Again we assume the group has n users {M1, … , Mn}, a member Md (d≤n) leaves the

group. In the leave protocol, if d>1, the sponsor Ms is Md-1, otherwise the sponsor is M2. Upon
knowing the leave event from the group communication system, each remaining member updates
its key tree by deleting the nodes LN<d> corresponding to Md and its parent node IN<d>. The

kj : secret key of IN<j>, shared
among M1 … Mj

IN<l> : Internal tree node at level l
LN<i> : Leaf node associated with

member Mi
T<i> : Tree of member Mi

BT<i> : Tree of member Mi including
all of its blinded keys

M2

M3

M4

LN<1>

LN<2>

LN<3>

IN<1>

IN<2>

M1

k2, bk2 r3, br3

r1/k1, br1/bk1

r4, br4

r2, br2

Figure 10: Tree notations for STR protocol

 30

nodes above the leaving node are also renumbered. The former sibling IN<d-1> of Md is promoted
to replace (former) Md’s parent. The sponsor then selects a new secret session random, computes
all keys and blinded keys up to the root, and broadcasts the BT<s> to the group. This BT<s> allows
all members to recompute the new group key.

Table 6 shows a comparison of TGDH protocol and STR protocol. As seen from the table,
STR costs less in communication on every membership event.

 Rounds Messages Unicast Broadcast Exponentiation

Join 2 3 0 3 2 log n TGDH Leave 1 1 0 1 Log n
Join 1 2 1 1 2 STR Leave 1 1 0 1 3n/2 + 2

Table 6: Comparison of TGDH and STR

4.3 Distributed Hierarchical Tree Approach

4.3.1 The Iolus Framework
Iolus [Iolus] is a distributed hierarchical tree-based approach, which uses a secure distribution
tree. The secure distribution tree is composed of a number of smaller secure multicast sub-
groups arranged in a hierarchy to create a single virtual secure multicast group (see Figure 11).

Figure 11. Iolus architecture.

Each subgroup is managed by a subgroup controller called group security intermediary

(GSI). GSIs form a hierarchy of subgroups and the top-level subgroup is managed by group
security controller (GSC). GSC is ultimately responsible for the security of the entire group.
Each GSI joins the subgroup at the next higher level (or the subgroup of GSC) and acts as
proxies of the GSC or its parent GSIs.

In Iolus, there is no global group key. Each subgroup maintains its own subgroup key.
When a member joins or leaves, it joins or leaves its local subgroup. Therefore, only the
subgroup key needs to be changed. The following subsection describes five basic operations of
Iolus framework.

 31

4.3.2 Iolus Operations

4.3.2.1 Startup
The startup of the secure communication group requires only that the GSC for the group be
started. After that, GSIs and other members apply to join its subgroup.

4.3.2.2 Join
To join a group, a member sends a JOIN request to its designated GSI (or GSC) using a secure
unicast channel1. Upon receiving the request, the GSI (or GSC) decides whether to approve or
deny the request. If the request is approved, the GSI will (1) generate an individual key KMBR,
which is shared only with the new member; (2) stores KMBR along with any other relevant
information concerning the new member in GSI’s private database; (3) sends KMBR to the new
member securely.

Then the GSI needs to change current subgroup key KSGRP to a new one K’SGRP. The GSI
multicasts a GRP_KEY_UPDATE message containing K’SGRP encrypted with KSGRP to its
subgroup and sends K’SGRP to the new member via the existing secure unicast channel.

4.3.2.3 Leave
LEAVE operation occurs under two conditions: (1) a member voluntarily leaves the subgroup, or
(2) GSI expels a member.

In either case, the GSI needs to change current subgroup key KSGRP to a new one K’SGRP to
prevent the leaving member from participating in future communications. To distribute K’SGRP to
the subgroup members, the GSI multicasts one message containing n copies of K’SGRP (n is the
number of remaining members), each encrypted with a member’s individual key KMBR.

4.3.2.4 Key Refresh
With use, KSGRP will “wear out” and need to be changed. A new subgroup key K’SGRP can be
distributed by multicasting it to the subgroup encrypted with KSGRP.

4.3.2.5 Data Transmission
Due to the lack of a global group key, sending multicast data is not as simple as multicasting the
data to the group encrypted with a group key. Instead, multicast data is relayed by GSIs. More
specifically, the sender multicasts the data directly to its local subgroup encrypted with the
subgroup key. The parent GSI (if this is not the top-level subgroup) receives multicast data,
decrypts it, and re-multicasts it to its parent subgroup encrypted with the subgroup key of its
parent subgroup. Similarly, child GSIs get multicast data and remulticast it to their child
subgroups.

The advantage of this approach is that there is no global group key. Thus both the

frequency and computation/communication overhead of re-keying depends on the size of a
subgroup instead of the size of the whole group. However, this approach requires full trust in the

1 Any of existing unicast security protocol that provides mutual authentication can be used.

 32

GSC and GSIs. It may incur a lot of computational overhead because the GSIs have to re-encrypt
all data passing them.

All the schemes mentioned above in Section 4 require that a legitimate receiver is capable

of recording the past history of re-key operations and change its keys accordingly. In the case of
high packet loss rate, these schemes will not work well. The following two schemes are designed
for “stateless” receivers, i.e., they are not constantly on-line and can deduce the new group key
from their initial configuration.

4.4 Broadcast Encryption Scheme
The Broadcast Encryption [ASW00][FN94] technique allows a center efficiently broadcast
information to all users in such a way that only privileged users can decrypt the message. An
example scenario is a satellite/cable TV broadcast network. Each user has a special device when
he subscribes to pay TV service and can only get the channels he paid for. To solve this problem,
key-tree based approaches suggest building a separate key tree for each channel, thus incurring a
setup cost of at least logk keys per channel for target receivers of size k. The broadcast
encryption schemes use a single key structure for all programs and are efficient in two measures,
i.e., the number of keys stored at receiver and the number of keys transmitted by the sender.

In order to achieve the efficiency goal and break the theoretical bounds, Abdalla et al.
[ASW99][FN94] proposed a scheme, which allows a controlled number of users outside the
target set (free riders) to occasionally access the multicast data. Abdalla et al. introduce f-
redundant establishment key allocations, which guarantee that the total number of recipients is
no more than f times the number of intended recipients. A simple multi-level establishment key
allocation is a balanced binary tree, built by recursively partitioning the sets of a high level into
equally-sized disjoint sets in the next level. The number of keys each receiver holds is only
(1+logn). In the environment where membership changes dynamically, the establishment key
allocation can be built incrementally. A new partition is created at the beginning of each phase,
with virtual “place holder” users. Each new user that joins replaces a virtual user and is assigned
the virtual user’s keys. The phase ends when all the virtual users have been replaced by real
users. Then a new phase starts. A leaving user is marked as non-existing. Once the number of
non-existing users in a partition drops below some threshold, the partition is deleted and all the
remaining users are rekeyed to a new partition.

Once the establishment key allocation is decided, the next problem is to find a good key
cover in which the union of sets contains all the legitimate receivers for each target set. The
transmissions needed for re-key operations depend on the number of sets in the cover. Since the
Set Cover problem is a NP-hard optimization problem, Abdalla et al. proposed a greedy
approximation algorithm to find a good key cover.

This approach is quite practical for very large groups where some free riders may be

tolerated.

4.5 Subset-Difference Based Approach
It is often convenient to think of Broadcast Encryption as a Revocation Scheme, which deals with
the case where some subsets of the users are excluded from accessing the multicast data. The

 33

Subset-Difference based approach [LNN01][NNL01] is a new revocation scheme that is
especially suitable for stateless receivers. In such a scenario, a receiver can’t record the past
history of rekeying operation and update its keys accordingly. Instead, each receiver can deduce
the current session key based on the current rekey message and receiver’s initial configuration.
Stateless receivers are very useful in environments with unreliable communication.

The Subset-Difference based approach allows the group controller to transmit a message to
all users such that any non-revoked (remaining) user can decrypt the message correctly, while
even a coalition of all revoked members cannot decrypt it. The algorithm consists of three
components: 1) Initiation, which assigns every receiver some private information; 2) Broadcast
Algorithm at the group controller, which partitions the non-revoked users into disjoint subsets
Si1, …, Sim, and encrypts the new session key separately by the keys associated with these
subsets; 3) Decryption at receiver, which finds out the specific subset this receiver belongs to,
deduces the subset key from its private information, and then gets the new session key.

4.5.1 Definitions
Let N be the set of all users (|N|=n), among which r users should be revoked. Let R denote the
set of revoked users. All users are viewed as leaves in a complete binary tree.

A subset-difference Si,j is defined as set of all leaves in the subtree rooted at Vi but not in
Vj, where Vi is an ancestor of Vj. In another words, Si,j consists of the leaves of Vi minus the
leaves of Vj. So, a leaf u is in subset of the form Si,j iff Vi is one of its ancestors but Vj is not.
Figure 12 shows an example of Si,j. All black leaves are rooted at Vj, and Si,j consists of only the
gray leaves.

… … …

Vi

Vj

Si,j
Figure 12. Subset-Difference definition

The Cover is a collection of disjoint sets Si1,j1 , Si2,j2 ... ,Sim,jm which partitions the non-

revoked users N/R. Figure 13 shows an example group with 32 leaves, 12 of which are revoked.
The cover consists of 6 subset-differences: Sa,b , Sc,d ,Se,f, Sg,h , Si,j, Sk,l. The cover size is
defined as the number of subsets in the cover. Lotspiech et al. give out an efficient algorithm to
find a small cover, whose size is only 1.25r on the average.

 34

a

b

c

d
e

g

k

i

revoked
non-revoked

Cover Si,j=
i

j

f h j l

Figure 13: An example of subset cover

4.5.2 Key assignment
Each internal node i in the binary tree has a random and independent value LABELi. From this
value, we can calculate the keys for all subsets of the form Si,j using pseudo-random functions.

Let G be a pseudo-random sequence generator that triples the input, i.e., whose output
length is three times the length of input. Let S denote the label at one node, GL(S) denote the
label of left child, GR(S) denote the label of right child, and GM(S) denote the key of this node.
Figure 14 shows the idea of G.

G_L(S) G_M(S) G_R(S) G(S) =
S

G_L(S) G_R(S)

Figure 14: Generator G

For a given subtree Ti rooted at Vi, the labels and keys are assigned in a top-down manner

as shown in Figure 15. Let LABELi,j be the label of node Vj. derived in Ti from LABELi , and
the key of Si,j , denoted by Li,j is GM(LABELi,j). So given LABELi , computing Li,j requires at
most logn applications of G.

 35

S=LABELi Vi

G_L(S)

G_L(G_L(S))

Vj
G_R(G_L(G_L(S)))

LABELi,j = G_R(G_L(G_L(S)))
 Li,j = G_M(LABELi,j)

… … …

Figure 15 Generation of LABELi,j and key Li,j

Now, let’s consider the information each leaf node u needs to store in order to derive the key
assignment described above. For each subtree Ti such that u is a leaf of Ti , the receiver u should
be able to compute Li,j iff j is not an ancestor of u. For every Vi, which is ancestor of leave u, let
the label of Vi be S. u receives all labels at nodes that are hanging off the path from Vi to u.
These labels are all derived from S. Figure 16 shows the key assignment process for u. In this
example, leaf u receives the labels of Vi1, Vi2, Vi3, Vi4, and Vi5 that are induced by label of Vi.

Each receiver needs to store (0.5log2n +0.5logn +1) keys. At decryption step, receiver u
first finds the subset Si,j it belongs to, computes the corresponding key of Si,j, and then decrypts
the new session key.

Vi

Vi1

Vi2

Vi3

Vi4

Vi5U

S

Figure 16. An example of key assignment

This scheme has several advantages. 1) All the receivers are “stateless” and can get new

session key from its initial configuration. 2) Rekey message size is small because the remaining
receivers are partitioned into 1.25r subsets on average (r is the number of revoked members). 3)
Each receiver needs to do one decryption for every rekeying event (plus at most logn

 36

applications of a pseduo-random generator). However, the number of keys stored by each
receiver is 0.5log2N.

5. Key Exchange in Wireless Multicast Network

Few protocols exist to deal with the secure multicast in wireless networks. Among them, most
migrate the algorithms from the wired networks, together with a discussion of the wireless
environment without concrete algorithm.

5.1 Key distribution protocol of Bruschi et al.
Bruschi and Rosti [BR00] classified base stations into three different trust degrees. In the first
degree, the base station is not trusted at all, such system is called non-trusted system. In the
second degree, the base station is not fully trusted. It will not be allowed to understand the data
traffic but will behave correctly. This system is called semi-trusted system. For the last degree,
the base station is fully trust. Such system is called fully-trusted system. For these three
scenarios, different key managements with secure multicast service are provided.

As a general method, participants in the secure multicast are classified as data group and
control group. Data group (DG) includes all the members interested in receiving data traffic in
the group. Control group (CG) includes all base stations involved. Group members also
exchange keying material besides data traffic. Three types of keys are used. These are the key
used to encrypt/decrypt data traffic (named TEKs), the key used to encrypt/decrypt TEKs
(named KEKs) and the key used for encryption in a cell covered by a base station (named
CEKs), which is completely managed by the base station and local to each cell.

In the following description of this protocol, we use A => B to denote A broadcast (or
multicast) message to B, whereas A B denotes A unicast message to B. Besides, A=>B C or
A B=>C means A sends message to B, then B forwards this message to C.

 A non-trusted system
The group manager (GM) and the mobile hosts share the task to manage group dynamics

and host mobility. No better solution could be provided.

 A semi-trusted system
A protocol with two tier structure is provided. In the first tier, the group manger manages

all the support base stations and distributes TEK to the group members when they subscribe to
the group. These stations act as agents of the mobile hosts in the data group. Data traffic is
symmetrically encrypted using a session key s_k . This session key s_k is in turn symmetrically
encrypted using the TEK t. In the second tier, the base station relays the data traffic to the hosts
in its cells. Each base station acts as the group manager of a centralized tree VersaKey
[WCSWP99] in its cell. It receives the data traffic from GM and encrypts them using local CEK,
then broadcast it in the local cell to the mobile hosts , as the follows:

isM

GM => CG: {data_traffic}s_k, {s_k}t

 37

∀ si ∈ CG, si => : {data_traffice}
isM s_k, {{s_k}t}

isc

After receiving the messages, the mobile hosts first decrypt them using local CEK , then
decrypt again using TEK t they received when subscribing the group, and get the s_k. Thus they
can get data traffic.

isc

Because of the CEKs used for encryption in each cell, host mobility and group dynamics is
restricted to the cell level as key update may occur only in the interested cell. Since only those
who know both CEK and TEK can know the data traffic, updating CEKs for group dynamics can
guarantee the backward and forward traffic secrecy.

The protocol works as follows:

-- Initially, a control group CG and a data group DG are created for every multicast group. A
mobile host is added to DG when it subscribes to the service and removed from DG when it
terminates the service. Similarly, base station will be added to CG if there is mobile host
subscribed to the service in its cell and removed from CG if no mobile hosts subscribed to the
DG.

-- When a new mobile host m joins the group, it sends subscription request to the GM, forwarded
by its base station s. This request is digitally singed by m’s private key to allow GM to
authenticate.

m => s GM: −
mPK

SUBSCRIBE}{

If the request is approved, an add operation is executed in the first tier: if the base station is not
in the CG, it is added into CG. Meanwhile, GM adds m to DG, gives m the current TEK t used to
encrypt the data traffic:

GM s => m: −+
GMm PKPKt }}{{

Then base station s will proceeds with join operation int the second tier: if m is the only member
in the cell, s generates CEK cs, and a symmetric session key sm used for control traffic with m
only and sends them to m:

s => m : {cs}sm, −+
sm PKPK

sm }}{{

Otherwise, if s has been in the CG before m joined, then the cell executes a local centralized tree
VersaKey scheme. s updates its local CEK cs to and all the KEKs along the path from leaf sm
in VersaKey tree to the root. These keys, together with the symmetric session key sm, are sent to
m:

'
sc

s => m : {sm, , …, , , }'
1−snk '

2k '
1k '

sc sm, −+
sm PKPK

sm }}{{

Where , …, , are the new keys along the path from the leaf sm to the new root .
Giving the newcomer a new CEK and a new set of KEKs guarantee it will not receive the data
traffic before it join the group.

'
1−snk '

2k '
1k '

sc

 38

-- When the mobile host m leaves from the group, it sends a CANCEL message to GM,
forwarded by local base station s .

M => s GM: −
mPK

CANCEL}{

GM executes delete operation in the first tier to remove m from DG. Also GM checks if base
station s should be deleted from CG. No key change is required in this level.

Meanwhile, s executes leave operation in the second tier. It changes it local CEK cs to
prevent m from accessing the data traffic after it leaves the cell. S executes the following
according to the centralized tree VersaKey scheme:

s => Ms : { }'
1−snk sm, , …, , '

1
}{ '

2
−

−
sns knk '

2
}{ '

1 k
k

2
}{ '

1 kk , , '
1

}{ '
ksc

1
}{ '

ksc

where ik is the sibling of node ki in the tree, and , , … , are the new KEKs along

the path from the leaf sm to the new root .

'
1−snk '

2−snk '
2k '

1k
'
sc

-- When a mobile host moves from one cell to its neighbor, a hand-off procedure is performed by
the base station. It involves the departed base station s and the entered base station s’ and
possibly GM. Because the mobile host is still in the same group, the old base station s execute
leave operation and the new base station s’ execute join operation. When m move into a new cell,
it sends a message to s’:

m => s’ : −}
mPK

seqid,mcast_grp_ {m,

where mcast_grp_id is the identifier of the multicast group to which m belong and seq is the
sequence number of the last packet received by m.

-- The key material should be updated after an interval to guard against cryptanalytic attacks. The
update rate depends on the rate that mobile hosts join and leave the group and speed they move
from cell to cell. Each base station may perform a pseudo-join operation to force a key update.
Also TEKs might be periodically refreshed. The new TEKs can be encrypted in the current
TEKs.

In a fully-trusted system

Because the base station is fully trusted, they can have access to both the key encryption key and
the traffic encryption keys. Some decryption operations can be performed by them. In this
system, each base station decrypts the data traffic received from GM and encrypts it, then
broadcasts in its cell.

GM => CG : {data_traffic}t

∀ si ∈ CG, si => : {data_traffic}
isM

isc

There are some weaknesses in this protocol. First, this protocol has high overhead. In case of
semi-trusted system, in order to recover the session key, the mobile host need to do two
additional decryption operations. Second, it doesn’t consider the reliability problem of rekeying.
Third, because the traffic between GM and base stations are only encrypted by session key and it
doesn’t change after member’s leaving, a leaving member may understand this traffic.

 39

5.2 Key agreement protocols
In this subsection some key agreement protocols, which means that each group member
contributes its share to the group key, are discussed. The first protocol uses one-way function on
shares of group members to generate group key. Other protocols are based on the Diffie-Hellman
key exchange by extending two parties to multiparty.

5.2.1 A Generic multi-party protocol
Asokan and Ginzboorg [AG00] modified the generic two-party protocol called encrypted key
exchange [BM92] and extended it into a multi-party protocol. The protocol is based on a weak
shared key. All group members M1, … , Mn share a weak secret P. Mn is the leader and has a key
pair (E, D). The protocol works as follows:

(1) Mn all: Mn, {E}p

(2) Mi Mn: Mi, {{Ri,Si}E}P, i = 1, .. n-1

(3) Mn Mi: {Sj, j =1, .. , n}Ri , i = 1,.. ,n-1

(4) Mi Mn : Mi, {Si, H(S1,S2,.. Sn)}K, for some i

In the first step, Mn sends its encryption key E to all members. In step two, every member Mi
generates a random string Ri, which is used as the symmetric key between itself and Mn, and
random share Si, encrypts them using E and returns them to Mn. In step three, Mn send all the
random share Si encrypted by Ri to every member. Then every member can calculate the session
key using one-way function K = f(S1, S2, .., Sn). The last step is used for key confirmation.

It is pointed out that this protocol has the following shortcoming. First, to prevent replay
attack, E cannot be a long term public encryption key. It should be refreshed for each run of the
protocol. However, generating a new key pair each time is expensive. Second, some properties
(e.g., a product of large prime numbers, as in RSA) of the key E may be utilized by the attacker
to attempt an dictionary attack on P(E). Only the unpredictable parts of E should be encrypted
with P.

5.2.2 Burmester and Desmedt’s Protocol
Burmester and Desmedt constructed a broadcast system to generate a group key [BD94]. This
protocol includes only three steps:

(1) Each Mi selects its random exponent Ni and broadcasts zi = iNα

(2) Each Mi computes and broadcasts Xi = (zi+1 / zi-1) = . Here, the indices of
M

iN iii NNN)/(11 −+ αα
i are taken in a cycle, so Mn+1 is M1 and Mn is M0.

(3) Each Mi compute the key K = mod p, where p is a prime
number.

2
2

1
1

1 −
−
+

−
− ⋅⋅⋅⋅⋅ i

n
i

n
i

nN
i XXXz i

The group key will be K = , which is deducted as follows: 13221 NNNNNN n+⋅⋅⋅++α

 40

Set Ai-1 = = (mod p), AiN
iz)(1−

ii NN 1−α i = = · = (mod
p), A

i
N

i Xz i ⋅−)(1
ii NN 1−α iii NNN)/(11 −+ αα 1+ii NNα

i+1 = = (mod p), and so on. Then, K11)(+− ⋅⋅ ii
N

i XXz i 21 ++ ii NNα i = Ai-1 ·Ai ·Ai+1··· Ai-2 =
· · ··· = . ii NN 1−α 1+ii NNα 21 ++ ii NNα 13221 NNNNNN n+⋅⋅⋅++α

The problem with this protocol is, according to [KPT00], that most of the members need to
change their random exponent on every membership change event.

5.2.3 GDH.2 and extensions
Group Diffie-Hellman (GDH) is a class protocols presented by Steiner et al. [STW96][STW00].
GDH.2 and GDH.3 are two of them. These protocols are natural extensions of 2-party Diffie-
Hellman key exchange to the n-party case. In 2-party case, each member selects its secret share
and sends exponent of this secret share to its peerNiα . Both members can calculate the key

 by using its own share. In n-party case, if a member M21NNα i knows exponent of secret share of
other members , then using its own share, it can calculate group key as . nii NNNNN ⋅⋅⋅⋅⋅⋅ +− 111 2α nNNN ⋅⋅⋅⋅⋅⋅21α

Suppose Ni is the secret exponent of member Mi and α is a generator in the algebraic
group. GDH.2 works as follows:

(1) Mi Mi+1 : { j

i

N
NN ...1

α | j ∈ [1,i] }, i iNN ...1α ∈ [1, n-1]

(2) Mn ALL Mi: { j

n

N
NN ...1

α | j ∈ [1, n-1] }

Stage (1) consists of n-1 rounds. In every round i, Mi unicasts Mi+1 a collection of i values. Of
these, i-1 items are intermediate, which are, , … , and one is
cardinal, . When upflow reaches M

iNNN ...32α iNNN ...31α 11 ...2 −iNNNα
iNN ...1α n, Mn can calculate the group key as . Also,

M

nNNN ...21α
n calculates the intermediate values , …, . In stage (2), MnNNN ...32α nNNN ...31α nn NNNN 232 ... −α n

broadcasts these n-1 intermediate values to all group members. When member Mi receives these
broadcast intermediate, it can calculate the group key as by using its own share NnNNN ...1 2α i to
the corresponding intermediate. Figure17 shows GDH.2 with 4 members.

421 NNNα
431 NNNα

42 3NNNα

21NNα
 31NNα
 32NNα
 321 NNNα

2 3

4

Figure 17: GDH.2 with n=4

1Nα 2Nα 21 NNα1Nα
1

 41

In GDH.2, for every Mi, a total of (i+1) exponentiations are required and the computational
burden increases with the group size.

To reduce the computational burden on Mi, GDH.3 protocol is provided. In the upflow
stage of GDH.3, only one item, cardinal, instead of i items in GDH.2, is calculated and sent to
the next member. Thus computation overload of i-1 intermediate items is reduced. GDH.3
consists of four stages.

(1) Mi Mi+1: i∏ ∈],1[| ipN pα ∈ [1, n-2]

(2) Mn-1 ALL : ∏ −∈]1,1[| npN pα

(3) Mi Mn :
i

p

N

npN∏ −∈]1,1[|

α

(4) Mn ALL : { i

p

N

npN∏ ∈],1[|

α | i ∈ [1, n] }

First stage collects the exponentiation of every member up to Mn-1. After first stage is complete,
Mn-1 obtains . In stage 2, M∏ −∈]1,1[| npN pα n-1 broadcasts ∏ −∈]1,1[| npN pα to every member. In stage 3,
every member factors out (divided by) its own exponent from ∏ −∈]1,1[| npN pα and sends the result
to Mn. In stage 4, Mn raises every message received in stage 3 with its exponent and returns the
result back to respective member. Thus every member can now calculate the Key as . ∏ ∈],1[| npN pα

The problem of GDH.3 is that n-1 unicast messages are sent to Mn in stage 3, which may
congest Mn.

Asokan and Ginzboorg [AG00] provided a similar extension to GDH.2. In their method, all
members share a password P. Each member Mi generates a secret share Si. The protocol works
as follows:

(1) Mi Mi+1: , i =1, .. n-2
isssg ...21

(2) Mn-1 ALL:
121 ... −nsssg

(3) Mi Mn: P
sssss iing }{ /ˆ... 121 −

(4) Mn Mi : P
sssss iing }{ /ˆ...21

All above 4 stages are same as those in GDH.3, except stage 3. In stage 3, every member
encrypts the revised intermediate key using share password P and sends it to Mn. In stage 4,
instead of using multicast as in GDH.3, Mn unicasts the result to every member. It is suggested in
the paper, the following step 5 may be used for verification. Some members broadcast the key
message to make sure some other members decide the same key.

(5) Mi ALL: Mi, {Mi, H(M1,M2, .. , Mn)}K for some i

This method will provide good forward secrecy. However, it requires a shared password P. To
get such a password is a problem itself.

 42

5.2.4 The Hypercube Protocol and extensions
Hypercube protocol was proposed by Becker and Wille [BW98]. It requires minimum number of
rounds. The basic idea is as follows (Figure 18): suppose four nodes A, B, C, D are arranged in a
square. Suppose a, b , c, d are their random share for 2-party DH. In the first round, A and B
exchange keys in the usual way, resulting in KAB= . C and D do the same, resulting in
K

abα
CD= . In the next round, A exchanges keys with C, using a 2-party DH. So do B and D.

After two rounds, all four members will have the same key K = .

cdα
cdabααα

A

B

C

D

abα
cdabααα

A C

B D

cdα

Round 2 Round 1

Figure 18: -cube key exchange22

Now suppose there are 23 participants. They are arranged as the vertices in 3-dimensional

hypercube. In the first 2 rounds, each participant can get a 4-party DH using the above method.
In the 3rd round, each participant of a square (face) exchanges with peer of opposite square(face)
using the achieved 4-party secret keys as the exponents. This process continues for 24

participants and so on. That is, in jth round, each participant performs a two–party DH with its
peer on the jth dimension using the key of the j-1th round as its secret exponent. After d round,
2d participants will have the same secret.

For the case where the number of participants n is not a power of 2, Becker and Wille
present a protocol called Octopus protocol . If 2d < n < 2d+1, the first 2d participants play the role
of central controllers. The rest of the participants form wards that are attached to one of the
central nodes. First, the controllers do Diffe-Hellman key exchange with the wards. Then, the
controllers perform 2d-cube exchange using the products of the ward keys gathered in the first
stage. Finally the key derived in the second stage is distributed to the wards.

The Octopus protocol works well for adding new member to the group. However, it’s very
inefficient when a member leaves the group. Another problem of Octopus protocol is that a two-
party key exchange may fail. Becker and Wille didn’t make clear how to deal with the problem.
Asokan and Ginzboorg [AG00] provided a solution to deal with such faults.

 43

In Asokan and Ginzboorg’s method, if a node finds its peer partner in a given round is
faulty, it uses a distributed algorithm to find a suitable non-faulty partner. The partner selection
algorithm tries the closer partner first in term of Euclidean distance between the node address. If
there are 2d participants, every node has a d-bit address. For any round k, the number of potential
partners for a given node is bounded by . In this round, a given node’s potential partners
should have the same first d-k bits but different kth bit. Among these potential partners, a given
node (suppose N) will try to do Diffie-Hellmen exchange with the node that has the least distance
of address from the given node first (i.e., the least Hemming distance between the two node’s
addresses). If that fails, N tries the node with second least Euclidean distance. If there is more
than one node having the second least Euclidean distance, the node with higher bit set has
priority. If those attempts fail again, N will try the node with the third least Euclidean distance,
and so on. The process is illustrated using an example in Figure 19:

12 −k

ab.cd

G:110 E:100

D:011

A:000

H:111

ab.cd

ef.h
ef.h

E:100

D:011

A:000 C:010

B:001

G:110

F:101

c.d
a.b

e.f

Round 1 pairwise exchanges

H:111 F:101

B:001

C:010

Round 2 pairwise exchanges

E:100

D:011

A:000 C:010

B:001

G:110

F:101

Round 3 pairwise exchanges

abcd.efh

abcd.efhabcd.efh

Figure 19: Fault tolerant 8-party key exchange

abcd.efh

H:111

Participants have 3-bit addresses and are labeled A to H. Their share contributions are
represented as the corresponding lower case letters. The bold solid line represents DH exchange
between two participants. Suppose G:110 is faulty. In round k =1, H:111 will select a node with
the same first 2 bits but different last bit address, i.e. G:110, as partner to exchange share. This
attempt fails. Because there is only one (i.e.,) candidate, H does nothing more. In round k =
2, E:100’s potential partners are those nodes having the same 1

112 −

st bit but different 2nd bit address.
There are two candidates, G:110 and H:111. G:110 has the less Euclidean distance from E:100
than H:111. E:100 will select G:110 as partner first. This attempt will fail. Then E will try H:111
as partner. This attempt will succeed. In round 3, C:010’s potential partners are those nodes
having different 1st bit address from C. C:010 selects G:110, which has the least Euclidean

 44

distance from C, as partner and fails. Then C tries H:111, which has second least distance from
C, as partner and will succeed.

A comparison of these protocols is given below:

Protocol messages message size total
exponentiations

exchanges* rounds

Generic multi-
party

n+1 2n-1 - - n+1 3

Burmester et
al’s protocol

2n
(broadcast)

2n n2+2n 2n 2

GDH.2 n (n-1) (n/2+2) -1 (n+3)n/2-1 n n

GDH.3 2n-1 3(n-1) 5n-6 2n-1 n+1

Hypercube n n2log n n2log n(1+) n2log 0.5n n2log n2log

Octopus 3n+ (d-3) d2 3n+ (d-3) d2 4n+ (d-3) d2 2n+ (d-4) 12 −d d+2

Table 7: A comparison of the performance

Here, for d, 2d < n < 2d+1

* exchange means a DH exchange by two parties simultaneously or an exchange from one party
to another at one time.

6. Conclusion

Key establishment is a key issue in secure communication. In this paper, we reviewed a
variety of key management protocols for group communication in wired and wireless networks.
We analyzed these protocols for security vulnerabilities and also discussed the pros and cons of
these protocols and gave performance comparisons among related approaches. However, there
are different requirements for different applications and environments and no panacea exists to
solve all the problems. For specific application, the most suitable protocol may be chosen to
implement.

References
[AD94] A. Aziz and W. Diffie, “Privacy and Authentication for Wireless Local Area Networks,”
IEEE Personal Communications, vol. 1, pp. 25-31, 1994

[AG00] N. Asokan and Philip Ginzboorg. Key Agreement in Ad-hoc Networks. Elsevier
Preprint, 2000. To appear.

[ASW00] Michel Abdalla, Yuval Shavitt, and Avishai Wool. Key Management for Restricted
Multicast using Broadcast Encryption. IEEE/ACM Trans. On Networking, 8(4), pp. 443--454,
August 2000

 45

[BCY91] M. J. Beller, L.F. Chang, and Y. Yacobi, “Privacy and Authentication on a Portable
Communications System,” in Proceedings of GLOBECOM’91, pp. 1922-1927, IEEE Press, 1991

[BCY92] M. J. Beller, L.F. Chang, and Y. Yacobi, “Security for Personal Communication
Services: Public-key vs. Private Key Approaches,” in Proceedings of Third IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’92), pp. 26-31,
IEEE Press, 1992

[BCY93] M. J. Beller, L.F. Chang, and Y. Yacobi, “Privacy and Authentication on a Portable
Communications System,” IEEE Journal on Selected Areas in Communications, vol. 11, pp.
821-829, Aug. 1993

[BY93] M. J. Beller and Y. Yacobi, “Fully-Fledged two-way Public Key Authentication and
Key Agreement for Low-Cost Terminals,” Electronics Letters, 29, pp. 999-1001, May 1993

[BD94] Mike Burmester and Yvo Desmedt. A Secure and Efficient Conference Key Distribution
System. Proc. Advances in Cryptology-UROCRYPT’94, May 1994

[BM92] Steven M. Bellovin and Michael Merrit. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, May 1992

[BM98] C.Boyd and A. Mathuria. Key Establishment Protocols for Secure Mobile
Communications: A Selective Survey. Information Security and Privacy, LNCS 1438, Springer-
Verlag, 1998, pp.344-355

[BP98] C.Boyd and D.-G..Park. Public Key Protocol for Wireless Communications. in The 1st
International Conference on Information Security and Cryptology(ICISC’98), pp.47—57, 1998.

[BQ95] P.Beguin and J.J.Quisquater. Fast server-aided RSA signatures Secure Against Active
Attacks. In Crypto'95, pp. 57-69, 1995.

[BR00] D. Bruschi., E. Rosti Secure multicast in wireless networks of mobile hosts: protocols
and issues. to appear in ACM-Baltzer MONET Journal, special issue on Multipoint
Communication in Wireless Mobile Networks, 2000.
[BW98] K. Becker and U. Wille. Communication Complexity of Group Key distribution. Proc.
Fifth ACM Conf. Computer and Comm. Security, 1998

[CE99] I. Chang, R. Engel, D. Kanlur, D. Pendarakis, D. Saha. Key Management for Secure
Internet Multicast using Boolean Function Minimization Techniques. IEEE Infocomm 1999.

[Dee88] Stephen E. Deering. Multicast Routing in Internetworks and Extended LANs. In
Proceedings of ACM SIGCOMM ’88, August 1988.

[FN94] Amos Fiat and Moni Naor. Broadcast Encryption. In Advances in Cryptology –
CRYPTO ’93, LNCS 773, pages 480-491, 1994.

[H98] G. Horn et al. Trialling secure billing with trusted third party support for UMTS
applications. Proceedings of the 3rd ACTS Mobile Communications Summit, Rhodes, June 1998,
pp574-579.

[HMR97] Harney Hugh, Carl Muckenhirn, Thomas Rivers. Group Key Management Protocol
Architecture, Request for comments (RFC) 2093, Internet Engineering Task Force, March 1997

 46

[HP98] G.Horn and B. Preneel. Authentication and Payment in Future Mobile Systems,
Technical Report ESAT-COSIC Report 98-2, Department of Electrical Engineering, Katholieke
Universiteit Leuven, Feb., 1998.

[Iolus] Suvo Mittra. Iolus: A Framework for Scalable Secure Multicasting. In proceedings of
ACM SIGCOMM ’97, 1997.

[K53] M. Karnaugh. The Map Method for Synthesis of Combinational Logic Circuits.
Transaction AIEE, Communications and Electronics, Vol. 72, pp. 593-599, Nov, 1953.

[KPT00] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agreement for dynamic
collaborative groups. In S. Jajodia, editor, 7th ACM Conference on Computer and
Communications Security, pages 235–244, Athens, Greece, Nov. 2000. ACM Press.

[KPT01] Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient group key agreement. In
Information Systems Security, Proceedings of the 17th International Information Security
Conference IFIP SEC’01, 2001.

[LHYC98] Seungwon Lee, Seong-Min Hong, Hyunsoo Yoon and Yookun Cho. Accelerating
Key Establishment Protocols for Mobile Communication.

[LNN01] Jeff Lotspiech, Moni Naor, and Dalit Naor. Subset-Difference based Key Management
for Secure Multicast. Internet Draft, draft-irtf-smug-subsetdifference-00.txt, July 2001

[M95] C. Meadows. Formal Verification of Cryptographic Protocols: A Survey. in Advances in
Cryptology – ASIACRYPT’94(J. Pieprzyk and R. Safavi-Naini, eds.), vol. 917 of Lecture Notes
in Computer Science, pp.135-150, Springer-Verlag, 1995. Invited lecture

[MOV96] Alfred J.Menezes, Paul C. van Oorschot and Scott A. Vanstone. Handbook of Applied
Cryptography, CRC Press, Oct. 1996, pp.544

[NNL01] Dalit Naor, Moni Naor, and Jeff Lotspiech. Revocation and Tracing Schemes for
Stateless Receivers. To appear in Crypto 2001, 2001

[P97] C.S.Park, “On Certificate-Based Security Protocols for Wireless Mobile Communication
Systems”, IEEE Network, pp.50-55, Sept./Oct. 1997,
[STW00] Michael Steiner, Gene Tsudik and Michael Waidner. Key agreement in dynamic peer
groups. IEEE Transactions on Parallel and Distributed Systems, Vol. 11, No. 8, August 2000

[STW96] M. Steine, G. Tsudik, and M. Waidner. Diffie-Hellman Key distribution extended to
groups. Third ACM Conf. Computer and Comm. Security, pp.31-37, Mar 1996

[WCSWP99] Marcel Waldvogel, Germano Caronni, Dan Sun, Nathalie Weiler, Bernhard
Plattner, The VersaKey Framework: Versatile Group Key Management, IEEE Journal on
Selected Areas in Communications, 17(9), pp 1614-1631, September 1999

[WGL97] C. K. Wong, M. Gouda. Secure Group Communications Using Key Graphs. S. S.
Lam, Department of Computer Sciences, University of Texas at Austin, Technical Report 97-23,
July 28, 1997

[WS98] D. A. McGrew, A. T. Sherman. Key , Feb, 1999.

[YS89] Y.Yacobi and Z.Shumuely. On Key Distribution Systems. Advances in Cryptography-
Crypto’89, Springer-Verlag, pp.344-355.

 47

