
Intentional bogus first page. This is required in order to make register changes take effect on the first page of real text.



 

A Survey of Algorithms for Volume Visualization

T. Todd Elvins

San Diego Supercomputer Center
Advanced Scientific Visualization Laboratory

P.O. Box 85608
San Diego, CA 92186-9784 USA

Phone: (619) 534-5128 FAX: (619) 534-5113
E-mail: todd@sdsc.edu

"... in 10 years, all rendering will be volume rendering."
Jim Kajiya at SIGGRAPH ’91

Abstract

Many computer graphics programmers are working in the
area of scientific visualization. One of the most interest-
ing and fast-growing areas in scientific visualization is
volume visualization. Volume visualization systems are
used to create high-quality images from scalar and vector
datasets defined on multi-dimensional grids, usually for
the purpose of gaining insight into a scientific problem.
Most volume visualization techniques are based on one
of about five foundation algorithms. These algorithms,
and the background necessary to understand them, are
described here. Pointers to more detailed descriptions,
further reading, and advanced techniques are also given.

1. Introduction

The following is an introduction to the fast-growing field
of volume visualization for the computer graphics pro-
grammer. Many computer graphics techniques are used
in volume visualization. The computer graphics tech-
niques themselves will not be discussed, rather the way
these techniques are applied in fundamental volume visu-
alization algorithms will be explained. Advantages and
disadvantages of each algorithm will be covered along
with a rough idea of the algorithm’s space and time
requirements, ease of implementation, and the type of
data it handles best.

Most volume visualization algorithms follow similar
steps. These steps will be discussed before any specific
algorithms are covered. The discussion will also explain
the terms, procedures, and heuristics most often used in
the field of volume visualization. Although there is not

complete agreement on a standard volume visualization
vocabulary yet, a nomenclature is approaching con-
sensus. Where multiple terms exist for the same concept,
alternative terms are listed in parentheses. New pro-
cedures and heuristic approaches to short-cut volume
visualization’s high CPU and large memory requirements
are a frequent occurrence. Some of the most popular pro-
cedure and approaches will be discussed.

Volume visualization is too large and is growing too fast
for complete coverage in this paper. The reader is
encouraged to consult the papers listed in the bibliogra-
phy for information on specific algorithms, scientific
applications, commercial projects, and advanced topics.
Some of the topics not covered in this paper include: spe-
cial purpose hardware, methods for handling non-
Cartesian data, advanced algorithm optimizations and
enhancements, user interfaces, and commercial and pub-
lic domain implementations.

It should be kept in mind that, although not specifically
discussed, animation is critical to the volume visualiza-
tion process. Without animating rendered volumetric
images, the system user will usually have a difficult time
discerning three-dimensional information from two-
dimensional imagery. Animation is often a straight-
forward extension to the topics covered here.

The following introduction to a wide range of volume
visualization algorithms will give the reader a solid start-
ing point for getting involved in this relatively new field.
Other technical perspectives at the introductory level can
be found in [Dreb88][Levo90e][Kauf91][Wilh91a]. A
good non-technical introduction is given in [Fren89].



Advanced topics in medical volume visualization are
covered in [Hohn90][Levo90c].

2. Furthering scientific insight

This section introduces the reader to the field of volume
visualization as a subfield of scientific visualization and
discusses many of the current research areas in both.

2.1. Challenges in scientific visualization

Scientific Visualization uses computer graphics tech-
niques to help give scientists insight into their data
[McCo87][Brod91]. Insight is usually achieved by
extracting scientifically meaningful information from
numerical descriptions of complex phenomena through
the use of interactive imaging systems. Scientists need
these systems not only for their own insight, but also to
share their results with their colleagues, the institutions
that support the scientist’s research, and the general pub-
lic. Few technical articles are published without cap-
tioned data visualizations of some sort.

The most active subfield of scientific visualization is
volume visualization. Volume visualization is the process
of projecting a multidimensional dataset onto a two-
dimensional image plane for the purpose of gaining an
understanding of the structure (or lack of structure) con-
tained within the volumetric data. Most often the dataset
is defined on a three-dimensional lattice with one or more
scalar values, and possibly one or more vector values at
each gridpoint on the lattice. Methods for visualizing
higher-dimensional grids and/or irregular grids are rela-
tively unknown.

To be useful, volume visualization techniques must offer
understandable data representations, quick data manipu-
lation, and reasonably fast rendering. Scientific users
should be able to change parameters and see the resultant
image instantly. Few present day systems are capable of
this type of performance; therefore volume visualization
algorithm development and refinement are important
areas of study. Understanding the fundamental algo-
rithms is requisite for such endeavors.

2.2. Applications of volume visualization

Many challenges still exist in the field of volume visuali-
zation [DeFa89]. The typical size of a volume dataset is
several megabytes, sometimes hundreds of megabytes,
and gigabyte datasets are just waiting for the hardware
that can handle them. Many scientists would like to be
able to combine all of the interesting aspects of two or
more volumetric datasets into one image. Creating static
images from volumes of vector data is also an unsolved
problem. Not all volume visualization techniques work
well with all types of data and current data-classification
tools are rudimentary. Amorphous datasets describing

wispy, cloud-like structures are particularly difficult to
render. These are just a few of the hurdles yet to be dealt
with in the field of volume visualization.

Despite these difficulties, macro and micro scientists are
still finding many new ways to use volume visualization.
Volume visualization is widely used in the medical field
as well as in geoscience, astrophysics, chemistry, micros-
copy, mechanical engineering, non-destructive testing,
and many other scientific and engineering areas. The
most common units of measure recorded in data volumes
include density, pressure, temperature, electrostatic
charge, and velocity. Multiple values in each of these
measures could be stored at every gridpoint in one
volume. For example, atmospheric scientists often record
thirty or more parameters at every gridpoint (images that
attempt to display more than one parameter at a time,
however, are difficult to interpret). One need only look
around to find new volumes to measure.

3. Data Characteristics

3.1. Sources of volume data

Scientists sometimes use volume visualization to com-
pare numerical results derived from empirical experi-
ments with results derived from simulations of the empir-
ical event. Finite-element analysis or computational fluid
dynamics programs are often used to simulate events
from nature. If an event is too big, too small, too fast, or
too slow to record in nature, then only the simulated
event data volumes can be studied.

Volume datasets are often acquired by scanning the
material-of-interest using Magnetic Resonance Imaging
(MRI), Computer-aided Tomography (CT), Positron
Emission Tomography (PET), and/or Sonogram
machines. Laser scan confocal, and other high power
microscopes are also used to acquire data.

Volume data can be generated by voxelizing geometric
descriptions of objects, sculpting digital blocks of marble,
hand-painting in three-dimensions with a wand, or by
writing programs that generate interesting volumes using
stochastic methods. Some of these methods will be dis-
cussed in more detail.

All of these datasets can be treated similarly even though
they are generated by diverse means. The amount of
structure in the dataset usually determines which volume
visualization algorithm will create the most informative
images.

3.2. Alternatives to single scalar data

Vector data is sometimes visualized one slice at a time
with arrows at each gridpoint. The direction of the arrow
indicates the direction of the vector, and the color of the
arrow usually displays the vector’s magnitude, although it



could display any other scalar value. Alternatively, ani-
mations using streamers ribbons, tufts, particles, and
other time-dependent mechanisms do an adequate job of
showing the data characteristics of a collection of slices.
Tensor data has also been visualized with some success.
Finding effective means for visualizing vector and tensor
data is still, however, an open area of research.

Particular data acquisition devices, such as CT and MRI
scanners, are good at sampling a specific characteristic of
a substance. This characteristic is usually different for
each kind of device used. For example, MRI scans show
soft tissue tumors that do not show up in CT scans. By
registering (spatially aligning) two datasets sampled from
the same substance, and then using an algorithm that
refers to the most appropriate of the two datasets at every
gridpoint, either during rendering or as a post-process
compositing step, images can be created that show the
most important characteristics of both datasets. This bi-
modal data approach has also been applied to comparing
simulation-generated data and acquired data. Visualizing
registered data is an active area of research.

The algorithms that will be discussed here primarily deal
with visualizing scalar data volumes. However, some of
the techniques can be extrapolated to vector, tensor, bi-
modal, and higher-dimensional data visualization.

4. Volume characteristics

4.1. Voxels and cells

Volumes of data are usually treated as either an array of
volume elements (voxels) or an array of cells. These two
approaches stem from the need to resample the volume
between gridpoints during the rendering process. Resam-
pling -- requiring interpolation -- occurs in almost every
volume visualization algorithm. Since the underlying
function is not usually known, and it is not known
whether the function was sampled above the Nyquist fre-
quency, it is impossible to check the reliability of the
interpolation used to find data values between discrete
gridpoints. It must be assumed that common interpola-
tion techniques are valid for an image to be considered
valid.

The voxel approach dictates that the area around a grid-
point has the same value as the gridpoint. A voxel is
therefore a hexahedral area of non-varying value sur-
rounding a central gridpoint. In some algorithms the con-
tribution of the voxel to the image drops as the distance
from the center of the region of influence increases. In
other algorithms the voxel has constant contribution
across the region of influence. The voxel approach has
the advantage that no assumptions are made about the
behavior of data between gridpoints, ie., only known data
values are used for generating an image.

The cell approach views a volume as a collection of hex-
ahedra whose corners are gridpoints and whose value
varies between the gridpoints. This technique attempts to
estimate values inside the cell by interpolating between
the values at the corners of the cell. Trilinear and tricubic
are the most commonly used interpolation functions.
Images generated using the cell approach appear
smoother than those images created with the voxel
approach. However, the validity of the cell-based images
cannot be verified. The splatting algorithm to be dis-
cussed in section 10.5 performs data reconstruction in
image space to avoid the interpolation issue altogether.

Hereafter, the term element will be used when the voxel
and cell approaches can be used interchangeably.

4.2. Grids and lattices

Not all elements are cubes and not all volumes are
defined on Cartesian grids. The following explanation of
non-Cartesian grids is based on [Sper90] and is in order
of increasing generality. On a Cartesian grid, all of the
cells are identical axis-aligned cubes. The next most gen-
eral lattice is called a regular grid where all of the ele-
ments are identical axis-aligned rectangular prisms, but
the elements are not cubes. Elements on a rectilinear
grid are not necessarily identical but they are still hex-
ahedra and axis-aligned. Elements on a structured grid
are non-axis-aligned hexahedra (warped bricks), and a
block structured grid is a collection of various structured
grids sewn together to fill a space. Spherical and curvi-
linear lattices are examples of structured grids. An
unstructured volume is made up of polyhedra with no
implicit connectivity. Cells can be tetrahedra, hexahedra,
prisms, pyramids, etc., and do not necessarily have to
have planar faces. A volume of tetrahedral elements is a
popular type of unstructured volume because any volume
can be decomposed into tetrahedra and tetrahedra have
planar faces. A hybrid volume is a collection of any of
the mentioned grids sewn together to fill a space.

Non-Cartesian grids are beyond the scope of this paper
but are mentioned here for completeness and to enforce
the notion that much of volume visualization is still
unsolved. Several papers on the subject of rendering data
defined on non-Cartesian grids can be found in [Engl90].

5. Common steps in volume visualization algorithms

5.1. Volume visualization steps

Many steps in the volume visualization process are com-
mon to volume visualization algorithms (see [Kauf91] for
a detailed explanation of all of the steps.) Most of the
fundamental volume visualization algorithms include
only a subset of the steps listed here.



The initial step in every procedure is data acquisition.
The next common step is to put the data slices into a form
that can be worked with and then to process each slice so
that it covers a good distribution of values, is high in con-
trast, and is free of noise and out-of-range values. Of
course, the same set of processes must be applied to every
slice.

Next, the dataset is reconstructed so that the ratio of the
dimensions is proportional to the ratio of the dimensions
of the measured substance or substance being simulated.
This may involve interpolating between values in adja-
cent slices to construct new slices, replicating existing
slices, interpolating to estimate missing values, or scan-
converting an irregular grid or non-orthogonal grid onto a
Cartesian grid by interpolation. At this point three-
dimensional enhancement may be applied, such as a
slight blurring of the data values. Next, a data-
classification or thresholding is performed. This step will
be discussed in detail in section 6.

After data-classification, a mapping operation is applied
to map the elements into geometric or display primitives.
This is the stage that varies the most between algorithms,
as will be shown in section 10. At this point the primi-
tives can be stored, manipulated, intermixed with exter-
nally defined primitives, shaded, transformed to screen
space, and displayed. The shading and transformation
steps can be reordered and shading can be done in one of
eleven ways as explained in [Kauf91].

5.2. Volume visualization methods

The fundamental algorithms to be described in section 10
fall into two categories, direct volume rendering (DVR)
algorithms and surface-fitting (SF) algorithms. DVR
algorithms include approaches such as ray-casting,
integration methods, splatting, and V-buffer rendering.
The two latter methods are sometimes called projection
methods [Wilh91a][Wilh91b]. DVR methods are charac-
terized by mapping elements directly into screen space
without using geometric primitives as an intermediate
representation. DVR methods are especially appropriate
for creating images from datasets containing amorphous
features like clouds, fluids, and gases. One disadvantage
of using DVR methods is that the entire dataset must be
traversed each time an image is rendered. A low resolu-
tion pass or random sampling of the data is sometimes
used to quickly create low-quality images for parameter
checking. The process of successively increasing the
resolution and quality of a DVR image over time is called
progressive refinement.

SF algorithms (sometimes called feature-extraction or
iso-surfacing) typically fit (usually planar) surface primi-
tives such as polygons or patches to constant-value con-
tour surfaces in volumetric datasets. The user begins by

choosing a threshold value and then geometric primitives
are automatically fit to the high-contrast contours in the
volume that match the threshold. Cells whose corner-
values are all above the chosen threshold (cell is inside)
or all below the threshold (cell is outside) are discarded
and have no effect on the final image. Showing just the
cells falling on the threshold is sometimes useful, but can
be a problem. Another consideration is the huge number
of surface primitives generated for large volumetric
datasets.

The SF approach includes contour-connecting, marching
cubes, marching tetrahedra, dividing cubes, and others.
SF methods are typically faster than DVR methods since
SF methods only traverse the volume once to extract sur-
faces. After extracting the surfaces, rendering hardware
and well-known rendering methods can be used to
quickly render the surface primitives each time the user
changes a viewing or lighting parameter. Changing the
SF threshold value is time consuming because it requires
that all of the cells be revisited to extract a new set of sur-
face primitives.

SF methods suffer from several problems such as occa-
sional false positive and negative surface pieces, and
incorrect handling of small features and branches in the
data. Note that such artifacts could be incorrectly viewed
by scientists as features in the data.

Sometimes it is desirable to add geometric objects to a
volumetric scene. A good example of this is in radiation
treatment planning [Levo90c], where tumors are volume
rendered from MRI datasets, and tentative radiation beam
paths, defined as geometric cylinders or cones, are added
to the scene to ensure that the beam paths only intersect
within the tumor. There are at least two ways to mix ele-
ment data and externally defined geometric primitives in
the same object space and then render them to the same
image space. The first way is to use a SF algorithm to
find the iso-surface approximating the shape and location
of the tumor. This geometry is then rendered at the same
time and in the same scene as the beam path geometry so
that the final image shows both the proper hidden sur-
faces and shading. The second way is to voxelize the
beam path geometry [Kauf86]. Voxelizing the beam path
cylinders means scan-converting the three-dimensional
geometry into either the tumor data volume or a separate
"empty" volume. The volume containing the scan-
converted beams then has elements that contain a
"beam-is-present" value if the cylinder intersects the ele-
ment and contain another value if the cylinder does not
intersect the element. If the cylinders are scan-converted
into a separate volume, then corresponding elements from
the two volumes are always considered together. When
the volume(s) are then rendered using a DVR technique,
the cylinders and tumor will appear in the correct posi-
tions. Combining volume and geometric primitives is



proving to be useful in a number of scientific and medical
applications.

6. Data classification

Data classification is the most difficult function that a
volume visualization user has to perform. Data
classification means choosing a threshold if a SF algo-
rithm is to be used (see previous section), or choosing
color (brightness) and opacity (light attenuation) values
to go with each possible range of data values if a DVR
algorithm is to be used. A DVR’s color table is for map-
ping data values to meaningful colors. The DVR opacity
table is used to expose that part of the volume most
interesting to the user and to make transparent those parts
that are not interesting.

In DVR each element in a volume contributes color to the
final image. The amount of color contributed by an ele-
ment is determined by the color and opacity of the
current element and the colors and opacities of all of the
elements between the current element and the image
plane. To get a reasonable image, the user must choose
the tables with care. Visualization programmers are
responsible for ensuring that interpolated values cannot
map through the table’s transfer functions to non-existent
materials or incorrect colors.

Color and opacity tables are usually created by the user
after they have explored a slice of data with a probe that
prints out data values. Ranges of data values are entered
by the user along with preliminary color and opacity
values, then a test image is rendered. Based on the test
image the user adjusts the value ranges and the
corresponding color and opacity values, then renders a
second test image. This process is repeated many times
until an acceptable image is generated. Example values
from tables used to render CT data would map bone den-
sity values to white/opaque, muscle density values to
red/semi-transparent, and fat density values to
beige/mostly-transparent. Slight changes in opacity
values often have an unexpectedly large impact on the
rendered image.

Other factors that come into play in the classification
stage are the user’s knowledge of the material (or simu-
lated material) being classified, the position of the
classified elements in the volume, and the material occu-
pancy of the element. If a user is familiar with the
material being classified, the table specification is a
matter of typing in some numbers. If the user is not fami-
liar with the material, classification may require exten-
sive data exploration or consultation with a person
knowledgeable in the characteristics of the material.

It is sometimes desirable to make outer layers of a sub-
stance more transparent than inner layers, even though
the layers have the same data value. This is why the posi-

tion of the element is sometimes taken into account dur-
ing the rendering process. Material occupancy [Dreb88]
is the amount of a material contained in an element. If an
element is near the interface between two substances,
such as bone and muscle, then the element may contain
some of each substance and should make a contribution
to the image that reflects contributions from both sub-
stances. Most volume visualization algorithms save time
by disregarding the negligible effect of partial material
occupancy and not implementing the multiple-layers-of-
substance feature.

7. Traversals

Once a scientific dataset has been classified, images are
typically created in one of two ways: either using an
image-order traversal of the pixels in the image plane or
an object-order traversal of the elements in the
volumetric dataset. Object-order traversals operate by
calculating, for each element, the projection and contri-
bution of that element to the pixels in the image plane.
Most SF and some DVR algorithms use object-order
traversals and some algorithms use a combination of both
types of traversal.

Object-order traversals can proceed through the volume
either front-to-back or back-to-front. The advantage of
front-to-back traversals is that the elements in the back
do not have to be traversed if the elements in the front
have already created a completely opaque image. The
advantage of back-to-front traversals is that the user can
watch the image progressing, seeing the structures in the
back that will eventually be hidden by the structures in
the front.

Image-order traversals usually proceed in scanline order.
Alternatively, pixels can be processed in a random order
so that the user can watch the image being refined as the
missing pixels are filled in.

8. Viewing and shading

Most DVR algorithms use primarily orthographic view-
ing since implementing perspective viewing in DVR is
fraught with ray divergence problems. SF algorithms use
geometric primitives that allow either parallel or perspec-
tive views. Using orthographic views for scientific visu-
alization assures that scientists will not be confused by
seeing their data warped by the perspective transforma-
tion. When perspective is not used, other depth cues such
as animation, depth-fog attenuation, depth-brightness
attenuation, and shading are sometimes introduced.

Most DVR and SF algorithms use gradient shading. A
central difference formula is applied at every gridpoint to
find the gradient; the measure of change across adjacent
elements. Gradients within a cell can be estimated by
interpolating between the gradients at the corners of the



cell. The gradient at a point in a volume can be used to
approximate the normal to an imaginary surface passing
through the point [Lore87]. Most standard graphics shad-
ing models can be applied in shading elements once an
approximate normal is known. Ambient, diffuse, and
sometimes specular lighting components are used in the
volume visualization shading process.

Some volume visualization algorithms precalculate dot
products of the light source vector and the normal (gra-
dient) vector, then store the result at the gridpoint so it
only has to be calculated once. Some other algorithms do
heuristic shading with a table lookup. SF algorithms
often refer back to the gradient information at a point in
the original volume to shade an extracted surface primi-
tive at that point. Gradient shading is usually more accu-
rate than using the normals of the surface primitives. As
in other computer graphics applications, shading is an
important factor in creating understandable volume
images.

9. Photorealism

There is debate in the volume visualization community
about whether objects in volume images should appear to
be made from physically plausible materials or not.
Materials that do not exist in nature, such as light-
emitting gels, may make images difficult to interpret since
scientists have no experience with the materials. In
[Levo90b] it is argued that rendering volumes so that
they are made of non-plausible materials is an error.
"Visualization should simulate physically plausible
objects -- no matter how contrived they may be." Non-
plausible objects are not readily interpreted and it is
difficult for scientists to gain insight from the non-
intuitive images. In [Wilh91a] a strong case is presented
for modeling volumes as light-emitting gels; the mapping
to color and opacity is very flexible, and the model more
abstractly represents the information content of the
volume. Both are good arguments, and the jury is still
out on this decision.

10. Volume Visualization Algorithms

This section describes five of the most commonly-used
fundamental volume visualization algorithms and their
close relatives.

Descriptions of the algorithms include: what type of data
they best handle, their advantages and disadvantages, a
rough idea of how well they parallelize, their space and
time requirements, a few possible optimizations and
enhancements, and references for further reading. Table
1. shows a taxonomy of the algorithms described here and
how each algorithm fits into the field of volume visualiza-
tion. The terms voxel and cell are not interchangeable in
this section.

_________________________________________________
Volume Visualization Algorithms__________________________________________________________________________________________________

Surface-fitting Direct Volume Rendering_________________________________________________
Projection Image-order

methods methods______________________________
Opaque cubes V-buffer Ray-casting

(Cuberille) Splatting Cell integration

Contour connecting Slice shearing Sabella method

Marching cubes

Dividing cubes

Marching tetrahedra_________________________________________________
��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

Table 1. Algorithms in the field of volume visualization

10.1. Contour-connecting

One of the first-invented methods for generating volume
visualization images was called contour-connecting, and
descendents of the contour-connecting algorithm are still
in use in many disciplines. The basic idea of tracing one
closed contour in each slice of data and then connecting
contours in adjacent slices of data was suggested by
[Kepp75] and refined by [Fuch77], [Ekou91], and many
others.

Contour-connecting is an object-order SF method that
begins by operating on each slice of data individually.
After the user has specified a threshold value, a closed-
curve contour at this value is found for each data slice.
Originally, the contour-tracing step was performed by
hand. Image processing techniques now provide methods
for automatically generating the contours, but human
intervention is sometimes still required for low-contrast
data.

Once the slice contours are found, the problem becomes
one of finding an optimal tesselation, usually of triangles,
connecting the curves in each two adjacent slices. Kep-
pel reduced this problem to finding a path in a directed
graph using heuristics [Kepp75], and Fuchs, et al, further
specified the problem as that of finding a minimum cost
path in a directed toroidal graph [Fuch77]. Both of these
solutions find an approximation to the surface passing
through the high-gradient threshold cells in the data.

The last step is to select viewing, lighting, and rendering
parameters, and to pass the strips of triangles to a surface
renderer. Contour-connecting suffers from most of the
problems endemic to SF algorithms as described in sec-
tion 5.2. Advantages of this approach include the simpli-
city of the algorithm and the plethora of known surface-
rendering methods. The surface-fitting portion of this
algorithm is parallelizable since no two adjacent slices
are dependent on the result of another pair.



10.2. Opaque cube

Another straight-forward volume visualization procedure
is called the opaque cube or cuberille algorithm. It was
originated by [Herm79] and has been enhanced and
optimized by many others.

This algorithm proceeds in two stages. In the first stage,
the user selects a threshold value and an object-order
traversal of the volume is made, searching for cells with
corner-values that straddle the threshold value. Six
polygons, one for each face of the cell, are generated for
each such cell. Stage two passes the geometric descrip-
tions of these polygons to a surface renderer for image
generation. If multiple thresholds are chosen, then each
corresponding set of cell polygons can be rendered in a
different color (and with a different opacity) to
differentiate them.

The opaque, or semi-opaque, cubes used to represent the
iso-value contour surface, will cause the surface to
appear blocky in the rendered image. The blocky appear-
ance of the approximated iso-surface can be reduced by
using gradient shading in the rendering step.

Opaque cube algorithms suffer from most of the
deficiencies of SF algorithms mentioned in section 5.2
and are especially bad at showing small features of the
data. The algorithms are, however, simple to implement
and fast at finding and rendering surfaces.

If the cells are traversed back-to-front, the cell’s surface
primitives can be rendered into an image buffer as they
are generated. Surface primitives in the front will occlude
primitives in the back as in the painter’s algorithm. Note
also that step one of the cuberille algorithm can be paral-
lelized because all of the cells can be tested and
tesselated independently.

10.3. Marching Cubes

In [Wyvi86] table-based cell surface-fitting is performed
using polygons that are eventually tesselated into trian-
gles. In [Lore87] a table-based surface-fitting procedure
is described that fits up to four triangles to each cell. The
latter algorithm goes by the name marching cubes. The
marching cubes algorithm has been widely implemented
and proceeds by reading four data slices into memory,
finding the gradients at all of the interior gridpoints,
marching through all of the interior cells, and then fitting
small triangles within each cell through which a
threshold-value surface passes. These triangles are then
passed to a rendering program that maps them to image
space.

Before the algorithm begins, the user specifies a threshold
value. The algorithm then loops on each successive
group of four adjacent data slices. The slices are read
into memory, gradients are calculated, and each cell

between the middle two slices is scanned to find if its
corner-values straddle the threshold value. Non-
straddling cells are disregarded.

Cells that do straddle the threshold are more closely
examined. The eight corners of the cube are numbered
one through eight and valued "1" if they are above the
threshold and "0" if they are below the threshold. The
eight values are then put in eight consecutive bit loca-
tions (0-7) to form an eight bit byte. This byte is treated
as an index into a precomputed edge intersection table.
The edge intersection lookup function returns 12 boole-
ans, indicating which of the 12 edges of the cell are inter-
sected by the iso-surface. Interpolation is used to find
where the edge is intersected by the iso-surface. If it is
assumed that each edge can only be intersected once,
then four triangles are sufficient to show the path of the
iso-surface through the cell. There are exactly 256 ways
that four or less triangles can be fit to a cell, and the
number of cases can be reduced to 15 by reflection and
rotation. Groups of three cell-edge intersection points are
grouped to form triangles. Gradients at the intersection
points are found by interpolating between the gradients at
the corners of the cell. The interpolated gradients are
stored with the triangles and later used for shading.

Marching cubes sometimes connects the wrong set of
three points while generating triangles, resulting in false
positive and negative triangles in the iso-surface. One
way to reduce ambiguous point-connecting situations is
to break up each cell into five [Shir90], six, or 24 tetrahe-
dra and do table-based edge intersection tests with the
tetrahedra. Since a tetrahedron has only six edges, two
triangles are sufficient to show the iso-surfaces inside the
tetrahedral cell. The marching tetrahedra algorithm gen-
erates more triangles than the marching cubes algorithm,
so more processing and memory are required. An alter-
native means for reducing the ambiguous point-
connecting situation is described by Nielson, et al, in
[Niel91].

Lorensen and Cline soon realized that the size of the gen-
erated triangles, when rendered and projected, is often
smaller than the size of a pixel. A new algorithm was
invented to take advantage of this observation. Dividing
cubes [Clin88] begins by traversing each cell in the
volume. When a cell is encountered with corner-values
that straddle the threshold, the cell is projected into
screen space to find if it projects into an area larger than a
pixel. If it does, the cell is divided into subcells, each of
which is rendered as a surface point, otherwise the entire
cell is rendered as a surface point. Surface points are
composed of a value, a location in object space, and a
calculated gradient for shading. No intermediate surface
primitives are used in the dividing cubes algorithm. Sur-
face points are rendered into the image buffer using a
standard computer graphics hidden-surface algorithm



such as painter’s or z-buffer. Rendering the surface
points in a pseudo-random order allows the user to see
the quality of the image gradually improve.

Rendering surface points instead of surface primitives
saves a great deal of time, especially when surface-
rendering hardware is not available. A hardware imple-
mentation of the dividing cubes algorithm is described in
[Clin90].

All three of the SF techniques described in this section
have the same advantages and disadvantages (to some
degree) as the generic SF algorithm described in section
5.2. Like the opaque cube methods, all three are also
parallelizable at the cell level.

10.4. Ray-casting

The most often used volume visualization algorithm for
the production of high-quality images is ray-casting.
Ray-casting conducts an image-order traversal of the
image plane pixels, finding a color and opacity for each.
A ray is fired from each pixel through the data volume.
The opacities and shaded colors encountered along the
ray are summed to find the opacity and color of the pixel.
Ray-casting differs from ray-tracing in that in ray-
tracing, rays are bounced when they hit reflective objects.
In ray-casting, rays continue in a straight line until the
opacity encountered by the ray sums to unity or the ray
exits the rear of the volume. No shadows or reflections
are generated in ray-casting. Descriptions of ray-casting
approaches appear in [Tuy84] [Levo88] [Upso88]
[Levo90a] [Levo90d] and in several papers in [Upso89a].
Numerous enhancements, optimizations, and hybrid
methods are also described in the literature. One interest-
ing implementation takes the RenderMan approach of
encapsulating ray-casting routines into a library
[Mont90] so that the user can write her/his own renderers.
The ray-casting algorithm was used to produce Figure 1,
"Dolphin head," and Figure 2, "Simulated electromag-
netic sounding."

The first step in the ray-casting algorithm is for the user
to set up data-classification tables as described in section
6 above. The user also has to specify viewing and light-
ing information for the scene. The ray-caster then starts
firing rays. When a ray intersects a cell between grid-
points an interpolation may be performed to find an in-
between value for the intersection point. Alternatively,
the value stored at the nearest neighboring gridpoint may
be used as in voxel-based rendering. A transfer function
is then invoked to find the color and opacity the user has
specified for this data value. The color tuple is gradient
shaded, and the opacity is attenuated by the normalized
magnitude of the gradient. Because the magnitude of the
gradient is usually a good indication of the strength of an
iso-surface within a cell, the result is a large color contri-

bution to the pixel when the ray encounters a new sub-
stance in the volume.

The color tuple and opacity values are added to the pixel
using a weighting formula and a step is taken along the
ray to the next resample point. The resample points con-
tributing earlier are weighted more heavily that later con-
tributing resample points. The summing continues until
the stored opacity value equals unity or the ray exits the
volume. If the opacity has not reached unity as the ray
exits the back of the volume, the accumulated color tuple
is multiplied by the partial opacity.

Ray-casting inherits most of the advantages and disad-
vantages of DVR methods. Ray-casting is CPU-
intensive, but the images show the entire dataset, not just
a collection of thin surfaces as in SF. Ray-casting can be
parallelized at the pixel level since rays from all of the
pixels in the image plane can be cast independently.

In [Sabe88] Sabella describes an alternative ray-casting
approach. Voxels are modeled as light-emitting particles
and four values are accumulated as rays are cast into this
field: attenuated light intensity, maximum light value,
distance of maximum value along the ray, and the cen-
troid of voxel-value along the ray. Color is calculated in
hue, saturation, lightness tuples instead of red, green, blue
tuples. The hue component is set in relation to the peak
along the ray, saturation is used for depth queuing by
casting a fog in front of data in the rear of the volume,
and lightness is set as a function of the light intensity.
This approach is also CPU-intensive, but it generates
high-quality glowing images.

10.5. Splatting

A recently developed DVR algorithm is called splatting
[West90]. Splatting performs a front-to-back object-
order traversal of the voxels in the volumetric dataset.
Each voxel’s contribution to the image is calculated and
composited using a series of table lookups. The pro-
cedure is called splatting because it can be likened to
throwing a snowball (voxel) at a glass plate. The snow
contribution at the center of impact will be high and the
contribution will drop off further away from the center of
impact. The splatting algorithm was used to produce Fig-
ure 3, "Dolphin skull," Figure 4, "Human head," and Fig-
ure 5, "SOD molecule."

The first step in the splatting algorithm is to determine in
what order to traverse the volume. The face of the volume
and corner of the face closest to the image plane can be
found by passing the coordinates of the corners of the
volume through the viewing matrix. Voxels are splatted
according to their distance from the image plane, with the
closest voxel being splatted first. The voxels in one slice
are all splatted before the next slice is started. The value
at each voxel is classified according to user-specified



color and opacity transfer functions. The resulting red,
green, and blue tuple is shaded using gradient shading,
and the opacity is attenuated by the normalized strength
of the gradient.

The next step finds the contribution of the tuple (and opa-
city) to an image buffer by projecting the voxel into
image space. A round filter called a reconstruction kernel
is used to find the pixel extent of this contribution. For
orthogonal viewing, a circular kernel (usually a Gaus-
sian) can be calculated once and used for all of the vox-
els. However, for perspective viewing, a new oblique ker-
nel must be calculated for every voxel. The projection of
the kernel into the image buffer is called a footprint and
the size of the footprint is made proportional to the size
of the volume and the size of the image to be generated.
Thus, a small volume can expand to fill a large image.
Once the footprint is calculated, its center is placed at the
center of the voxel’s projection in the image buffer. Note
that there is not necessarily going to be a pixel center at
this location.

The shaded color tuple and opacity values are blended
into the image buffer at every pixel that falls within the
area covered by the circular Gaussian footprint. Before a
tuple is blended with a pixel, it is attenuated by the value
of the Gaussian footprint at that particular pixel center.
This has the effect of making voxel contributions higher
when near the center of the projection and lower when far
from the center. After all of the voxels have been splat-
ted into the image buffer, the image is complete. When
the opacity at a pixel in the image buffer reaches unity
then no further splats will have an effect on it.

Although the splatting technique operates differently than
either surface-fitting or ray-casting, it produces high-
quality images that are similar to the images produced by
the other algorithms. Splatting has most of the advan-
tages and disadvantages of DVR algorithms. One added
advantage is that the user can watch the image grow more
refined one slice at a time instead of one pixel at a time,
as in ray-casting. Some splatting optimizations are given
in [Hanr91].

A similar and earlier method called the V-buffer algo-
rithm [Upso88] is cell-based rather than voxel-based but
uses a similar front-to-back object-order traversal and
projection technique. The V-buffer technique traverses a
many-point path within each cell, interpolating between
cell corner-values and projecting each interpolated value
into an image buffer after the value has been color-
mapped and shaded.

The splatting and V-buffer approaches are parallelizable
at the voxel level. Image contributions can be computed
on separate processors so long as the contributions are
composited in the correct order. Contributions from the
voxels closest to the image plane get composited first.

10.6. Pixar slice shearing

The volume slice shearing algorithm described in
[Dreb88] takes advantage of the unique hardware capa-
bilities of the Pixar Image Computer but the algorithm is
rarely used on non-Pixar platforms. Figure 6, "Three
time steps from a cosmic jet simulation," was produced
on a Pixar Image Computer.

11. Ethical issues

Getting all of the bugs out of a volume visualization
implementation is a serious matter. For example, linger-
ing flaws in an implementation could produce images that
would lead to an incorrect medical diagnosis. Errors in
images could have serious ramifications in radiation
treatment planning, surgical planning, drug design, and
other medical, research, and engineering disciplines. A
standard means for validating algorithm implementations
and the images they produce would be invaluable to the
visualization community.

12. Future work

As mentioned before, visualization of vector, multi-
modal, multi-variate, higher-dimensional, and non-
Cartesian volume data are still largely unknown. Adapta-
tion of volume visualization algorithms for both parallel
architectures [Elvi92a][Elvi92b] and network-based
environments [Elvi91b][Merc92] toward real-time
rendering is also a pressing problem.

There is a need for intuitive user interfaces and semi-
automatic data-classification tools, so that scientists can
quickly learn and use powerful volume visualization sys-
tems. Also, systems should be improved to render
volumes in the context of the source of the data, instead
of rendering volumes floating in black space. For exam-
ple, CT data could be rendered combined with anatomical
three-dimensional models or photographs, and simulation
data could be composited with data or images acquired
from the actual event.

Hardware implementations of DVR, and possibly SF,
algorithms will be available in the near future. These will
allow real-time volume visualization systems to be
developed and make unsolved volume visualization prob-
lems an area for concentration.

13. Summary

Many of the fundamental concepts of volume visualiza-
tion have been explained along with some of the pioneer-
ing algorithms. Many problems of handling non-
Cartesian grids, multivariate and higher-dimensional data
are still unsolved. Methods for semi-automatic data-
classification would be extremely helpful. Scientists
need powerful tools accessed through easy-to-use inter-
faces. Animation of volume-visualized data is also criti-



cal to the data analysis process.

For technical descriptions of some commercial and public
domain volume visualization systems see
[Stow89][Upso89b][Brit90][Dyer90].

14. Upcoming conferences

The following conferences will emphasize volume visu-
alization:

• SIGGRAPH ’92, 26-31 July 1992, Chicago, contact
SIGGRAPH (info92@siggraph.org).

• Eurographics, 7-11 September 1992, Cambridge
England, contact Jane Thorp (eg92-
organiser@sys.uea.ac.uk).

• The Boston Workshop on Volume Visualization,
19-20 October 1992, Boston, contact Larry Gelberg
(larryg@avs.com). For a report on the last
workshop see [Elvi91a].

• Visualization ’92, 21-23 October 1992, Boston,
contact George Grinstein (grinstei@ulowell.edu).

• Visualization in Biomedical Computing, 13-16
October 1992, University of North Carolina Chapel
Hill, contact Mary Ducker (ducker@cs.unc.edu).

15. Bibliography

[Brit90]
Brittain, D.L., Aller, J., Wilson, M., and Wang,
S.C., "Design of an End-user Data Visualization
System," Proceedings of the IEEE Visualization ’90
Conference, IEEE Computer Society Press,
October 1990, pp. 323-328.

[Brod91]
Brodlie, K.W., Carpenter, L.A., Earnshaw, R.A.,
Gallop, J.R., Hubbold, R.J., Mumford, C.D.,
Osland, C.D., and Quarendon, P. (eds.), Scientific
Visualization - Techniques and Applications,
Springer Verlag Press, 1991.

[Clin88]
Cline, H.E., Lorensen, W.E., Ludke, S., Crawford,
C.R., and Teeter, B.C., "Two Algorithms for
Three-dimensional Reconstruction of Tomograms,"
Medical Physics, Volume 15, Number 3, May/June
1988, pp. 320-327.

[Clin90]
Cline, H.E., Ludke, S., Lorensen, W.E., and Teeter,
B.C., "A 3D Medical Imaging Research Worksta-
tion," Volume Visualization Algorithms and Archi-
tectures, ACM SIGGRAPH ’90 Course Notes,
Course Number 11, ACM Press, August 1990, pp.
243-255.

[DeFa89]
DeFanti, T.S. and Brown, M.D., "Visualization

Expanding Scientific and Engineering Research
Opportunities," Computer, Volume 22, Number 8,
August 1989, pp. 12-25.

[Dreb88]
Drebin, R., Carpenter, L., and Hanrahan, P.,
"Volume Rendering," Computer Graphics, Volume
22, Number 4, August 1988, pp. 65-74.

[Dyer90]
Dyer, D.S., "A Dataflow Toolkit for Visualization,"
IEEE Computer Graphics and Applications,
Volume 10, Number 4, July 1990, pp. 60-69.

[Ekou91]
Ekoule, A.B., Peyrin, F.C., and Odet, C.L., "A Tri-
angulation Algorithm from Arbitrary Shaped Mul-
tiple Planar Contours," ACM Transactions on
Graphics, Volume 10, Number 2, April 1991, pp.
182-199.

[Elvi91a]
Elvins, T.T., "San Diego Workshop on Volume
Visualization Report," Computer Graphics,
Volume 25, Number 5, October 1991, p. 264.

[Elvi91b]
Elvins, T.T. and Nadeau, D.R., "NetV: An Experi-
mental Network-based Volume Visualization Sys-
tem," Proceedings of the IEEE Visualization ’91
Conference, IEEE Computer Society Press,
October 1991, pp. 239-245.

[Elvi92a]
Elvins, T.T. and Nadeau, D.R., "Scientific Visuali-
zation in a Network Computing Environment,"
Eurographics UK Conference Proceedings, April
1992.

[Elvi92b]
Elvins, T.T., "Volume Rendering on a Distributed
Memory Parallel Computer," General Atomics
Technical Report #A20920, April 1992.

[Engl90]
England, N. (ed.), "San Diego Workshop on
Volume Visualization, Conference Proceedings,"
Computer Graphics, Volume 24, Number 5,
November 1990.

[Fren89]
Frenkel, K.A., "Volume Rendering," Communica-
tions of the ACM, Volume 32, Number 4, April
1989, pp. 426-435.

[Fuch77]
Fuchs, H., Kedem, Z.M., and Uselton, S.P.,
"Optimal Surface Reconstruction from Planar Con-
tours," Communications of the ACM, Volume 20,
Number 10, October 1977, pp. 693-702.



[Hanr91]
Hanrahan, P. and Laur, D., "Hierarchical Splatting:
A Progressive Refinement Algorithm for Volume
Rendering," Computer Graphics, Volume 25,
Number 4, August 1991, pp. 285-288.

[Herm79]
Herman, G.T. and Liu, H.K., "Three-dimensional
display of Human Organs from Computed Tomo-
grams," Computer Graphics and Image Process-
ing," Volume 9, Number 1, January 1979, pp. 1-21.

[Hohn90]
Hohne, K.H., Fuchs, H., and Pizer, S.M. (eds.), 3D
Imaging in Medicine, Algorithms, Systems, Appli-
cations," Springer Verlag Press, 1990.

[Kauf86]
Kaufman, A. and Simony E., "Scan-conversion
Algorithms for Voxel-base Graphics," Proceedings,
ACM Workshop on Interactive 3D Graphics,
Chapel Hill, NC, October 1986, pp. 45-75.

[Kauf91]
Kaufman, A., "Introduction to Volume Visualiza-
tion," Volume Visualization, A. Kaufman (ed.),
IEEE Computer Society Press, 1991, pp. 1-18.

[Kepp75]
Keppel, E., "Approximating Complex Surfaces by
Triangulation of Contour Lines," IBM Journal of
Research and Development, Volume 19, Number 1,
January 1975, pp. 2-11.

[Levo88]
Levoy, M., "Display of Surfaces from Volume
Data," IEEE Computer graphics and Applications,
Volume 8, Number 3, March 1988, pp. 29-37.

[Levo90a]
Levoy, M., "Volume Rendering, A Hybrid Ray
Tracer for Rendering Polygon and Volume Data,"
IEEE Computer graphics and Applications,
Volume 10, Number 2, March 1990, pp. 33-40.

[Levo90b]
Levoy, M., "Volume Visualization: A Look Back,
A Look Ahead," Keynote address given at San
Diego Workshop on Volume Visualization, unpub-
lished, December 1990.

[Levo90c]
Levoy, M., Fuchs, H., Pizer, S.M., Rosenman, J.,
Chaney, E.L., Sherouse, G.W., Interrante, V., and
Kiel, J., "Volume Rendering in Radiation Treat-
ment Planning," Proceedings of the First Confer-
ence on Visualization in Biomedical Computing,
May 1990.

[Levo90d]
Levoy, M., "Efficient Ray Tracing of Volume Data,"

ACM Transactions on Graphics, Volume 9,
Number 3, July 1990, pp. 245-261.

[Levo90e]
Levoy, M., "A Taxonomy of Volume Visualization
Algorithms," Volume Visualization Algorithms and
Architectures, ACM SIGGRAPH ’90 Course
Notes, Course Number 11, ACM Press, August
1990, pp. 6-12.

[Lore87]
Lorensen, W.E. and Cline, H.E., "Marching Cubes:
A High Resolution 3D Surface Construction Algo-
rithm," Computer Graphics, Volume 21, Number 4,
July 1987, pp. 163-169.

[McCo87]
McCormick, B.H., DeFanti, T.S., and Brown, M.D.,
"Visualization in Scientific Computing," Computer
Graphics, Volume 21, Number 6, November 1987.

[Merc92]
Mercurio, P.J., Elvins, T.T., Fall, K.R., Cohen, P.S.,
Young, S.J., and Ellisman, M.H., "The Distributed
Laboratory: An Interactive Visualization Environ-
ment for Electron Microscopy and Three-
dimensional Imaging," Communications of the
ACM, ACM Press, Volume 35, Number 6, June
1992, to appear.

[Mont90]
Montine, J., "A Procedural Interface for Volume
Rendering," Proceedings of the IEEE Visualization
’90 Conference, IEEE Computer Society Press,
October 1990, pp. 36-41.

[Niel91]
Nielson, G.M. and Hamann, B., "The Asymptotic
Decider: Resolving the Ambiguity in Marching
Cubes," Proceedings of the IEEE Visualization ’91
Conference, IEEE Computer Society Press,
October 1991, pp. 83-91.

[Sabe88]
Sabella, P., "A Rendering Algorithm for Visualiz-
ing 3D Scalar Fields," Computer Graphics, Volume
22, Number 4, July 1988, pp. 51-58.

[Shir90]
Shirley, P. and Tuckman, A., "A Polygonal Approx-
imation to Direct Scalar Volume Rendering," Com-
puter Graphics, Volume 24, Number 5, November
1990, pp. 63-70.

[Sper90]
Speray, D. and Kennon, S., "Volume Probes:
Interactive Data Exploration on Arbitrary Grids,"
Computer Graphics, Volume 24, Number 5,
November 1990, pp. 5-12.



[Stow89]
Stowell, A., "New X Window Packages," NCSA
access, Volume 3, Number 4, July-August 1989,
pp. 15-16.

[Tuy84]
Tuy, H.K. and Tuy, L.T., "Direct 2-D Display of 3-
D Objects," IEEE Computer Graphics and Applica-
tions, Volume 4, Number 10, October 1984, pp.
29-33.

[Upso88]
Upson, C. and Keeler, M., "The V-Buffer: Visible
Volume Rendering," Computer Graphics, Volume
22, Number 4, July 1990, pp. 59-64.

[Upso89a]
Upson, C. (ed.), Chapel Hill Workshop on Volume
Visualization, Conference Proceedings, Depart-
ment of Computer Science, University of North
Carolina, Chapel Hill, NC, May 1989.

[Upso89b]
Upson, C., Faulhaber, T., Kamins, D., Laidlaw, D.,
Schlegel, D., Vroom, J., Gurwitz, R., and van Dam,
A., "The Application Visualization System: A
Computational Environment for Scientific Visuali-
zation," IEEE Computer Graphics and Applica-
tions, Volume 9, Number 4, July 1989, pp. 30-42.

[West90]
Westover, L., "Footprint Evaluation for Volume
Rendering," Computer Graphics, Volume 24,
Number 4, August 1990, pp. 367-376.

[Wilh91a]
Wilhelms, J., "Decisions in Volume Rendering,"
State of the Art in Volume Visualization, ACM SIG-
GRAPH ’91 Course Notes, Course Number 8,
ACM Press, August 1991, pp. I.1-I.11.

[Wilh91b]
Wilhelms, J. and Van Gelder, A., "A Coherent Pro-
jection Approach for Direct Volume Rendering,"
Computer Graphics, Volume 25, Number 4, August
1991, pp. 275-284.

[Wyvi86]
Wyvill, G., McPheeters, C., and Wyvill, B., "Data
Structure for Soft Objects," The Visual Computer,
Volume 2, Number 4, August 1986, pp. 227-234.

Acknowledgements

This work was supported by the National Science Foun-
dation under grant ASC8902825 to the San Diego Super-
computer Center. Additional support was provided by
the State of California and industrial partners.

Special thanks to the director of the SDSC visualization
group, Mike Bailey, and the rest of the SDSC viskids,
Phil Mercurio, Dave Nadeau, Jim McLeod, Kevin Landel,
and Charlotte Smart.


