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Domain Adaptation and Generalization Visualization

(thanks to Tatiana Tomassi's ECCV 2020 Tutorial)



Classical Domain Adaptation
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Classical Domain Adaptation
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Domain Generalization: Applications

Wildlife recognition

d = Location 245

d = Location 1 d = Location 2
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Tissue classification
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Code completion

Repository ID (d) Source code context (x) Next tokens (y)
Train Repository 1 ... frem easyrec,gateway import EasyRec <EOL» gateway = get_item_type
EasyRec('tenant' K "key') <EOL> item_type = gateway.
. response = gateway.get_other_users() <EOL> last_request
get_params = HTTPretty.
Repository 2 import numpy as np ... <EOL> if np,linalg.norm(target - linalg
prev_target) > far_threshold: <EOL> norm = np.
. new_trans = np.zeros((n_beats + max_beats, n_beats) max
<EOL> new_trans[:n_beats, :n_beats] = np.
Test Repository 6,001 . if e.errno == errno.ENOENT: <EOL> continue <EOL> p = communicate
subprocess.Popen () <EOL> stdout = p.
. command = shlex.split(command) <EOL> command = environ
map(str, command) <EOL> env = os,




How to Learn Generalizable Representations?

To overcome spurious correlation —> train a neural network to learn domain invariance

Domain invariance: we want to learn features that don’t change across domains

Goal: classify dog vs. cat

Domain 1:
water )
Trained model
= Train Deploy
45% of train data 5% of train data % O
Domain 2:
grass

5% of train data 45% of train data

Source Domains

/‘ﬁ‘ '—MHH _

Domain-invariant information
~._ Animal

Is this a dog?
Prediction: Yes
Groundtruth: Yes

v

Target Domain



ldea #1 Regularization



Reqularization-based Method

Key idea: Use a regularizer to align representations across domains

—> get domain-invariant representation

Domain 1:
water

45% of train data 5% of train data

Domain 2:
grass

5% of train data 45% of train data

Source Domains

Animal Water
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N
K Align representations
Animal Grass }
I B
=
Animal
'
Representations .



Domain 1:
water

Domain 2:
grass

o

459% of train data

5% of train data

Reqgularization-based Method

5% of train data

Q0O

45% of train data
Source Domains

Label classification loss

|

I'I'Iﬁl;l'l [E(x,y}[f(fg(x)a }’)] + A'Ereg “

!

Average over training examples 4

Animal Water

Vo
I

Align representations

Animal Grass

Vo
]

Representations

Explicit regularizer to learn
domain-invariant representation



Domain Adversarial Training
(one of the student presentations)

Tzeng et al. Deep Domain Confusion. arXiv ‘14
Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16



Alternative Approach — CORAL

Key idea: directly aligning representations between different domains with some
similarity metrics

CORAL: Correlation Alignment for Domain Adaptation (usually also used in DG)

, cov covS "R Notations xl = Rk Xz = Rk
o ‘ i i fcB
- % j L k: num of features 1 1
. — ---E k\ . claaT;ﬁG:;amn = _ITXI = [Rl)dc Yy = —1TX2 = Rlxk

') § eee \, ny B

+ :L | T \'\\ l nl
Domain 1 B! 3 E*E?E. \ €= Z X =)' (X = py)
@ w atEG CORAL Calculate n— 143
¥ v Tk fef i loss ) . I
- CovS ¥ covariance matrices I .
= o8 _ - T
l ﬁ _b.. -== classification CE = e — 1 Z (XZ - Pz) (Xz - 4“2)
- 2 i=1
@ (1 1]
e & o
Domain 2 CORAL loss coral = ?HC[ - Gl
Classification loss
}il+ﬂ'1 E - .
xplicit regularizer to learn
Z= Z Z o). 3) + AL coral domain-invariant representation

Sun et al. Correlation Alignment for Deep Domain Adaptation. ar¥iv '16 24
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Results

ERM CORAL

SR -ad

- ® L B 66.5% 68.7%
OfficeHome PR §

DomainNet i S 40.9% 41.5%

iWildCam 30.8% 32.7%

DANN

65.9%

38.3%

n/a
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Recap: Spurious Correlation

Recap: spurious correla5on between domains and labels

Spurious informa5on

Domain 1: S~

water

Trained model

= _ Train Deploy
45% of train data 5% ofZrain data % O

= ’
Domain 2:
it} R Aw

grass

|s this a dog?
Prediction: No
Groundtruth: Yes x

PRt
\ 4

5% of train data 45% of train data

Source Domains Target Domain



Data Augmentation

Question: Will the network still associate dogs
. . -
If we can collect more data with water background in source domains?
NO! There are many more backgrounds. We can’t

recognize dogs only with grass background.

s norme ey
e

Is this a dog?
Prediction: Yes

Groundtruth: Yes

Keyboard
Source Domains

Challenge Target Domain

We can not collect morg,data > - Let’s generate data!



Data Augmentation

Generating data with simple operators

Flipping Colour Jittering &

2"’/ Rotating = 4 ... Edge Enhancement "f .:=
—— T e — i
—— Original ‘;{P
g oy Cropping Fancy PCA B e,
English
B French
translate to
original | I have no time | \*’ il
je n'ai pas le temps Requires knowledge of the
augmented | T do not have time ‘//mgmm prOblem domaln
English snglish
| =

Any general approaches?

https://amitness.com/2020/02/back-translation-in-google-sheets/

Figure: Back Translation

31



Data Augmentation — Mixup

Interpolating training examples

A learning model D = {x;,y; 1=, — Classifier,

Mixup D = {%i, 73, - Classifier,

where % = Ax; + (1 — Dx;, 5; = Ay; + (1 — D)y;
A~Beta(a, )

Generating some virtual
examples between two
classes

[1.0, 0.0] [0.0, 1.0] [0.7, 0.3]
Zhang et al. mixup: Beyond Empirical Risk MinimizaSon. ICLR ‘18 cat dog 32 cat dog cat dog



Data Augmentation — Mixup

Mixup can improve the performance on domain generalization

Empirical Risk Minimizalon mixup
70.3% 71.2%
32.8% 34.2%

(el \V}

FMoW
But it is not always good!
— Original mixup only focuses

29.9% 76.5% on data augmentation instead
of learning domain invariance.

RxRx1

How to Improve it?



Regularization-based v.s. Augmentation-based Methods

Regularization-based Method Augmentation-based Method

+ Easy to understand and simple to
+ General to all kinds of data and networks implement

+ No need to worry about how to design

+ Some theoretical guarantee
regularizers

- Rely on the design of reqgularizers
- Largely limited to classification



Discovering Adversarial Data Augmentation

(Series of Work by Tejas)



Problem Setting: Single Source Domain Generalization
- B —

TESTING

N

* Given: Labeled training data from “Source” Domain

* Not Given: Target examplars; knowledge of unseen domains




SSDG: Single Source Domain Generalization

* For SSDG, Data Augmentation is crucial !!!
« To increase diversity of training data
* To simulate new domains
« To cover distributions that may be encountered at test-time



Data Augmentation is Crucial ... But which augmentation?

unseen domains?

* For SSDG, Data Augmentation is crucial !!!

« To increase diversity of training data X =— g & — Xg
* To simulate new domains
« Jo cover distributions that may be encountered at test-time P,

How do we know which data augmentations will be useful?
(We don’t have access to the test domains)




Data Augmentation is Crucial ... But which augmentation?

* Existing Data Augmentation techniques
* Introduce a strong preference towards certain types of diversity

AugMix (Hendrycks et al. ICLR 2019) RandConv (xu et al ICLR 2027)
Combination of geometric transforms and image filters Convolve image with random filter

conv filters

AugMix: Hendrycks et al. ICLR 2019; RandConv: Xu et al. ICLR 2020



Data Augmentation is Crucial ... But which augmentation?

* Existing Data Augmentation techniques
* Introduce a strong preference towards certain types of diversity
* Mixed results on different domain shift datasets

% change in accuracy compared to ERM (no augmentation)

B ADA

B M-ADA
Bl AugMix
B RandConv

25
70 19.5

16.3

15

10

6.4

6
ﬁ

A Accuracy (%)
i

1) Worse than
standard training

-10

-15 MNIST PACS 0fficeHome CIFAR-10-C

ADA: Volpi et al. Neurips 2018; M-ADA: Qiao et al. CVPR 2019; AugMix: Hendrycks et al. ICLR 2019; RandConv: Xu et al. ICLR 2020



Rethink Data-Augmentation

Go Beyond STATIC, PRE-DEFINED Augmentations



Our Solution: Discover Data Transformations During Training

X —> g, —> X

?

How?
Classifier’s failures are informative — leverage them for guiding data augmentation
Tune parameters of a image-to-image network g() to transform images

Key Finding
Data transformations discovered during training are more effective
Instead of using pre-defined static augmentations



IIALTII
Generalizing to Domain Shift via
Adversarially Learned Transformations

Tejas Gokhale, Rushil Anirudh, Jay Thiagarajan, Bhavya Kailkhura, Chitta Baral, Yezhou Yang

% Ari_zona_State WACV 2023
University .

B Lawrence Livermore
National Laboratory




ALT: Adversarially Learned Transformations

—@

Image Transformation Network Classifier

g0 10

With Parameters ¢ With Parameters 6




ALT: Adversarially Learned Transformations

H fo P’?

For each batch learn perturbations of ¢ to maximize classifier loss

m@f;lx Lpce(f(g9(x0):0),y)

¢ — ¢+ V(Las(f(g(x P)),y) — Lry(xy)




Classifier
LOSS

Pre-Training
Phase




Pre-Training
Phase

Learn Transformations

Classifier »
LOSS H

max Lpce(f(g(x;¢);0),y)

Adversarial
Maximization

>




Pre-Training
Phase

Classifier »
LOSS 9

Adversarial
Maximization

Learn Transformations

Generate
Augmentations

These transformed images are used for training




Enforcing Consistency on Classifier’s Predictions

P T Dy

Pmix = >

Lconsistency = Dkl (Pmixlp) + DL (pmixlpg)




Improving Diversity with ALT

ALT

via adversarial perturbations of ¢

STATIC AUGMENTATION

via static data augmentations
e.g. AugMix, RandConv

Use ALT in conjunction with static data augmentations from previous work
This further boosts performance compared to using g() only



Enforcing Consistency on Classifier’s Predictions

_ Petpgtpr

Pmix = 3

Lconsistency — DKL (pmixlp) + DKL (pmixlpg) + DKL (pmixlpr)




Results: (Style Shift)

Object Classification Digit Classification
F
s 2 s 2
3 7 3 7 D
= = s =
Style Shift (Objects) Style Shift (Digits)

55

Pixel-Level
>0Perturbations Pixel-Level Static

Perturbations Augmentations

mmmStatic

Li et al. "PACS Dataset” ICCV 2017



(Subpopulation Shift) Animal Classification

Living-17 Dataset

TRAININ

Test
* Trained on one set of sub-species (apes: gibbon/orangutan)
» Tested on a different set of sub-species (apes: gorilla/chimpanzee)

ALT improves robustness to Subpopulation Shift

Santurkar et al. "BREEDS Benchmark” ICLR 2021



Results: Application to Societal Challenges
(Hospital Shift) (Terrain Shift)

[ ] [ ] [ ] [ ] [ ] [ ]
Tumor Classification Land-Use Classification
Train Val (OOD) Test (OOD) Tr?in 2002--2013 TQSt
d = Hospital 2 d = Hospital 3 d = Hospital 4 d = Hospital 5 05 G Ky :
o -7 - ~ 15 [R5 !:‘ - - =y=e - Bing [0
& gﬁ \ Saa :fa’.&\?‘:.?‘..e‘l Y AR é’
: FrSeaBInRd | RASATRS 2%
.-JM‘%;_;}% =
e e " 2
<%, 'ﬁ{.:‘ g 3
Ybas) R
BT AT . :
| T et %éﬁ 2002 / 2009 / 2012 / 2016 / 2017 /
© S dop? y & | Americas Africa Europe Americas Africa
@‘:ﬁﬁli '.QJ =
ey | % ~
S 2 g'%s shopping multi-unit road recreational educational
M 0 flped E’§ mall residential bridge facility institution
2013-2016 2016-2018

Hospital 4 Hospital 5

& > & >

Koh et al. “WILDS Benchmark”, ICML 2021

& >



What if knowledge about unseen domains is available?
How can we leverage that knowledge

to discover image transformations?



“AGAT"
Generalizing to Domain Shift via
Attribute Guided Adversarial Training

Tejas Gokhale, Rushil Anirudh, Bhavya Kailkhura, Jay Thiagarajan, Chitta Baral, Yezhou Yang

% Ari_zona_State AAAI 2021
University -

B Lawrence Livermore
National Laboratory




Using Attribute Knowledge for Domain Generalization

In real-world scenarios, test examples can vary along attributes
Size, Shape, Materials, Geometric Parameters, Lighting, ...

Cyan Yellow Cyan Yellow

TRAINING: cylinders and cubes TEST: spheres and pyramids

Attribute-Shift:
Shape, Size

In ALT, we assumed no access to such attributes
How can we leverage attributes to learn useful image transformations?



CLEVR-Singles: A Dataset for Studying Attribute-Level Domain Shift

GREEN BLUE YELLOW

{medium, sphere, metal, {large, pyramid, rubber, southeast}  {small, cylinder, rubber, northeast} {large, cube, metal, southwest}
nOrthwest)

 Photorealistic rendering of single objects. Controlled setting for studying attribute-level domain shift
» (Classification) task attribute: Color; Task-invariant Attributes: Size, Shape, Material,

Position : :
Size Small, Medium, Large 3
Shape Sphere, Cylinder, Cube, Pyramid 4
Material Rubber, Metal 2
Position NW, SW, NE, SE 4
Color Red, Blue, Green, Yellow, Cyan, Purple, Grey, Brown 8

CLEVR-Singles Open-Source Data & Code: https://github.com/tejas-gokhale/CLEVR-Singles



https://github.com/tejas-gokhale/CLEVR-Singles

CLEVR-Singles: A Dataset for Studying Attribute-Level Domain Shift

Create train—test dataset splits s.t. attribute combinations at test time are not seen during training
e.g. unseen Material + Position combinations

Metal, far Metal, far Rubber, close Rubber, close/

Metal, close Metal, close Rubber far Rubber far /

Metal objects far from the camera
Rubber objects close to the camera

Metal objects close to the camera
Rubber objects far from the camera

g TESTING A /TRAINING\




Problem Setting

Attribute Set
\

["Size”

/
TRAINING DATASET

n 1 n 1 n 1

Shape”, “Material”, “Position”]

!

* Unknown:
- which attributes will change at test time
- by what magnitude
- in what combination

* No Access To:
- Validation set
- exemplars representing attribute shift

Goal

Train a classifier that can generalize to attribute-level domain shift




Attribute-Guided Adversarial Training

« Parameterize input space by attributes «
* Train a Generative Model conditioned on the attributes

« Maximize exploration of input space by learning attribute-level
transformations

g(x, a) =gy 88
X * Xg

New Attributes a
|[Large, Metallic, Cube]




Attribute-Guided Adversarial Training

 Desirable Properties of Generative Function g()
* Generate plausible and diverse perturbations of attributes
» Reflect a larger coverage of attribute space than training data
* Generate novel attribute combinations

INPUT

Small

OUTPUTS

Medium Large Sphere Cylinder Pyramid Cube Rubber Metal




Attribute-Guided Adversarial Training

4 D
/
X g(x, a") =
AN )
a A
[Small, Sphere, Rubber] New Attributes

!

a
|[Large, Metallic|

Discover attribute combinations that are adversarial to the classifier.

max £(f(g(x,a"),y)



Attribute-Guided Adversarial Training

4 )

9(x, @) =P
A

New Attributes
/

a
|[Large, Metallic]

Discover attribute combinations that are adversarial to the classifier.
AND explore new regions in the attribute space

max £(f(gCx,a)),y) +v|la —a'l],



Pre-Training Phase Classifier 9
Loss
. : : Adversarial %
Discover Adversarial Attributes Maximization 104
Generate Augmentations .#[g (x, a*) }

Train with Augmented Data

Classifier x




AGAT is effective for Discrete Attribute-Shift

« CLEVR-Singles
* Attributes:
* Train—Test split s.t.

« Limited attribute combinations are observed in during training

TASK: color classification
Size, Shape, Material, Position

e Performance is evaluated on all combinations

...\

Metal, far Metal, far Rubber, close Rubber, close/

Metal, close Metal, close Rubber, far Rubber, far

Metal objects far from the camera
Rubber objects close to the camera

Metal objects close to the camera
Rubber objects far from the camera

4 TESTING ) /TRAINING\\

Accuracy (%)

72.5

70.0

(=)}
~
w

[}
()
(o)

(=]
N
w

60.0

57.5

55.0

ERM

ADA

M-ADA

69.49

AGAT (Ours)




AGAT is effective for Geometric Shift

» Training data: MNIST digits
e Test data: unknown rotation, translation, scaling

Training

« AGAT outperforms prior work by a large margin

45 MNIST RTS
41.43

40

Testing & .
(Rotation/Translation/Scaling) >
O

< 30
o
o

<< 25

23.1 22.68

21.91
- mm T

ERM ADA M-ADA AGAT (Ours)




Results (3): AGAT is Effective for Natural Corruptions

Commonly occurring corruptions  No access to specific attributes

(CIFAR-10-C, Hendrycks et al. ICLR 2019)  We use pseudo-attributes (Gaussian coefficients arq, @)
x2
Gasi ois Shot ose Impulse Defocus Blur Frosted Glass Blur xg ey eza% + Tl, Where n~ N(O) 0.’2)

aV2m

SOTA on CIFAR-10-C

Pixel-Level

ai.is 70

70.0 Adv. Training
68.3
67.5
66.4
65.6

62.5
60.0
57.5
35.0 ERM T ALP

ADA M-ADA

Brightness Contrast Elastic Pixelate JPEG

Accuracy (%)
&
(<]

AGAT (Ours)




Adversarially Discovering Image Transformations

Without domain knowledge: ALT
With attribute-level knowledge: AGAT

Strong results for many types of distribution shift

Tt ee

Style Style Sub- Medical Land-Use/ Discrete Geometric Common
(Objects)  (Digits) population  Images Terrain  Attributes Transform Corruption
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