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Abstract— Consider a protocol specification represented as a
fully specified Mealy automata, and the problem of testing an
implementation for conformance to such a specification. No single
sequence-based test can be completely reliable, if we allow for
the possibility of an implementation with an unknown number
of extra states. We define a hierarchy of test sequences, param-
eterized by length of behaviors under test. For the reset method
of conformance testing, we prove that the hierarchy has the
property that any fault detected by test : is also detected by
test 7 + 1, and show that this sequence of tests converges to a
reliable conformance test. For certain bridge sequence methods
for constructing test sequences, this result does not always hold.
In experiments with several specifications, we observe that given a
small number of extra states in an implementation, our sequence
of tests converge to total fault coverage for small values of i, for
both reset and bridge sequence methods. We also observe that
choice of characterizing sequence has less effect on fault coverage
than choice of behavior length or number of extra states in the
implementation.

Index Terms— Protocols, conformance testing, testing hierar-
chies, optimal length test sequences, faults, fault coverage

I. INTRODUCTION

ROTOCOLS are rules and conventions by which network

entities communicate. Formal description techniques have
been used successfully in eliminating ambiguity and incom-
pleteness in protocol specifications. Formal specifications can
sometimes still be subject to errors of interpretation, and
implementations may contain programming errors. This leads
to the need for a way to test a protocol implementation for
conformance to its specification.

The control structure of a communications protocol can be
described by a deterministic Mealy automaton, or finite state
machine (FSM). This is an automaton where state transitions
have both an input and an output. In a completely specified
FSM, at each state there is an out edge for each symbol of
the input alphabet; a partially specified FSM is an FSM that is
not completely specified. The completely specified FSM acts
as a total function from strings of its input alphabet to strings
of its output alphabet, while the partially specified FSM acts
as a partial function.
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Fig. 1. An example FSM.

In this paper, we consider only completely specified ma-
chines. A partial specification can easily be extended to a
complete specification: for each unspecified input at a state,
we add a self-loop with that input and the empty string as
output. Alternatively, an unspecified input can lead to an error
state.

Protocol testing is usually carried out by applying a test
sequence to the implementation under test (IUT) [5], [7].
The test sequence is constructed in some fashion from the
specification of the protocol. The construction of a protocol
test sequence involves many choices, many of which are not
guided by any formal theory [8].

A fault is a difference between the behavior of the imple-
mentation and the behavior of the specification. If a test finds
a fault we know the implementation is faulty. However, a
particular test sequence may not find a particular fault. When
this happens we say the fault is masked. The fault coverage
of a test sequence is a measure of its expected reliability in
detecting faults, and is often expressed as a percentage of
faulty machines that are detected.

Fig. 1 gives an example of a completely specified FSM.
This machine has three states {1,2, 3}, two inputs {a, b} and
two outputs {0,1}. In later discussion of fault coverage, we
also consider a corresponding faulty FSM shown in Fig. 1.
The faulty FSM has an error in the next state of a transition,
i.e., the transition (1,3;b/1) has become (1,1;b/1).

Much recent research has focused on “optimizing” protocol
test sequences; i.e., finding a shortest test sequence that checks
a given set of partial behaviors. Such optimization methods
save at most about a factor of two in test sequence length,
while sometimes paying a considerable price in fault coverage
[9]. In this paper we reverse this emphasis, and consider how
long (both in theory and in practice) a test sequence needs to
be to give complete fault coverage.

In much of the testing literature, it is assumed that the
implementation has the same number of states as the spec-
ification [10], [11]. We consider a more realistic version of
the conformance testing problem, where we allow for the
possibility of an unspecified number of extra states in an
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implementation. An implementation can easily have extra
states. For example, a specification state might be implemented
as an equivalence class of internal states, one for each value
of a local variable. Such a nonminimal implementation might
still be correct, but if there are errors, then they must be found
in the context of the larger state set. In general, extra states
allow more forms of fault masking [12], i.e., more ways in
which faults can escape detection.

The time complexity of determining conformance is ex-
ponential in the number of states in the implementation. If
we do not have a bound on this number, then the problem
is undecidable. Because of this any testing method using a
single test sequence is at best an approximation. We define a
hierarchy (8o, 81, B2, - - -) of test sequences, parameterized by
length of behaviors under test. For the reset method (defined
in Section II), we prove that any fault detected by a 3; test
is also detected by a (;41 test. This hierarchy of tests defines
a corresponding chain of implementations which converges to
a set of machines that are equivalent to the specification. For
bridge sequence methods (also defined in Section II) this is
not always true.

In experiments, we observe that given a small number
of extra states in an implementation, for both RCP and
reset methods, our sequence of tests converge to total fault
coverage for small values of i. We also observe that choice
of characterizing sequence has less effect on fault coverage
than choice of behavior length or number of extra states in
the implementation.

The paper is organized as follows. Section II gives back-
ground and definitions concerning test methods based on
characterizing sequences, and considers the relationship be-
tween fault coverage of test sequences and subsequences. In
Section III, properties of the testing hierarchy are analyzed,
and in Section IV, we present experimental measurements of
the fault coverage of a number of test sequences. Section V
contains a brief summary and conclusions.

II. CS-BASED TEST METHODS

Our emphasis is on characterizing sequence-based test meth-
ods. A characterizing sequence (CS) for a protocol FSM is a
sequence of inputs and outputs which exhibit some distinctive
signature for each state of the FSM. In CS-based test methods,
a test sequence is formed by joining test subsequences with
some form of bridging sequences. The individual subsequences
consist of an edge or sequence of edges under test, followed
by a characterizing sequence for the tail state of the last edge
in the sequence of edge(s) under test. The CS is used to check
that the behavior sequence is being applied at the intended
place in the implementation.

A. Characterizing Sequences

A number of different characterizing sequences have been
proposed. In this section we consider unique input output
sequences (UIO’s), and distinguishing sequences (DS). Many
other sorts of characterizing sequences have been proposed,
including and W-sets [17], pairwise distinguishing sequences
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TABLE 1
CHARACTERIZING SEQUENCES
State UIO; UIO, DS
1 a/l a/l a/l.a/0
2 a/0.a/1 a/0.a/1 a/0.a/1
3 a/0.2/0 b/l.a/1 a/0.a/0

[13], and the characterizing sequences of the UIOv [14} and
BUIO [15] test methods.

1. UIO’s: A UIO sequence for a state of an FSM M is
an input/output (I/O) behavior that is not exhibited by any
other state of M [5]. It is usually possible to generate a UIO
sequence for a strongly-connected, minimal and completely
specified Mealy machine. A set of UIO’s are produced, for
the states of M, by constructing multiple trees rooted at each
state using a breadth-first procedure. The specification FSM of
Fig. 1 has two sets of minimum length UIO sequences, shown
in Table L

2. Distinguishing Sequences: An input sequence is a DS of
an FSM M if the output string produced by M, in response
to the input string, is different for each state of M. 1t is not
always possible to find a DS for a particular FSM. A DS can
be generated by constructing a distinguishing tree [16]. For the
example FSM of Fig. 1, the shortest distinguishing sequence
(DS) is aa, as shown in Table L

B. Test Subsequences

A test subsequence can be defined most generally as
Lpq-CS(q)

where L4 = L1-Ly-...- Ly is a sequence of A input/output
labels L; that take the protocol FSM from state p to state
g. (We use - to denote string concatenation.) This is the “L-
sequence” or behavior sequence to be tested. CS(q) is the
characterizing sequence for state ¢, for example a UIO or DS.

We classify test subsequences based on the length of the
L-sequence. A B test subsequence for a given specification
and set of characterizing sequences is an L-sequence of
length X derived from the specification, concatenated with the
characterizing sequence for the tail state of the L£-sequence.
The fo subsequences have an empty L-sequence, and test the
states of an implementation. The 3; subsequences test a single
transition in an implementation, the 3, subsequences test pairs
of transitions of an implementation, and so on. For an FSM
with 7 states and k inputs, there are nk, A behaviors of length
A

If a specification has at least one input transition for each
state, then for a given CS-method and for all ¢ > 0, every B
test subsequence is a proper subsequence of some ;41 test
subsequence. This follows since the assumed input transition
allows any (3; subsequence to be extended one edge to the left,
forming a f;4+1 test subsequence.

Before we consider methods for joining test sequences, it is
interesting to note that a sufficiently long single behavior can
be treated as a test sequence. In [13] a test method is proposed,
which we would characterize as a single 3 test subsequence,
with A = |E| and no edges repeated along the behavior.
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TABLE Il
B1 TEST SUBSEQUENCES AND SEQUENCES BUILT USING RCP METHOD FOR FSM IN Fic. 1 UsING UIOy, UIO;, AND DS As CHARACTERIZING SEQUENCES
CS $1_Subsequences B1 Test Sequence Length
[a/1.a/0.a/1],[b/1.a/0.a/0] b/1.a/0.a/0.a/1.a/0.a/1.b/1
Ul0;  [a/0.a/1],[b/1.2/0.a/0] b/1.a/1.b/1.a/0.a/0.a/1.b/1.a/0.a/0 18
[b/1.a/1],[a/0.a/0.a/1]
[a/1.a/0.a/1],[b/1.b/1.a/1] b/1.b/1.a/1.a/0.a/1.a/0a/1.a/0.a/1.b/1
UlO;  [a/0.a/1],[b/1.b/1.a/1] b/1.a/1.b/1.b/1.a/1.b/1.a/0.af/0.a/1.a/0 20
[6/1.a/1],[a/0.a/0.a/1]
la/1.a/0.a/1],[b/1.a/0.a/0] b/1.a/0.a/0.a/1.a/0.a/1.a/0.a/1.a/0.b/1
DS [¢/0.a/1.a/0],[b/1.a/0.a/0] a/0.a/0.a/1.b/1.a/0.a/0.b/1.b/1.a/1.a/0 20

[6/1.a/1.a/0],{a/0.a/0.a/1]

C. Test Sequences

Fixing a set of characterizing sequences and an L-sequence
length defines a set of test subsequences. These must still
be combined into a single test sequence. Two schemes for
constructing test sequences are discussed in the following
sections.

1. Reset Transition Method: This method is applicable
when the protocol FSM has a reset transition [5], [7]. The
method constructs a test subsequence for each £-sequence by
concatenating a shortest path from the initial state of the FSM
to the start state of L-sequence, the L£-sequence itself, and a
characterizing sequence for the tail state of L-sequence. Any
test subsequence which is a prefix of another is omitted, and
the resulting set of subsequences is concatenated with reset
transitions to form a test sequence.

2. Bridge Sequence Methods: Bridge sequence methods
construct an executable test sequence by concatenating a
set of test subsequences using bridge sequences. A bridge
sequence is a sequence of inputs and outputs along a path
in the protocol FSM between a pair of states. The bridge
sequences are used to provide a connection from the tail
state of one test subsequence to the head state of another test
subsequence. The optimization procedures for this method
lead to solving the Rural Chinese Postman (RCP) problem
and bipartite matching problems.

The RCP method involves finding a minimum cost tour of a
graph involving a selected set of edges. A protocol FSM can
be represented by a directed graph G = (V, E) where V is the
set of vertices representing the states of the FSM and E is the
set of edges representing the transitions of the FSM. An edge
from vertex v; to vertex v; labeled with L; is represented by
(vi,vj; Ly) where L, is the input/output label associated with
the transition. The characterizing sequence applied to state v;
is indicated by CS(v;) and the tail (last) state of CS(v;) by
TAIL(CS(v;)). From the directed graph G = (V, E) construct
a new directed graph G’ cs = (V' E’) such that V/ = V
and E' = E¢, where E¢ ’corresponds to a set of edges which
correspond to test subsequences, defined as follows:

Ec = {(vi,vr; £i j - CS(v;)
Lij=Ly -Ly-... L,
Fvp,,...,vp,_, € V such that
(i, vpy, Li,), (Vpys Upy, Liy )y - - - (Vpr_1: Y5, L1,) EF
and TAIL(CS(v;)) = v}
The Rural Chinese Postman Problem involves finding a min-

imum cost tour on graph G’ such that each edge in E¢
is visited at least once. This broblem has a polynomial-time
solution if the edge-induced subgraph G[E¢| forms a weakly-
connected spanning graph of G\ cs-

An optimal length test sequence can be constructed for a
protocol FSM, modeled as a directed graph G, from a set of
test subsequences using the Rural Chinese Postman tour [18]

as follows:

1) For every test subsequence, identify the starting vertex
v; and ending vertex vy in graph G.

Construct a graph Gi\ cs from graph G by adding an
edge (v;,vi; L) -CS(vj)) from vertex v; to vertex v
for each test subsequence where vy, is the state reached
on applying characterizing sequence CS to state v;.
Construct an augmented graph G:,CS = (V*, E") from

V' and E* is initialized to

2)

3)
graph Gi\,CS (where V* = )
E'") by adding edges from E to E* such that every vertex
in V* is symmetric, i.e., a vertex in-degree is equal to
its out-degree.

This symmetric augmentation can be reduced to a
polynomial-time min-cost/max-flow problem if the edge-
induced graph G[E(]| is weakly-connected. The cost asso-
ciated with an edge (v;, vx; L£; j - CS(v;)) € Ec is the sum of
the costs of edges labeled L;,,Ly,, ..., L;,, and the costs of
all edges in CS(v;). Traversing an edge (v;, v; Li ; - CS(v;))
€ Ec corresponds to traversing a (35 subsequence L; ;. There-
fore, the minimum-cost test sequence, which contains all test
subsequences such that no two subsequences are overlapped,
corresponds to a minimum-cost tour of G/ such that each
edge in Ec is traversed at least once. An optimal length test
sequence (or a Rural Chinese Postman tour) corresponds to
basically an Euler tour of the augmented graph éj\,CS'

In [18], it is demonstrated that if certain sufficient conditions
are met for a protocol FSM, an efficient method exists for
constructing optimal length test sequences based on the Rural
Chinese Postman Problem. In [19], it is shown that an efficient
method exists for test generation under more general (i.e.,
weaker) sufficient conditions on a protocol FSM. A wide class
of protocols satisfy these new sufficient conditions.

Table II shows optimal length test sequences constructed
from (; subsequences using the RCP method for the FSM
in Fig. 1. The table shows only one optimal test sequence
constructed from a set of test subsequences; several test
sequences of the same length are possible.
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D. Fault Detection in Test Sequences and Subsequences

A test sequence is constructed from a set of test subse-
quences concatenated with bridging sequences. Faults detected
in a test sequence may or may not be detected in test
subsequences, and conversely, faults detected in subsequences
may or may not be detected in test sequences. We have found
instances of each of the following:

1) Test subsequences detect a fault and the test sequence
detects a fault. The [3; subsequences using DS as Char-
acterizing Sequences, shown in Table II detect the faulty
FSM shown in Fig. 1 and the corresponding test se-
quence shown in Table II also detect the same fault.

2) Test subsequences detect a fault but the test sequence
does not detect a fault. An example of this using the
RCP method is given in [12].

3) Test subsequences do not detect a fault and the test
sequence does not detect a fault. Neither the (; sub-
sequences using UIO, as Characterizing Sequences,
shown in Table II detect the faulty FSM shown in Fig.
1 nor the corresponding test sequence shown in Table II
detect the same fault.

4) Test subsequences do not detect a fault but the test
sequence detects a fault. The following test sequence
detects the fault in the faulty FSM shown in Fig. 1. This
test sequence is built using 3; subsequences using UIO;
as Characterizing Sequences, shown in Table II which
does not detect the fault.

[b/1.b/1.a/1][a/0.a/1][b/1.b/1.a/1][b/1][b/1.a/1]
[a/0][a/1.a/0.a/1][a/0][b/1][a/0.a/0.a/1][a/0]

This test sequence is obtained by a nonoptimal symmet-
ric augmentation of G”A cs & explained in Step 3 of the
RCP method of constructing test sequence described in
Section II-C-2.

III. TESTING HIERARCHIES

As noted, determining conformance is a formally intractable
problem, and a test sequence can be viewed as an approx-
imation to a complete conformance test. Our goal in this
section is to define a sequence of tests of increasing length
that converge to a complete conformance test. Ordering tests
based on the length of behaviors to be tested (8, 51, etc.)
gives a hierarchy of partial behaviors, but does not necessarily
give a hierarchy of test sequences. In [12] an example is given
of a test sequence generated with the RCP method, where a
fault is detected in 3 testing but not in (s testing.

A Testing Hierarchy for the Reset Method

We introduce a slight variation of reset method testing, with
the property that a 3; ; test sequence detects at least as many
faults as a 3; test sequence, and where there exists a value j
such that a [3; test sequence detects all faults.

In the context of testing with the reset method, we have
the following definitions. A §; reset test subsequence is the
concatenation of a preamble (a shortest path from the initial
state to state p), an L-sequence L,, of length ¢, and a
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sequence
Fig. 2. A test subsequence for reset method. A, B, and C are label sequences
of length 0 or more.

characterizing sequence for state g. Fig. 2 shows a typical
reset test subsequence. A [3; reset test sequence is formed
by omitting subsequences that are proper prefixes of others,
and concatenating the resulting set of sequences with reset
transitions.

In our variation of the reset method, we assume that the
IUT can be reliably returned to the start state from any state.
This assumption can be satisfied in several ways: (1) We could
assume the implementation of reset is correct. (2) The testing
environment could have has some sort of ‘meta-reset’ (i.e.,
some way to return the IUT to its start state, without sending
it a reset input). (3) The tester could perform a separate test
for each reset test subsequence.

There are several consequences to assuming forced resets.
One consequence is that the order in which test subsequences
are presented does not matter. Another consequence of en-
forced resets is that the tester has more confidence that the edge
sequence being traversed in the implementation corresponds to
the intended sequence in the specification. This is of particular
importance when the implementation may have extra states.

We make two further “technical” assumptions for the results
of this section. The first assumption concerns shortest paths
from the initial state to the first state g of an L-sequence.
Suppose p is a state on a preamble leading to state g. We
assume the preamble leading to p is a prefix of the preamble
leading to g. This would be the case, for example, if we chose
as our preambles the lexically least shortest paths. The second
assumption is that the start state has some self loop that, even
though it is tested, is implemented correctly. This would be
the case if, for example, we include reset transitions in our £-
sequences. We refer to reset testing that satisfies these two
assumptions, together with reliable reset as restricted reset
testing. In practice, we do not feel that these are significant
restrictions.

State names from the specification are used to refer to points
along a test sequence or subsequence. It is important to keep in
mind that these states may or may not correspond to the same
states in the implementation, when the label sequence from the
specification is followed in the implementation. For example,
two separate paths to the same state in the specification might
lead to distinct states in an implementation; this is particularly
likely if the implementation has extra states.

In subsequent discussion, the phrase “where the fault is
detected” refers to the first place in a test subsequence where
an edge output value is different from the expected value. Due
to ways that faults can interact and appear at more than one
place in a path, this may be later (perhaps considerably later)
than the first instance of a faulty edge along a path [12].

We now prove three theorems that together show that
given the above assumptions, the 3; reset test sequences form
a hierarchy that converges in the limit to complete fault
coverage.
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Theorem 1: If a fault is detected by a §; restricted reset
test sequence, then it is detected by a §;; restricted reset test
sequence.

Proof: Due to various forms of fault masking, it is not
enough to show that every edge visited in a f; test sequence
will also be visited in a ;1 reset test sequence, or even that
every L-sequence of a f3; test sequence is subsumed by an £L-
sequence of a 3;1; test sequence. The key idea in the proof is
that any path from the initial state in the implementation which
is traversed in a §; test subsequence will also be traversed in
a ;41 test subsequence, up to and including the edge where
a fault is detected.

Suppose a f3; reset test sequence detects a fault. Then the
fault is detected in at least one of the [3; reset test subsequences,
illustrated in Fig. 2. Either the fault is detected in the preamble,
from s to p, the £L-sequence from p to g, or the characterizing
sequence from ¢ to r. Suppose the fault is detected in the
preamble. Then the f3;;, test subsequence consisting of the
original preamble, an L-sequence L, ; for any state ¢ that is
i + 1 edges distant from p, and the characterizing sequence
for ¢ will detect the fault.

Suppose the fault is detected in the £-sequence L, 4. The
characterizing sequence has length at least 1, so let ¢’ be the
second state of this sequence. Then the (3;; test subsequence
consisting of the original preamble, the £-sequence £, o, and
the characterizing sequence for ¢’ will detect the fault.

Suppose the fault is detected in the characterizing sequence
for state . We must guarantee that the entire path from s
through the old preamble and L-sequence is traversed in the
3i41 test. Suppose the preamble has length at least 1. We
have assumed that the preamble to a state along a preamble
will always be a prefix of that preamble. Then we can form
a (41 test subsequence from the [; test subsequence: the
last edge of the preamble becomes the first edge of the L-
sequence. Finally, if the preamble is empty, the £-sequence
can be extended to the left with the self-loop of the start state.

We have shown that in each case, a path from the start state
in the implementation which is traversed in a 3; test sequence,
and which uncovers a fault, will also be traversed in a 3;4;
test sequence, up to and including the edge where a fault is
detected. g

A slightly weaker version of the theorem holds if we relax
the assumptions that the preamble to a state along a preamble
will always be a prefix of that preamble and that the start state
has a correctly implemented self loop. The weaker version
may be stated as follows: If a fault is detected by a 3; reset
test sequence, then for some j > i it is detected by a 3, reset
test sequence, where j < i + £, where £ is the length of the
longest characterizing sequence. This follows from extending
the L-sequence to the right rather than to the left, in the case
where a fault is detected in the characterizing sequence.

Suppose we have a specification FSM, a particular set of
characterizing sequences for that FSM, and a particular set
of shortest paths to states. These choices uniquely define! a
i reset test sequence, for each ¢ > 0. For this specification
FSM, let B; be the set of all deterministic FSM’s that pass

'Unique up to order of test subsequences, which does not matter for the
reset method considered here.
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b/2 b/2

Fig. 3. Figure for Theorem 2.

the 3; reset test sequence. From Theorem 1, we have that any
machine passing a [3; reset test will also pass a f3; reset test,
for 0 < ¢ < j. Thus we have a chain By D B; D Bs...
of implementations. Steps in this chain may be either equality
or proper containment. In the next theorem, we show that for
any value of ¢, there is some specification and implementation
such that the containment is proper.

Theorem 2: For any ¢ > 0, we can find FSM’s M; and M,
such that the difference between the machines can be detected
by a [3;+1 reset test derived from Mj, but not by a 3; reset
test derived from M;.

Proof: The proof is by construction, which is given in
Fig. 3. (Reset edges are omitted to simplify the illustration,
and we assume that reset edges and the edge where the fault
is introduced are not part of any characterizing sequence.) The
idea is that M; and My are almost equivalent as automata,
with ¢ states of M; being split into 4 pairs of states in Mo;
a single edge label at the end of one of the paths in M,
differs from the corresponding edge label in M;. The only
tests which can catch this fault are those that choose the b
branch from sg, while if we assume lexically least shortest
paths, all preambles will travel on the a branch from sg. This
leaves only L-sequences with empty preambles to catch the
fault. The fault can be caught only by an L-sequence long
enough to reach from the initial state sq to the fault. O

In practice, given a specification FSM, for small values of
1 it is easy to find faulty implementations missed by a f3; test
and caught by a ;1 test. (Almost any row in the tables of
Section V contains an example.) Theorem 2 shows that there
are cases where this can hold for arbitrarily large values of
1, and also illustrates how extra states can give rise to faults
that are hard to detect.

In the next theorem, we show that for any faulty implemen-
tation, there is some ¢ such that a [3; reset test sequence derived
from the specification detects the fault. This implies that the
chain By 2 By 2 Bs... converges to a set of machines that
are equivalent to the specification.

Theorem 3: Let My and M, be any two completely speci-
fied FSM’s, and let n be the larger of their number of states.
Then a 3, reset test sequence derived from M; will detect if
M is equivalent to M;.

Proof: Let T; be the tree of labeled paths from the start
state of M;, for ¢ € {1,2}. Nodes at depth d in T; are exactly
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the states reachable from the start state in M; in d steps. For
completely specified machines (which we are assuming) T; is
infinite; its nodes have state labels, and each node has one
descendant for each input symbol.

Let n; be the number of states in M;. Then T; is completely
determined by that finite portion no deeper than n;, as every
state (together with its connections to its neighbors) appears
in T;. Then M; and M, are equivalent iff 77 and T, are
equivalent up to depth n = max(n1,n2). Those 3, reset test
subsequences with empty preamble will travel every path in
the larger of the two trees, and so will determine equivalence.
O

The theorem depends only on those test subsequences
with empty preamble. This suggests yet another test method:
for specification M;, simply test behaviors corresponding to
successive levels of T;. This gives an exponential time bound,
and an immediate hierarchy theorem: faults detected at level
j will be caught at all levels greater than j. The difficulty
with this as a practical test method is that its behavior would
normally be very bad for small values of j: until 7 was equal
to n, some edges might not be tested at all. The reset testing
hierarchy performs much better for small values of j.

Although we have an exponential bound on the complexity
of testing, the bound is in terms of the number of states of
the implementation, which in general may not be known.
In much of the testing literature, it has been assumed that
the implementation has the same number of states as the
specification. Only if we have a bound on the the number
of states in the implementation do we have any bound on the
length of a test sequence needed for complete fault coverage.

The testing hierarchy we have defined reflects a direct
tradeoff between reliability and run time of a test. In Section
V, we will consider some particular specification machines,
and see that in practice, for small numbers of extra states, 3;
testing for small values of ¢ gives complete fault coverage.

B. Testing Hierarchies and Other Test Methods

We briefly consider why the theorems of the previous
section do not seem to hold for bridge sequence methods.
Temporarily define a “f; bridge test sequence” as a test
sequence derived from some fully specified bridge sequence
test method.

With the reset test method, we showed that any path from
the initial state in the implementation that is traversed in a 3;
test sequence is also traversed in a ;4 test sequence, up to
and including the edge where a fault is detected. With a bridge
sequence method, the corresponding assertion would be that
the entire j3; test sequence, beginning at the initial state, is also
traversed in a ;41 test sequence, up to and including the edge
where a fault is detected. The only way this can be guaranteed
in general is if the (3; bridge test sequence is a prefix of the
B;+1 bridge test sequence, and this is not true in general of
bridge sequence methods.

Of course, one could simply define a class of bridge se-
quence test methods with the desired property, by concatenat-
ing a (;+1 test sequence to the end of a [3; test sequence.
The problem with this is that the whole point of bridge
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sequence methods is to reduce overall test sequence length,
and concatenating a (311 test with Sy through §; tests defeats
this purpose.

IV. FAULT COVERAGE OF TEST SEQUENCES

The fault coverage of a test sequence is a measure of its
expected ability to detect faults. Although we can give an
exact measure of fault coverage for a particular specification
and set of faulty implementations, a more general notion
of fault coverage must remain informal, as the space of
all “reasonable” specifications and all “reasonable” faulty
implementations is not well defined. In this section we use
several representative specifications and what are intended to
be plausible faulty implementations, and measure the fault
coverage for a number of the test methods we have discussed.

A. Estimating Fault Coverage

We generate a set of plausible faulty implementations with
a simple mutation scheme. We define a group of machines
that are “close” in some sense to the specification, but are
still faulty. First, as an optional step, one or more randomly
selected states are split into two states. In-edges of the original
state are divided randomly between the two new states, and
both new states have the same set of out-edges. The state split
results in a machine that is equivalent but not minimal.

After the optional state split, one or more edges of the
specification are selected at random, and changes are made in
accordance with one of the 10 following mutation types [7].
This set of fault types is intended to capture the necessarily
informal notion of implementation that are “slightly wrong.”

1) The output of an edge is changed.

2) The tail state of as edge is changed.

3) The outputs of two different edges are changed.

4) The tail states of two different edges are changed.

5) The output one edge and tail state of another edge are

changed.

6) The output and tail state of an edge are changed.

7) The outputs and tail states of two edges are changed.

8) The outputs of two edges and tail state of another edge

are changed.

9) The outputs of two edges and the tail states of another

two edges are changed.

10) The outputs of three edges and the tail states of another

two edges are changed.

Given this mutation scheme, fault coverage for a test
sequence is estimated as follows. The test sequence is applied
to a large number of mutated implementations from a particular
fault class. If no faults are detected, an additional automata
equivalence test is applied, to determine if the mutation is in
fact equivalent to the specification. The extra test is needed,
as it is possible that a pair of mutations might cancel, or
might result in an implementation that is equivalent as an
automata. (The automata equivalence algorithm cannot be used
for conformance testing, because we cannot assume that the
state transition diagram of the implementation is available.)

If r is the total number of machines generated, d is the
number found faulty with the test sequence, and c is the
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number of machines found equivalent with the automata
equivalence algorithm, then our measured fault coverage is

d/(r - ¢).

B. Experiments

In this section, we measure the fault coverage of a number
of test sequences on the example machine of Fig. 1 and on the
NBS TP4 and IEEE 802.2 LLC protocols. We also consider
test sequence lengths for several larger protocol FSM’s.

1. Experiment 1: For this experiment we take the spec-
ification FSM of Fig. 1, and generate a large number of
faulty machines, including machines with extra states. We
then measure fault coverage of test sequences formed with
behaviors ranging from (3 to (4, using a DS characterizing
sequence and also UIO; and UIOs. In this experiment, the
RCP method is used for joining test subsequences.

We generate faulty machines with 0, 1, and 2 extra states.
Extra states are generated by splitting states to get an equiv-
alent machine. A state is selected at random, and then the
in-edges to the state are divided randomly between the two
split states. Both the states retain the out-edges of the original
state. A set of 100 000 faulty machines is generated with zero,
one, and two extra states, for each of our ten fault classes. (In
those cases where the number of mutants is small, the large
number of mutants simply guarantee that each mutant appears
approximately the same number of times in the sample set.)
In the experiments with extra states, we first generate 100
FSM’s, with either one or two extra states, equivalent to the
specification. Each of these machines is then mutated 1000
times, in accordance with our ten fault classes.

In this particular experiment, the following results were
observed. In general, extra states in the implementation de-
crease fault coverage, and longer behaviors increase fault
coverage. In almost all cases, total fault coverage is above
99% when the behavior length is greater than the number of
extra states. Choice of behavior length has a greater effect
on fault coverage than choice of characterizing sequence;
however characterizing sequence has some effect. The DS
had consistently better fault coverage than the UIO’s for short
behaviors (lengths 1 and 2), with less differences noticeable
for longer behaviors.

In a number of cases, fault coverage temporarily decreases
with increasing behavior length.

For example, using a DS characterizing sequence, and con-
sidering implementations with one extra state, fault coverage
either remains the same or becomes worse as we go from
behavior sequences of length 2 to length 3, for every fault
class. Also, for class 3 faults with two extra states, fault
coverage decreases as we go from behavior sequences of
length 3 to length 4. Using UIO; as a characterizing sequence
for every fault class except 3, and for both one and two extra
states, fault coverage decreases as we go from behaviors of
length 3 to behaviors of length 4. In the experiment with UIO,,
fault coverage never decreases with increasing behavior length.

Test sequences for this experiment are formed using the
RCP method, and the “bumps” (temporary worsening of fault
coverage with increasing behavior lengths) show that Theorem
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1 does not hold for the RCP method. Theorem 1 guarantees
that such bumps will not occur when using the reset method.

2. Experiment 2: In this experiment, we use the FSM de-
rived from modeling the control portion of the IEEE 802.2
Logical Link Control (LLC) protocol [20]. This FSM has six
states, seven inputs, and 16 outputs. We assume the FSM has
a reset transition from every state to the initial state, and that
it is extended to a completely specified FSM, by adding self
loops with null outputs for unspecified transitions.

A set of 1 000 000 faulty machines is generated with zero,
one, two, and three extra states, for each of our ten fault
classes. In the experiments with extra states, we first generate
100 FSM’s with extra states, which are equivalent to the
specification FSM. Each of these machines is then mutated
10 000 times, in accordance with our ten fault classes. The
test sequences are generated using the reset transition method,
with a UIO characterizing sequence, and testing behaviors of
lengths 1, 2, and 3.

Results from this experiment are given in Table ITII. As
before, rows represent a particular set of 1 000 000 faulty
machines, and columns a particular test sequence, listed by
behavior length. Entries of the table are fault coverage, rep-
resented both as a percentage and with the actual number of
faulty machines that escape detection.

In this experiment, we see that as in experiment 1, extra
states in the implementation decrease fault coverage, and
longer behaviors increase fault coverage. As predicted by
Theorem 1, there is no case where fault coverage decreases
with increasing behavior length. In this experiment, all faulty
machines are detected when the behavior length is one more
than the number of extra states. In Theorem 3, we showed
that for any particular faulty implementation M, there is some
¢ such that a f; reset test will detect the fault, where 7 is
the larger of the number of states in the specification and
faulty implementation. Thus if we have any set S of faulty
machines, where no machine in S has more than j states, then
a f3; reset test will detect all faulty machines in S. Theorem
3 guarantees that all faulty machines we generate will be
detected for j equal to 6, 7, 8, or 9, depending on whether
the set of faulty machines has zero, one, two, or three extra
states. This is an upper bound, and in this experiment we
are seeing all faulty machines detected with much shorter test
sequences.

3. Experiment 3: In this experiment, we use the FSM de-
rived from modeling the control portion of NBS TP4 protocol
[21]. This FSM has seven states, 14 inputs and 24 outputs.
We assume the FSM has a reset transition from every state
to the initial state, and that it is extended to a completely
specified FSM, by adding self loops with null outputs for
unspecified transitions. A set of 1 000 000 faulty machines is
generated with zero, one, two, and three extra states, for each
of our ten fault classes. In the experiments with extra states,
we first generate 1000 FSM’s with extra states, equivalent
to the specification. Each of these machines is then mutated
1000 times, in accordance with our ten fault classes. The test
sequences are generated using the reset transition method, with
a UIO characterizing sequence, and with behaviors of lengths
1, 2, and 3.
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TABLE III
FauLt CoVERAGE FOR FSM For IEEE 802.2 LLC PROTOCOL, FOR
TEST SEQUENCES USING A UIO CHARACTERIZING SEQUENCE

Fault Extra T3, T, T, Tg,
class states %, count %, count %, count %, count
1 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 90.4, 89 990 100.0, 0 100.0, 0 100.0, 0
2 81.2,174 311 99.3, 6408 100.0, 0 100.0, 0
3 734,248 101 98.3, 16 142 99.9, 927 100.0, 0
2 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 89.3, 90 857 100.0, 0 100.0, 0 100.0, 0
2 790,174 838  99.3, 6100 100.0, 0 100.0, 0
3 70.0,249 351 98.3, 14 265 99.9, 699 100.0, 0
3 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 98.1, 18 802 100.0, 0 100.0, 0 100.0, 0
2 94.5,54 100  99.9, 1158 100.0, 0 100.0, 0
3 90.5,94 720  99.7, 3317 = 100.0, 193 100.0, 0
4 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 96.4, 35 396 100.0, 0 100.0, 0 100.0, 0
2 90.9, 88 504  99.8, 2352 100.0, 0 100.0, 0
3 85.0,145162 994, 5972 =~ 100.0, 286 100.0, 0
5 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 97.2, 27 296 100.0, 0 100.0, 0 100.0, 0
2 92.7, 71 735 99.8, 1823 100.0, 0 100.0, 0
3 878,120 413 99.5, 4892 =~ 100.0, 238 100.0, 0
6 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 90.4, 95 033 100.0, 0 100.0, 0 100.0, 0
2 81.1,184 050  99.3, 6766 100.0, 0 100.0, 0
3 732,261 927 98.3, 16 869 99.9, 965 100.0, 0
7 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 98.8, 11 540 100.0, 0 100.0, 0 100.0, 0
2 95.8, 42 116 99.9, 704 100.0, 0 100.0, 0
3 92.0,79 737  99.8,2073 =~ 100.0, 116 100.0, 0
8 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 99.5, 5201 100.0, 0 100.0, 0 100.0, 0
2 98.0, 20 302 =~ 100.0, 326 100.0, 0 100.0, 0
3 95.8, 41 481 99.9,945 =a 100.0, 47 100.0, 0
9 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 99.9, 1489 100.0, 0 100.0, 0 100.0, 0
2 99.2, 7544 = 100.0, 77 100.0, 0 100.0, 0
3 98.2, 18 203 =~ 100.0, 254 =~ 100.0, 14 100.0, 0
10 0 100.0, 0 100.0, 0 100.0, 0 100.0, 0
1 ~ 100.0, 409 100.0, 0 100.0, 0 100.0, 0
. 99.7, 2820 =~ 100.0, 22 100.0, 0 100.0, 0
3 99.2,7994 = 100.0,64 =~ 100.0, 1 100.0, 0

Test sequences are built using the reset method. Each row of a table
represents a particular set of 1 000 000 faulty machines, listed by fault class
and number of extra states. For implementations with extra states, 10 000
faulty machines are generated for each equivalent machine generated with
extra states. Columns of the table represent a particular test sequence, and are
listed by behavior length. Entries of the table are fault coverage, represented
both as a percentage and with the actual number of faulty machines that
escape detection.

Results from this experiment are given in Table IV. As
before, rows represent a particular set of 1 000 000 faulty
machines, and columns a particular test sequence, listed by
behavior length. Entries of the table are fault coverage, rep-
resented both as a percentage and with the actual number of
faulty machines that escape detection.

As in Experiments 1 and 2, extra states in the implementa-
tion decrease fault coverage, and longer behaviors increase
fault coverage. As predicted by Theorem 1, there is no
case where fault coverage decreases with increasing behavior
length. As in experiment 2, we are seeing all faulty machines
detected using a behavior length of one more than the number
of extra states.
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4. Experiment 4: In this experiment, we consider a number
of FSM’s, including some much larger machines. For each
machine, we build test sequences with behaviors of length
one and two, using the RCP method, with UIO characterizing
sequences. The lengths of these test sequences are tabulated
in Table V. The first machine is that of Fig. 1, while second
(Example 2 in the table) is an example used as Example 1 in
[9]. The last four machines are randomly generated, and are
considerably larger than the other machines. A rough upper
bound for the length of a test sequence built with the RCP
method with behaviors of length A can be given as follows.
Let u be the length of the longest characterizing sequence, N
the number of specification states, and I the size of the input
alphabet. Then there are at most NI* behaviors of length
A. Using N as a bound on bridge sequence length, we have a
bound of NI*(N + )+ w) on test sequence length. Actual test
sequence lengths range from about half the upper bound, for
the smaller machines, to two orders of magnitude smaller than
the upper bound, for the larger randomly generated machines.

The time for execution of a conformance test is proportional
to the length of the test sequence. Since each step of this test
should involve at most a small number of machine instructions,
in practice, even the the 64 401 step test sequence is not
prohibitively long.

C. Summary of Experimental Results

In general, in the examples we have considered, extra
states in the implementation decrease fault coverage of a test
sequence, and longer behaviors increase fault coverage. In
Experiment 1 fault coverage is above 99% when the behavior
length is greater than the number of extra states, and in
Experiments 2 and 3, fault coverage is complete when behavior
length is greater than the number of extra states. In Experiment
1, there were a few cases where fault coverage temporarily
decreases with increasing behavior length. In Experiments 2
and 3, as predicted by Theorem 2, there is no case where fault
coverage decreases with increasing behavior length.

In Experiment 1, choice of a DS or UIO as characterizing
sequence has a small effect on fault coverage, in comparison
with choice of behavior length. For short behaviors, DS had
consistently better fault coverage than the UIO.

In Experiments 2 and 3, using the reset method, even though
the test sequence length increases exponentially in behavior
lengths, in practice, for small behavior lengths, the resulting
test sequences are not too long to be useful. In Experiment
4, using the RCP method and examining only test sequence
lengths, these test sequence lengths were much less than the
upper bound.

V. SUMMARY AND CONCLUSIONS

The goal in conformance testing is to determine if a partic-
ular protocol implementation meets its formal specification.
As a formal problem, the time complexity of determining
conformance is exponential in the number of states in the im-
plementation. If we do not have a bound on this number, then
the problem is undecidable. The intractability of determining
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TABLE IV TABLE V
FauLt COVERAGE FOR FSM For NBS TP4 PROTOCOL, FOR TEST SEQUENCE LENGTHS FoR RCP METHOD UsING UIO's as CS
TesT SEQUENCES USING A UIO CHARACTERIZING SEQUENCE FSM V. 1.0.T) =1 Y =2
Fault Extra Ts, Ts, Ts, Example 1 (3, 2,2, 6) 18 (36) 48 (84)
class _states %, count %, count %, count Example 2 (5, 4, 4, 20) 97 (160) 471 (720)
1 0 100.0, 0 100.0, 0 100.0, 0 8022 LLC (6,7, 16, 42) 112 (378) 1071 (2940)
1 90.0, 97 643 100.0, 0 100.0, 0 NBS TP4 (7, 14,17,98) 227 (882) 4825 (13 720)
2 80.0, 194 987 99.6, 3874 100.0, 0 FSM.4 (50, 10, 5, 195) 769 (27 000) 3780 (275 000)
3 72.8, 264 344 98.9, 11 041 100.0, 0 FSM.2 (20, 50, 50, 620) 1474 (22 000) 64 401 (1 150 000)
2 0 100.0, 0 100.0, 0 100.0, 0 FSM.3 (50, 20, 20, 771) 2503 (53 000) 50 338 (1 080 000)
1 89.7, 87 510 100.0, 0 100.0, 0 FSM.1 (50, 50, 50, 916) 2281 (130 000) 35 534 (6 625 000)
2 79.6, 171 256 99.6, 3173 100.0, 0 N = number of states; ] = number of inputs; O = number of outputs;
3 723,232 173 98.9, 9163 100.0, 0 T = number of transitions; A = length of behaviors tested. The number in
3 0 100.0, 0 100.0, 0 100.0, 0 the parenthesis is an upper bound on the test sequence length.
1 98.5, 15 304 100.0, 0 100.0, 0
2 95.1, 48 803 99.9, 560 100.0, 0
3 91.4, 85 546 99.8, 1817 100.0, 0
4 0 100.0, 0 100.0, 0 100.0, 0 We allow for the possibility of an unspecified number of
! 96.5, 34 264 100.0, 0 100.0, 0 extra states in an implementation and define a hierarchy (8o,
2 91.4, 83 355 99.9, 1251 100.0, 0 .
3 86.7, 129 435 99,6, 3703 100.0, 0 B1, Ba2,...) of test sequences, parameterized by length of
5 0 100.0, 0 100.0, 0 100.0, 0 behaviors under test. For the reset method, the hierarchy has
1 97.4, 26 154 100.0, 0 100.0, 0 the property that any fault detected by B; reset testing is
2 93.1, 69 126 99.9, 1006 100.0, 0 also detected by B;41 reset testing, and that this sequence
3 88.8, 111 709 99.7, 3012 100.0, 0 of tests converges to total fault coverage. This hierarchy
6 ? £9.9. i%(())?g 13?)88 188'8'8 of tests defines a corresponding chain of implementations
) 79.9. 199 906 99.6, 3963 100.0. 0 which converges to a set of machines that are equivalent to
3 72.8, 270 781 98.9, 11 314 100.0, 0 the specification. The corresponding result does not hold in
7 0 100.0, 0 100.0, 0 100.0, 0 general for bridge sequence methods, as was shown by a
; gi% ii 251;(2) 10(1)0(?-3’1(1) i%gg counterexample given in [12].
3 923,77 190 999, 1330 1000, 0 In experlmenfs, we 'have observ.ed that for a small number
8 0 100.0, 0 1000, 0 100.0, 0 of extra states in an implementation, our sequence of tests
1 09.6, 4112 100.0, 0 100.0, 0 converge to total fault coverage for small values of A. The
2 98.3, 16 629 2 100.0, 135 100.0, 0 value of X giving convergence is roughly proportional to
3 96.5, 34 794 ~ 100.0, 459 100.0,0 the number of extra states. This held for both the RCP and
9 (1) 99.19(?0513(5) i%gg igg‘g’g reset methods. However, convergence in the case of the reset
5 99.4, 5742 ~ 100.0, 38 100.0. 0 method was always smooth (as implied by the hierarchy
3 98.6, 13 710 ~ 1000, 108 100.0, 0 theorems) while in the case of the RCP method, we observed
10 0 100.0, 0 100.0, 0 100.0, 0 occasional temporary decreases in fault coverage, as the length
; ~ ;(9)08'0’2 gfg 1(1)80(50’1(3) i%gg parameter increased. We have also observed that choice of
3 99.4. 5818 ~ 1000, 28 1000, 0 characterizing sequence had less effect on fault coverage than

Test sequences are built using the reset method. Each row of a table
represents a particular set of 1 000 000 faulty machines, listed by fault
class and number of extra states. For implementations with extra states, 10
000 faulty machines are generated for each equivalent machine generated
with extra states. Columns of the table represent a particular test sequence,
and are listed by behavior length. Entries of the table are fault coverage,
represented both as a percentage and with the actual number of faulty
machines that escape detection.

conformance has lead to a broad range of approaches based
on testing.

If we know that an implementation has the same number of
states as a specification, and can find distinguishing sequences
for all states, we can use a method such as that proposed
in [22], to detect all faults. The method proposed there is
similar to a f test followed by a B test, with the By phase
determining a unique set of state names and bridge sequences
for the 51 phase. The difficulty with this approach is that we
may not be able to find distinguishing sequences, and more
seriously, in practice we may not know the actual number of
states in an implementation.

choice of behavior length or the number of extra states in the
implementation. Finally, although overall test sequence length
increases as the subsequence length parameter increases, for
actual protocols, this growth is considerably less than the upper
bound.
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