tejasgokhale.com

CMSC 491/691 Robust Machine Learning

# **Topic 2: Domain Generalization**







### Domain Adaptation and Generalization Visualization

(thanks to Tatiana Tomassi's ECCV 2020 Tutorial)



# **Classical Domain Adaptation**

Source (Train)



Target (Test)



# **Classical Domain Adaptation**

Source (Train)



Target (Test)





Annotated **Source** data

#### Annotated **Target** data

Target data **not available** at training time Target data **available** but not annotated



Annotated **Source** data

> Multiple Source Domains

**One** Source Domain

Annotated Target data

Target data **not available** at training time Target data **available** but not annotated

Only Source Model available, (**no source data**)



















# Domain Generalization: Applications

#### Wildlife recognition



#### Molecule property prediction



#### **Tissue classification**



#### Code completion

|       | Repository ID (d) | Source code context (x)                                                                                                            | Next tokens (y) |
|-------|-------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Train | Repository 1      | <pre> from easyrec.gateway import EasyRec <eol> gateway =<br/>EasyRec('tenant','key') <eol> item_type = gateway.</eol></eol></pre> | get_item_type   |
|       |                   | <pre> response = gateway.get_other_users() <eol> get_params = HTTPretty.</eol></pre>                                               | last_request    |
|       | Repository 2      | <pre>import numpy as np <eol> if np.linalg.norm(target - prev_target) &gt; far_threshold: <eol> norm = np.</eol></eol></pre>       | linalg          |
|       |                   | <pre> new_trans = np.zeros((n_beats + max_beats, n_beats) <eol> new_trans[:n_beats,:n_beats] = np.</eol></pre>                     | max             |
|       | 1                 |                                                                                                                                    |                 |
| Test  | Repository 6,001  | <pre> if e.errno == errno.ENOENT: <eol> continue <eol> p = subprocess.Popen () <eol> stdout = p.</eol></eol></eol></pre>           | communicate     |
|       |                   | <pre> command = shlex.split(command) <eol> command = map(str, command) <eol> env = os.</eol></eol></pre>                           | environ         |
|       |                   |                                                                                                                                    |                 |

## How to Learn Generalizable Representations?

To overcome spurious correlation —> train a neural network to learn **domain invariance** 

Domain invariance: we want to learn features that don't change across domains



### Idea #1 Regularization

# Regularization-based Method

#### Key idea: Use a regularizer to align representations across domains

#### —> get domain-invariant representation



### **Regularization-based Method**

Domain 1: water



45% of train data

Domain 2: grass



5% of train data

5% of train data

45% of train data

#### **Source Domains**



Explicit regularizer to learn domain-invariant representation

Average over training examples 19



Animal Water

# Domain Adversarial Training (one of the student presentations)

Tzeng et al. Deep Domain Confusion. arXiv '14 Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16

## Alternative Approach — CORAL

**Key idea:** directly aligning representations between different domains with some similarity metrics

fc6 fc7  $\mathbf{X}_1 \in \mathbb{R}^{n_1 \times k}$  $\mathbf{X}_2 \in \mathbb{R}^{n_2 \times k}$ Notations cov1 cov5 arc *k*: num of features  $\mu_1 = \frac{1}{n_1} \mathbf{1}^T \mathbf{X}_1 \in \mathbb{R}^{1 \times k}$   $\mu_2 = \frac{1}{n_2} \mathbf{1}^T \mathbf{X}_2 \in \mathbb{R}^{1 \times k}$ classification loss  $C_1 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (\mathbf{X}_1 - \mu_1)^T (\mathbf{X}_1 - \mu_1)$ shared Domain 1 Calculate CORAL fc6 fc7 loss covariance matrices cov1 cov5  $C_2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (\mathbf{X}_2 - \mu_2)^T (\mathbf{X}_2 - \mu_2)$ classification loss ...  $\mathcal{L}_{coral} = \frac{1}{4k^2} \|C_1 - C_2\|_F^2$ CORAL loss Domain 2 Classification loss  $\mathcal{L} = \sum_{i=1}^{n_1+n_2} \mathcal{L}_c(f_{\theta}(x_i), y_i) + \lambda \mathcal{L}_{coral} \longleftarrow$ Explicit regularizer to learn domain-invariant representation Sun et al. Correlation Alignment for Deep Domain Adaptation. arXiv '16

CORAL: Correlation Alignment for Domain Adaptation (usually also used in DG)



### Idea #2 Data Augmentation

# **Recap: Spurious Correlation**

#### **Recap:** spurious correla5on between domains and labels



# **Data Augmentation**

If we can collect more data

Question: Will the network still associate dogs with water background in source domains? NO! There are many more backgrounds. We can't

recognize dogs only with grass background.



# **Data Augmentation**

#### Generating data with simple operators



# Data Augmentation – Mixup

**Interpolating** training examples

A learning model  $\mathcal{D}_{tr} = \{x_i, y_i\}_{i=1}^N \rightarrow \text{Classifier},$ 

Mixup

$$\widetilde{\mathcal{D}}_{tr} = \{\widetilde{x}_i, \widetilde{y}_i\}_{i=1}^N \rightarrow \text{Classifier},\$$

where

$$\tilde{x}_i = \lambda x_i + (1 - \lambda) x_j, \tilde{y}_i = \lambda y_i + (1 - \lambda) y_j$$
$$\lambda \sim \text{Beta}(\alpha, \beta)$$

Generating some virtual examples between two classes



# Data Augmentation – Mixup

Mixup can improve the performance on domain generalization

|                          | Empirical Risk Minimiza1on | mixup        |                       |
|--------------------------|----------------------------|--------------|-----------------------|
|                          | 70.3%                      | 71.2%        |                       |
| Camelyon17               |                            |              |                       |
| FMoW                     | 32.8%                      | 34.2%        |                       |
| But it is not always goo | d!                         | <b>~</b> · · |                       |
| 734786-0873-68873        |                            | Urigin       | al mixup only focuses |



29.9%

RxRx1

How to Improve it?

on data augmentation instead

of learning domain invariance.

26.5%

### Regularization-based v.s. Augmentation-based Methods

#### **Regularization-based Method**

- + General to all kinds of data and networks
- + Some theoretical guarantee
- Rely on the design of regularizers

#### Augmentation-based Method

- + Easy to understand and simple to implement
- + No need to worry about how to design regularizers
- Largely limited to classification

### **Discovering Adversarial Data Augmentation**

(Series of Work by Tejas)

### **Problem Setting: Single Source Domain Generalization**



How can classifiers trained on one domain generalize to other **unseen domains?** 

• Given:



Labeled training data from "Source" Domain

#### • Not Given:



Target examplars; knowledge of unseen domains

### **SSDG: Single Source Domain Generalization**

How can classifiers trained on one domain generalize to other **unseen domains?** 

#### • For SSDG, Data Augmentation is crucial !!!

- To increase diversity of training data
- To simulate new domains
- To cover distributions that may be encountered at test-time



### **Data Augmentation is Crucial ... But which augmentation?**

How can classifiers trained on one domain generalize to other **unseen domains?** 

- For SSDG, Data Augmentation is crucial !!!
  - To increase diversity of training data
  - To simulate new domains
  - To cover distributions that may be encountered at test-time



#### How do we know which data augmentations will be useful? (We don't have access to the test domains)

### Data Augmentation is Crucial ... But which augmentation?

- Existing Data Augmentation techniques
  - Introduce a strong preference towards certain types of diversity



#### **RandConv** (*Xu et al. ICLR 2021*) Convolve image with random filter





AugMix: Hendrycks et al. ICLR 2019; RandConv: Xu et al. ICLR 2020

### Data Augmentation is Crucial ... But which augmentation?

- Existing Data Augmentation techniques
  - Introduce a strong preference towards certain types of diversity
  - Mixed results on different domain shift datasets



### **Rethink Data-Augmentation**

### **Go Beyond STATIC, PRE-DEFINED Augmentations**

#### **Our Solution:** *Discover* Data Transformations *During Training*



How?

Classifier's failures are informative – leverage them for guiding data augmentation Tune parameters of a image-to-image network g() to transform images

### **Key Finding**

#### Data transformations discovered during training are more effective

Instead of using pre-defined static augmentations

# "ALT"

# Generalizing to Domain Shift via Adversarially Learned Transformations

Tejas Gokhale, Rushil Anirudh, Jay Thiagarajan, Bhavya Kailkhura, Chitta Baral, Yezhou Yang



WACV 2023



### **ALT: Adversarially Learned Transformations**



Image Transformation Network g()With Parameters  $\phi$  Classifier f()With Parameters  $\theta$ 

### **ALT: Adversarially Learned Transformations**



For each batch learn perturbations of  $\phi$  to maximize classifier loss

$$\max_{\phi} \mathcal{L}_{BCE}(f(g(\mathbf{x}; \phi); \theta), \mathbf{y})$$

 $\phi \leftarrow \phi + \nabla (L_{cls}(f(g(x;\phi)), y) - L_{TV}(x_g))$ 

#### Pre-Training Phase

#### Learn Transformations

Generate Augmentations



#### Pre-Training Phase



 $\max_{\phi} \mathcal{L}_{BCE}(f(g(\mathbf{x}; \phi); \theta), \mathbf{y})$ 

Classifier

Generate Augmentations



Pre-Training Phase

Learn Transformations

Generate Augmentations



These transformed images are used for training

### **Enforcing Consistency on Classifier's Predictions**



 $L_{consistency} = D_{KL}(p_{mix}|p) + D_{KL}(p_{mix}|p_g)$ 

### **Improving Diversity with ALT**



Use ALT in conjunction with static data augmentations from previous work

This further boosts performance compared to using g() only

### **Enforcing Consistency on Classifier's Predictions**



 $L_{consistency} = D_{KL}(p_{mix}|p) + D_{KL}(p_{mix}|p_g) + D_{KL}(p_{mix}|p_r)$ 

### **Results: (Style Shift)**

#### **Object Classification**

#### **Digit Classification**





Style Shift (Objects)





### (Subpopulation Shift) Animal Classification



- Trained on one set of sub-species
- Tested on a different set of sub-species

(apes: gibbon/orangutan) (apes: gorilla/chimpanzee)

#### **ALT improves robustness to Subpopulation Shift**

Santurkar et al. "BREEDS Benchmark" ICLR 2021

### **Results: Application to Societal Challenges**

#### (Hospital Shift) Tumor Classification

#### (Terrain Shift) Land-Use Classification





Koh et al. "WILDS Benchmark", ICML 2021





### What if knowledge about unseen domains is available?

### How can we leverage that knowledge

to discover image transformations?

# "AGAT"

# Generalizing to Domain Shift via Attribute Guided Adversarial Training

Tejas Gokhale, Rushil Anirudh, Bhavya Kailkhura, Jay Thiagarajan, Chitta Baral, Yezhou Yang





### **Using Attribute Knowledge for Domain Generalization**

In real-world scenarios, test examples can vary along attributes Size, Shape, Materials, Geometric Parameters, Lighting, ...



In ALT, we assumed no access to such attributes

How can we leverage attributes to learn useful image transformations?

#### **CLEVR-Singles: A Dataset for Studying Attribute-Level Domain Shift**



- Photorealistic rendering of single objects. Controlled setting for studying attribute-level domain shift
- (Classification) task attribute: Color; Task-invariant Attributes: Size, Shape, Material,
   Position

| Size     | Small, Medium, Large                                | 3 |
|----------|-----------------------------------------------------|---|
| Shape    | Sphere, Cylinder, Cube, Pyramid                     | 4 |
| Material | Rubber, Metal                                       | 2 |
| Position | NW, SW, NE, SE                                      | 4 |
| Color    | Red, Blue, Green, Yellow, Cyan, Purple, Grey, Brown | 8 |

CLEVR-Singles Open-Source Data & Code: <u>https://github.com/tejas-gokhale/CLEVR-Singles</u>

### **CLEVR-Singles: A Dataset for Studying Attribute-Level Domain Shift**

Create train—test dataset splits s.t. attribute combinations at test time are not seen during training e.g. unseen Material + Position combinations



### **Problem Setting**





**Attribute Set** 

e.g. ["Size", "Shape", "Material", "Position"]

#### • Unknown:

- which attributes will change at test time
- by what magnitude
- in what combination

#### • No Access To:

- Validation set
- exemplars representing attribute shift

#### Goal

Train a classifier that can generalize to attribute-level domain shift

- Parameterize input space by attributes  $\alpha$ 
  - Train a Generative Model conditioned on the attributes
- Maximize exploration of input space by learning attribute-level transformations



- Desirable Properties of Generative Function g()
  - Generate plausible and diverse perturbations of attributes
  - Reflect a larger coverage of attribute space than training data
  - Generate novel attribute combinations





$$\max_{\alpha'} \ell(f(g(x,\alpha')), y)$$



$$\max_{\alpha'} \quad \ell(f(g(x,\alpha')), y) + \gamma ||\alpha - \alpha'||_2$$

Pre-Training Phase



**Generate Augmentations** 

### **AGAT is effective for Discrete Attribute-Shift**

• CLEVR-Singles

#### **TASK: color classification**

- Attributes: Size, Shape, Material, Position
- Train—Test split s.t.
  - Limited attribute combinations are observed in during training
  - Performance is evaluated on all combinations





### **AGAT is effective for Geometric Shift**

- Training data: MNIST digits
- Test data: unknown rotation, translation, scaling
- AGAT outperforms prior work by a large margin



Training



Testing (Rotation/Translation/Scaling)



### **Results (3): AGAT is Effective for Natural Corruptions**

#### **Commonly occurring corruptions** (CIFAR-10-C, *Hendrycks et al. ICLR 2019*)



- No access to specific attributes
- We use pseudo-attributes (Gaussian coefficients  $\alpha_1, \alpha_2$ )



### **Adversarially Discovering Image Transformations**

Without domain knowledge: **ALT** 

With attribute-level knowledge: AGAT

Strong results for many types of distribution shift

