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CMSC 491/691 Robust Machine Learning

Topic 6: Continual Learning

AM | FORGETTING
ANYTHING?




Traditional Machine Learning

 Collect once, train once, deploy once
o Data is collected prior to model training
o Model is trained prior to deployment

o Once deployed, no updates

* Assumptions:

o Data distribution D is static — it doesn't evolve or shift

o You can always access and sample from D



Do HUMANS (or any natural learning system) learn like this?




Do HUMANS (or any natural learning system) learn like this?

No ... humans learn “on the job"




Do HUMANS (or any natural learning system) learn like this?

No ... humans learn “on the job"

Humans aren't just given a million samples a priori ...




Challenges

» Data isn't always available a priori

o Can appear incrementally ...

— Infants see mom, dad, siblings, family first and learn to recognize the differences

(also do “O0OD” detection ...)
— Then they learn to move around — new objects
— Then they see outside the window: birds, animals, cars, trees ‘

— Object recognition builds up over time (vocabulary expands parallelly) ﬂ, \

 Concept drift: data distribution may change/evolve over time

o Changes in appearance, seasons, changes in object frequency
(anyone use a rotary phone recently?)



Challenges

Plasticity

Specialist for learning
new tasks

X

. Generalist for continual

Pareto front in
performance space

Specialist for remembering
old tasks

Stability

Trends in Neurosciences|

* Stability-Plasticity Trade-off: when and how to adapt?

o Rapid adaptation may lead to forgetting old info

o Slow adaptation may limit the ability to quickly grasp new information




We need a way for models to overcome the
challenges of “static’ ML ...



|dea:

Can we develop “Lifelong” or “Continual”™ ML
algorithms?



Robotics and
Autonomous
Systems

ELSEVIER Robotics and Autonomous Systems 15 (1995) 25-46

Lifelong robot learning *

Sebastian Thrun **, Tom M. Mitchell ®

1 University of Bonn, Institat fiir Informauk 1 RSmersir. 104, 53117 Bonn, Germany
¥ School of Computer Science, Carmegie Mellon University, Piirshurgh, PA 15213, USA

Abstract

Learning provides a useful tool for the automatic design of autonomous robots. Recent research on learning robot control has
predominantly focused on learning single tasks that were studied in isolation. If robots encounter a multitude of control learning tasks
over their entire lifetime there is an opportunity to transfer knowledge between them. In order to do so, robots may learn the invariants
and the regularities of the individual tasks and environments. This task-independent knowledge can be employed to bias generalization
when learning control, which reduces the need for real-world experimentation. We argue that knowledge transfer is essential if robots are
to learn control with moderate learning times in complex scenarios. Two approaches to lifelong robot learning which both capture
invariant knowledge about the robot and its environments are presented. Both approaches have been evaluated using a HERO-2000

mobile robot. Learning tasks included navigation in unknown indoor environments and a simple find-and-fetch task.



AAAI 2015
Never-Ending Learning

T. Mitchell*, W. Cohen*, E. Hruschka'Y, P. Talukdar'9, J. Betteridge*, A. Carlson®Y, B. Dalvi*, M. Gardner*,
B. Kisiel*, J. Krishnamurthy*, N. Lao’Y, K. Mazaitis*, T. MohammadY, N. Nakashole*, E. Platanios®,
A. Ritter!Y, M. Samadi*, B. Settles**Y, R. Wang¥, D. Wijaya*, A. Gupta*, X. Chen*, A. Saparov*,
M. Greaves'™Y, J. Welling*

tom.mitchellf@cs.cmu.edu

NELL: Never-Ending Language Learning

Can computers learn to read? We think so. "Read the Web" is a research project
that attempts to create a computer system that learns over time to read the web.
Since January 2010, our computer system called NELL (Never-Ending Language
Learner) has been running continuously, attempting to perform two tasks each day:

» First, it attempts to "read," or extract facts from text found in hundreds of
millions of web pages (e.g., playsInstrument(George Harrison, guitar)).

» Second, it attempts to improve its reading competence, so that tomorrow it can Browse the Knowledge Base!
extract more facts from the web, more accurately.

So far, NELL has accumulated over 50 million candidate beliefs by reading the web, and it is considering these at different levels of
confidence. NELL has high confidence in 2,810,379 of these beliefs — these are displayed on this website. It is not perfect, but
MNELL is learning. You can track NELL's progress below or @cmunell on Twitter, browse and download its knowledge base, read
more about our technical approach, or join the discussion group.
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“Lifelong” / “Continual” ML

Data
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Data
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Task 1

Task 2

Task 3

Task 4

* Multiple “episodes’ or “experiences” or “tasks"

* Broad Goal:

o Occur sequentially, not all-at-once

o Learn new tasks

o Retain knowledge of old tasks
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Old Definition of Lifelong Learning

(Thrun 1996, Silver et al 2013; Ruvolo and Eaton, 2013; Chen and Liu, 2014, Chen and Liu, 2016)

The learner has performed learning on a sequence of tasks
from 1 to N.

When faced with the new or (N+1)th task, it uses the relevant
knowledge in its knowledge base (KB) to help learn the
(N+1)th task.

After learning (N+1)th task, KB is updated with learned results
from the (N+1)th task.

Thrun. Is learning the n-th thing any easier than learning the first? NIPS-1996.

from Bing Liu's 8 hour course at Aalborg on Continual Learning



New definition of lifelong/continual learning
(Chen and Liu, 2014, 2018)

Learn a sequence of tasks, T,, T, ..., Ty, ... incrementally.
Each task t has a training dataset D, = {(x;,y;)}/—, .

Goal: learn each new task T,,incrementally

1. without catastrophic forgetting: Learning of new task T,,, should
not result in degradation of accuracy for the previous N tasks.

2. with knowledge transfer: leveraging the knowledge learned from the
previous tasks to learn the new task T,,, better.

Assumption: Once a task is learned, its data is no longer
accessible, at least a majority of it, and both the task T, and

o its training data D, are given by the user.
Chen and Liu. Lifelong machine learning. Morgan & Claypool. 2018

from Bing Liu's 8 hour course at Aalborg on Continual Learning



Three Main Problem Formulations

1. Class Incremental Learning (CIL)

Example: Today we learn to recognize pig and chicken (one task),
and tomorrow, we also learn to recognize sheep (another task)

2. Task Incremental Learning (TIL)

In the TIL setup, each task 1s a separate classification problem (e.g., one task could be to classify
different breeds of dogs and another task could be to classify different types of birds).

3. Domain Incremental Learning

Example: One task is to classify car reviews as positive or
negative and another task is to classify camera reviews as
positive or negative. Car and camera are two domains.



Online Learning

Training examples come in incrementally (online setting)
o Computationally infeasible to train over the entire dataset
o Training data come gradually in a data stream

Different from CL

2 Online learning still performs the same learning task over time, no
data distribution change.

o CL aims to learn from a sequence of different tasks, retaining and
accumulating knowledge

from Bing Liu's 8 hour course at Aalborg on Continual Learning



Several Other Problem Formulations

Instance-Incremental Learning (IIL): All training sam-
ples belong to the same task and arrive in batches.

Domain-Incremental Learning (DIL): Tasks have the TABLE 1
same data label space but different input distribu- | A formal comparison of typical continual learning scenarios. D, ;: the training samples of task ¢ and batch b. |b|: the size of batch b. B;: the space
tions. Task identities are not required. of incremental batches belonging to task . D;: the training set of task ¢ (further specified as D" for pre-training). 7 the space of all incremental
Task-Incremental Learning (TIL): Tasks have disjoint tasks (further specified as 77 for pre-training). X;: the input data in D;. p(A}): the distribution of X;. );: the data label of A7.
data label spaces. Task identities are provided in
both training and testing. Scenario Training Testing
Class-Incremental Learning (CIL): Tasks have disjoint - ) )
data label spaces. Task identities are only provided ML [279] {{De . t}oen, bi=; {p(Xt)}i=j; t is not required
] ] 67], [423 , 7 (X p and ); =Y, for ¢ p(X, 7, t is not required

Task-Free Continual Learning (TFCL): Tasks have dis- {Dr e (%) # p(%5) ! it p(X)hie 4
joint data label spaces. Task identities are not pro- TIL [167], [423] {Dt, thieT: p(Xi) #p(X;)and YV; NY; =0 fori # j {p(Xt)}teT; t is available
vided in either training or testing. _ o, . .

; . : IL [167], [423 Dy, tyiet: p(Xi X)and Y, NY; =0 f X, ot labl
Online Continual Learning (OCL): Tasks have disjoint CIL [167], [+27] {Dt,theri p(Xi) # p(X;) and Yi 01 Y; = 0 fori # j {p(X3)}ie7; tis unavailable
data label spaces. Training samples for each task TFCL [15] {Div}oen, et P(X) # p(X;)and Y, NY; =0 fori # j {p(X¢) }eT; t is optionally available
arrive as a one-pass data stream. ‘ _ _ ] ] ]
Blurred Boundary Continual Learning (BBCL): Task OCL [16] {{Drv}ven, beeT, [bl = 1, p(Xs) # p(Xj) and YiNY; = O fori # j | {p(X:)}ecT tis optionally available
boundaries are blurred, characterized by distinct but BBCL [27], [46] {Di,theT; p(X:) #p(X;), Vi #V;and Vi NY; # O fori # j {p(X;)}eeT; t is unavailable
overlapping data label spaces. ;
Continual Pre-training (CPT): Pre-training data ar- CPT [409] {D{", t}1e 70, followed by a downstream task j {p(Xt)}+=;; t is not required

rives in sequence. The goal is to improve knowledge
transfer to downstream tasks.

Table from Wang, Zhang, Su, Zhu. T-PAMI 2023



Related Learning Approaches

e Transfer Learning (finetuning) / Source task
o Model trained on task 1: finetune it on task 2
(but use limited task 2 data) \
Target task

o Not continual (just one step finetuning)

o Mo retention/accumulation of knowledge — ,
[ random initialize + train

1 fine-tune
] unchanged m
: : Task 1
e Multi-task Learning ~ _/
o Jointly learn multiple related tasks simultaneously B
o Not continual (simultaneous learning on all tasks) L _\_
Task 2




Methods for Continual / Lifelong Learning



LwF: Learning without Forgetting

Only use examples from new task (no access to previous task data) and optimize for:

(1) high accuracy on new task (2) preservation of responses on old tasks

Learning without Forgetting

Input: Tareet:

model (a)’s

- i B response for
new tas
_ - old tasks
image

new task

ground truth



LwF: Learning without Forgetting

LEARNINGWITHOUTFORGETTING:
Start with:
fs: shared parameters
0,: task specific parameters for each old task -
Xn, Yn: training data and ground truth on the new task

new task
image

Learning without Forgetting

99 P

Target:
model (a)’s

response for
old tasks

new task

ground truth



LwF: Learning without Forgetting

LEARNINGWITHOUTFORGETTING:
Start with:
0s: shared parameters
6,: task specific parameters for each old task
Xn, Yy training data and ground truth on the new task
Initialize: new task

Y, + CNN(X», 05, 6,) // compute output of old tasks for new data | ™
0, +RANDINIT(|6,.|) // randomly initialize new parameters

Input:

Learning without Forgetting

o9

Target:

model (a)’s
response for
old tasks

new task
ground truth



LwF: Learning without Forgetting

LEARNINGWITHOUTFORGETTING:
Start with:

0s: shared parameters

6,: task specific parameters for each old task

Xn, Yy training data and ground truth on the new task
Initialize:

Y, « CNN(X,, 05, 0,)

0, +RANDINIT(|6,])

Train:
Define Y, = CNN(X,,, 05, 0,) // old task output
Define Y, = CNN(X~, 65, 6n) // new task output

// compute output of old tasks for new data
// randomly initialize new parameters

Input:

new task

image

Learning without Forgetting

o9

Target:

model (a)’s
response for
old tasks

new task
ground truth



LwF: Learning without Forgetting

LEARNINGWITHOUTEFORGETTING:
Start with:
0s: shared parameters
0,: task specific parameters for each old task
Xn, Y, training data and ground truth on the new task
Initialize:
Yo &~ CRN(X,; @65 05)
0 < RANDINIT(|6,])

// compute output of old tasks for new data
// randomly initialize new parameters

Train:

Define Y, = CNN(X,, 0s, 8,) // old task output

Define Y,, = CNN(X,,, 0, 0 // new task output

0. 0 9  argmin( Lo R(0s,0,,0,)

850,80,
Multinomial logistic loss Weight decay of 0.0005
Loew(Yn,In) = —¥Yn - logFn
R i i ‘ (()"»') LT p (D)y1/T

£Old(Y0-,~ yo) = yO7 yo — Z y’( ) log y’( y;(z) . (L}_’ ,gO(Z) . (Uo")

T > @

Distillation loss

Learning without Forgetting

Input: Target:
model (a)’s
response for

old tasks

new task
image -

new task
ground truth



ICaRL: Incremental Classifier and Representation Learning

Add new classes, with restricted access to previous task data, to optimize for:

(1) high accuracy on new task (2) preservation of responses on old tasks

nicxelodeon S

* A subset of previous task data is stored (“exemplars”)
o Size of exemplar set is constant

o As new classes arrive, some exemplars are removed/replaced

Exemplar set
(old classes)

UHH UHH New exemplar set

= ([ 000 0
[l

New training data
(new class)




ICaRL: Incremental Classifier and Representation Learning

Algorithm 2 iCaRL INCREMENTALTRAIN

input X°,..., X% //training examples in per-class sets

input K // memory size

require © // current model parameters

require P = (Py,...,Ps_1) // current exemplar sets
© < UPDATEREPRESENTATION(X®, ..., X% P, 0)
m K/t // number of exemplars per class

fory=1,...,s—1do
P, <+~ REDUCEEXEMPLARSET(P,, m)
end for
fory=s,...,tdo
P, <~ CONSTRUCTEXEMPLARSET(X,, m, O)
end for

P+ (P,...,P) // new exemplar sets

Exemplar set
(old classes)

0 0

oL

New training data
(new class)

R

Model
update

—J



ICaRL: Incremental Classifier and Representation Learning

Algorithm 2 iCaRL INCREMENTALTRAIN

input X°,..., X% //training examples in per-class sets

input K // memory size

require © // current model parameters

require P = (Py,...,Ps_1) // current exemplar sets
© < UPDATEREPRESENTATION(X®, ..., X% P, 0)
m K/t // number of exemplars per class

fory=1,...,s—1do
P, <+~ REDUCEEXEMPLARSET(FP,, m)
end for
fory=s,...,tdo
P, +— CONSTRUCTEXEMPLARSET(X,,m, O)
end for

P+ (P,...,P) // new exemplar sets

Algorithm 3 iCaRL UPDATEREPRESENTATION

input X*,..., X% //training images of classes s, ...,
require P = (Py,...,P;_4) // exemplar sets
require © /[ current model parameters

// form combined training set:

D+ U{(x,y):zeXy} U U {(z,y) : ¢ € PY}

Y=38,...5t y=1..,8—1

/] store network outputs with pre-update parameters:
fory=1,...,s—1do
q; < gy(z;) forall (z;,-) € D
end for
run network training (e.g. BackProp) with loss function

t
4O)=—>" | D 0,y 108 9y(®:)+ 8,y 10B(1—9y (1))
(z;,y:)€ED y=s

s—1

+>_a¥ log gy (i) +(1—a!) log(1—gy (1))

y=1

that consists of classification and distillation terms.

Exemplar set
(old classes)

0 0

oL

New training data
(new class)

R

Model
update

—J



Accuracy
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1ICaRL vs LwF Results

iCaRL
LwF.MC
fixed repr.
finetuning

100 %

90 %,
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20 % .
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- ea
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Number of classes

(b) Top-5 accuracy on ilLSVRC-small (top) and iILSVRC-full (bottom).



Progressive Neural Networks

output, outputs outputs

[ a |4 a‘

1 2) 3
hy” hs” s

* Instantiate a new NN for each new task :

o Lateral connections to features of previously learned data

* Previous task data is NOT stored

o NN weights implicitly encode knowledge of previous tasks

/2(1“ M.’] h(l:i)
» Complexity of model grows with each task VA :/'

input

(k) _ (k) ¢ (k) (:3) 1) (4)
o To decide which subset of weights to use for prediction hi” =F | Wi hisy + 2Ui hiZy
i<

* Task labels are needed at test time



Comparison of iCaRL vs LwF

iCaRL
LFW

PNN

Task labels
needed?

No

Yes

Yes

Old training
data needed?

Yes
No

No

Constant
data size

Yes

Yes

Yes

vs PNN

Constant model
complexity

Yes
Yes

No (doubling per each new
task)

Type

Class incremental
Task incremental

Task incremental



Thoughts on Increasing Model Complexity

* Lifelong/Continual Learning ~ progressively growing training set

* New knowledge acquired (new classes, new domains, ...) over time may saturate
network capacity

o As data complexity increases, model capacity (# parameters) should also increase?

o Initially a small model could work (to prevent overfitting)

* If model capacity needs to be incremented, we need to avoid retraining the new
(bigger) network from scratch every time.

o The main idea behind “Student-Teacher” networks



Increasing Model Complexity: Net2Net

Traditional Workflow Net2Net Workflow

Initial Design Rebuild the Model Initial Design Reuse the Model
L O @
Q w I% Ne&Ne&ieratnr
ini [lr) ini Training }

Training Training
L 8 i
@ w Q Training
<
< O

m i m



Resources

* Bing Liu's Webpage (Bing Liu is a pioneer in continual/open world ML)
https: //www.cs.uic.edu/liub/lifelong-learning.html

* Book: https://link.springer.com/book/10.1007/978-3-031-01581-6
(send me an email if you don’t have PDF access)

* Podcast: https://worldofpiggy.com/podcast/2017/03/28/lifelong-machine-learning/

(with one of the authors of the above book)


https://www.cs.uic.edu/%7Eliub/lifelong-learning.html
https://link.springer.com/book/10.1007/978-3-031-01581-6
https://worldofpiggy.com/podcast/2017/03/28/lifelong-machine-learning/
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