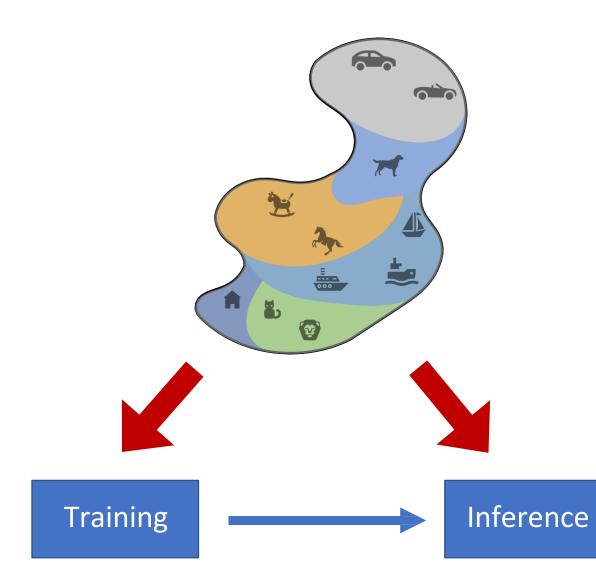
tejasgokhale.com

CMSC 491/691 Robust Machine Learning

Topic 1: Domain Adaptation

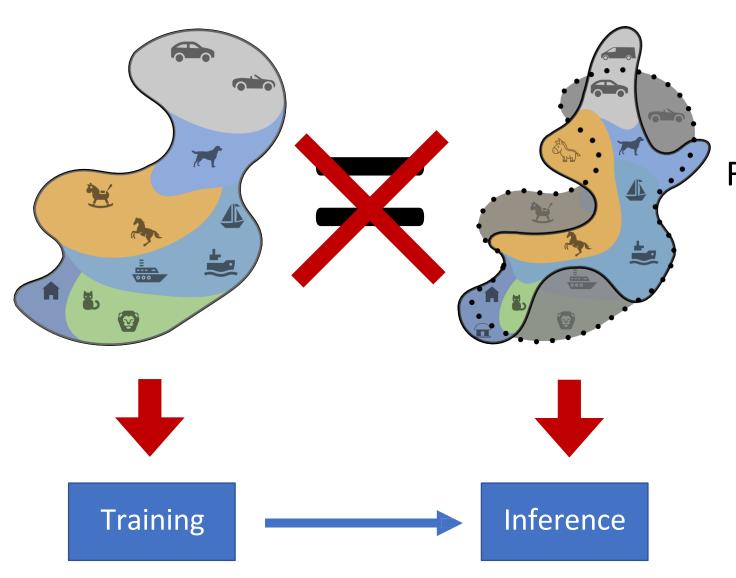
A Limitation of the (Supervised) ML Framework



Measure of performance: Fraction of mistakes during testing

But: In reality, the distributions we **use** ML on are NOT the ones we **train** it on

A Limitation of the (Supervised) ML Framework

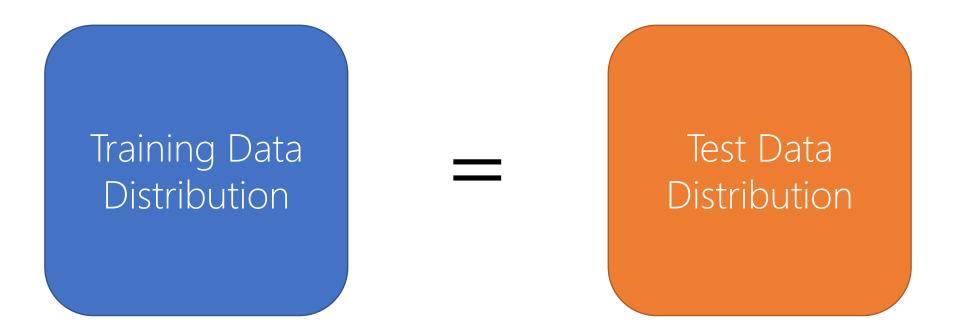


Measure of performance: Fraction of mistakes during testing

But: In reality, the distributions we **use** ML on are NOT the ones we **train** it on

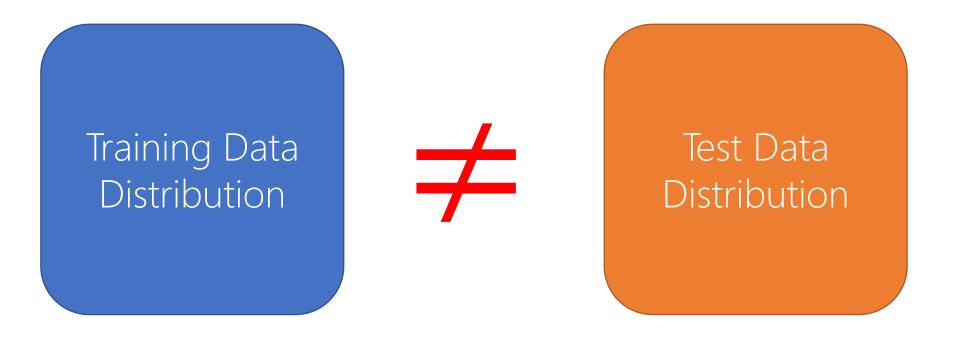
What can go wrong?

Standard *i.i.d.* Assumption in Machine Learning



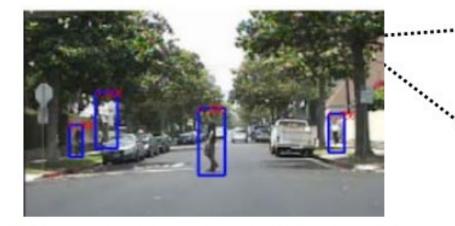
"Independent and Identically Distributed" Models learn useful patterns

Standard *i.i.d.* Assumption in Machine Learning



IID Assumption collapses in real-world "in-the-wild" settings Model performance deteriorates

Example Scenarios



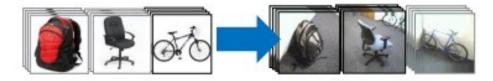
What your net is trained on

What it's asked to label

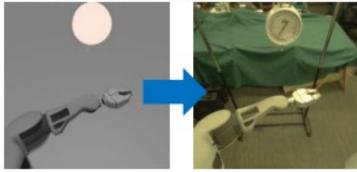
"Dataset Bias" "Domain Shift" "Domain Adaptation" "Domain Transfer"

Example Scenarios

From dataset to dataset



From simulated to real control



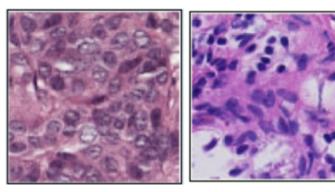
From RGB to depth

From CAD models to real images

Example Scenarios

Tumor detection & classification

Source hospital Target hospital



varying imaging techniques, different demographics

Land use classification Source region Target region

appearance of buildings, plants; weather conditions, pollution Text classification, generation Source corpus Target corpus

WIKIPEDIA differing sentence structure, vocabulary, word use

Distribution shift is unavoidable for models that learn from data

Distribution shift is unavoidable for models that learn from data

Distribution shift causes failures of ML models

Benchmarks / Challenge Datasets

Dataset	Domain	s				
Colored MNIST	+90%	+80% 3 Trelation between	-90%	1)		
Rotated MNIST	•° 9	15°	30°	45°	60°	75°
VLCS	Caltech101	LabelMe	SUN09	VOC2007		
PACS	Art	Cartoon	Photo	Sketch		
Office-Home	Art	Clipart	Product	Photo		
Terra Incognita	L100 (camera trap	L38 location)	L43	L46		
DomainNet	Clipart	Infographic	Painting	QuickDraw	Photo	Sketch

Algorithm	CMNIST	RMNIST	VLCS	PACS	OfficeHome	TerraInc	DomainNet	Average	
ERM	51.5 ± 0.1	98.0 ± 0.0	77.5 ± 0.4	85.5 ± 0.2	66.5 ± 0.3	46.1 ± 1.8	40.9 ± 0.1	66.6	
IRM	52.0 ± 0.1	97.7 ± 0.1	78.5 ± 0.5	83.5 ± 0.8	64.3 ± 2.2	47.6 ± 0.8	33.9 ± 2.8	65.4	
GroupDRO	52.1 ± 0.0	98.0 ± 0.0	76.7 ± 0.6	84.4 ± 0.8	66.0 ± 0.7	43.2 ± 1.1	33.3 ± 0.2	64.8	
Mixup	52.1 ± 0.2	98.0 ± 0.1	77.4 ± 0.6	84.6 ± 0.6	68.1 ± 0.3	47.9 ± 0.8	39.2 ± 0.1	66.7	
MLDG	51.5 ± 0.1	97.9 ± 0.0	77.2 ± 0.4	84.9 ± 1.0	66.8 ± 0.6	47.7 ± 0.9	41.2 ± 0.1	66.7	
CORAL	51.5 ± 0.1	98.0 ± 0.1	78.8 ± 0.6	86.2 ± 0.3	68.7 ± 0.3	47.6 ± 1.0	41.5 ± 0.1	67.5	
MMD	51.5 ± 0.2	97.9 ± 0.0	77.5 ± 0.9	84.6 ± 0.5	66.3 ± 0.1	42.2 ± 1.6	23.4 ± 9.5	63.3	
DANN	51.5 ± 0.3	97.8 ± 0.1	78.6 ± 0.4	83.6 ± 0.4	65.9 ± 0.6	46.7 ± 0.5	38.3 ± 0.1	66.1	
CDANN	51.7 ± 0.1	97.9 ± 0.1	77.5 ± 0.1	82.6 ± 0.9	65.8 ± 1.3	45.8 ± 1.6	38.3 ± 0.3	65.6	
MTL	51.4 ± 0.1	97.9 ± 0.0	77.2 ± 0.4	84.6 ± 0.5	66.4 ± 0.5	45.6 ± 1.2	40.6 ± 0.1	66.2	
SagNet	51.7 ± 0.0	98.0 ± 0.0	77.8 ± 0.5	86.3 ± 0.2	68.1 ± 0.1	48.6 ± 1.0	40.3 ± 0.1	67.2	
ARM	56.2 ± 0.2	98.2 ± 0.1	77.6 ± 0.3	85.1 ± 0.4	64.8 ± 0.3	45.5 ± 0.3	35.5 ± 0.2	66.1	
VREx	51.8 ± 0.1	97.9 ± 0.1	78.3 ± 0.2	84.9 ± 0.6	66.4 ± 0.6	46.4 ± 0.6	33.6 ± 2.9	65.6	
RSC	51.7 ± 0.2	97.6 ± 0.1	77.1 ± 0.5	85.2 ± 0.9	65.5 ± 0.9	46.6 ± 1.0	38.9 ± 0.5	66.1	
Model selection: training-domain validation set									

Benchmarks / Challenge Datasets

	Domain shift					Subpopulation shift	Domain shift + subpopulation shift			
Dataset	iWildCam	Camelyon17	RxRx1	OGB-MolPCBA	GlobalWheat	CivilComments	FMoW	PovertyMap	Amazon	Py150
Input (x)	photo	tissue slide	cell image	molecular graph	wheat image	online commen	t satellite image	satellite image	product review	code
Prediction (y)	animal species	tumor	perturbed gene	bioassays	wheat head bbo	x toxicity	land use	asset wealth	sentiment	autocomplete
Domain (d)	camera	hospital	batch	scaffold	location, time	demographic	time, region	location	user	git repository
Train example						What do Black and LGBT people have to do with bicycle licensing?		15	Overall a solid package that has a good quality of construction for the price.	import numpy as np norm=np
Test example				P		As a Christian, I will not be patronizing any of those businesses.			I "loved" my French press, it's so perfect and came with all this fun stuff!	<pre>import subprocess as sp p=sp.Popen() stdout=p</pre>
Adapted from	Beery et al. 2020	Bandi et al. 2018	Taylor et al. 2019	Hu et al. 2020	David et al. 2021	Borkan et al. 2019	Christie et al. 2018	Yeh et al. 2020	Ni et al. 2019	Raychev et al. 2016

Domain Adaptation

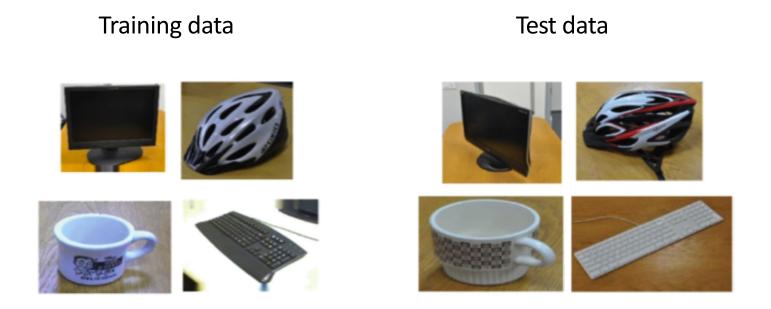
• Problem Setup (Handwritten Notes)

- Theory
 - A theory of learning from different domains (Ben-David et al. MLJ 2010) <u>https://link.springer.com/content/pdf/10.1007/s10994-009-5152-4.pdf</u>
 - Learning from multiple sources (Crammer et al. JMLR 2008)
 <u>https://www.jmlr.org/papers/volume9/crammer08a/crammer08a.pdf</u>

Domain Adaptation Scenarios

(adapted from Mathieu Salzmann)

Standard Visual Recognition



Train a classifier on the training data and directly apply it to the test data

A classifier trained on one domain may perform poorly on another domain

Semi-supervised vs Unsupervised

• Semi-supervised: Some labeled target data, but not enough to train from scratch

Fully-labeled

Source data

A few labels

Target data

Semi-supervised vs Unsupervised

• Unsupervised: No labels for the target data

Fully-labeled

Single vs Multiple Source Domains

Source domain 1

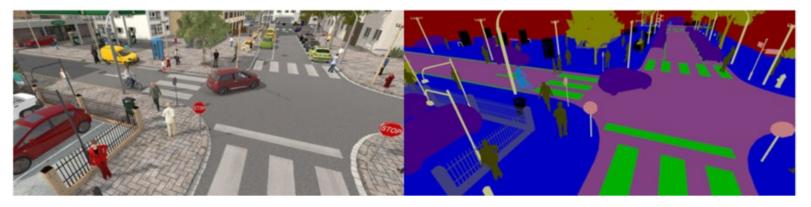
Source domain 2

Target domain

Moving towards domain generalization ۲

Domain Adaptation: Other Scenarios

Synthetic (source domain)



Real (target domain)

Domain Adaptation: Other Scenarios

Synthetic (source domain)

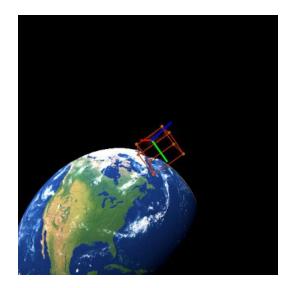
with facial landmarks

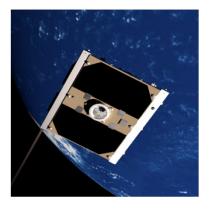
Real (target domain)

with facial landmarks

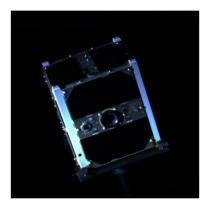
Domain Adaptation: Other Scenarios

Satellite 6D pose estimation





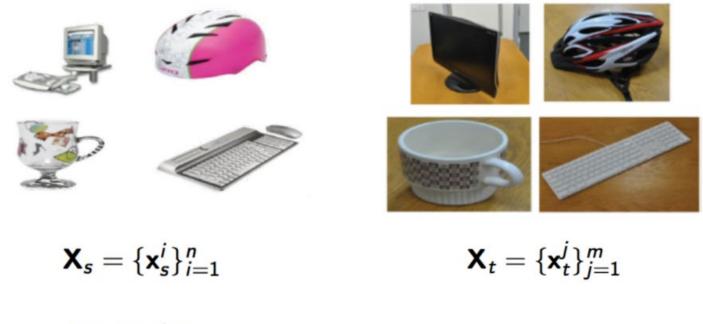
Synthetic (source)



Real (target)

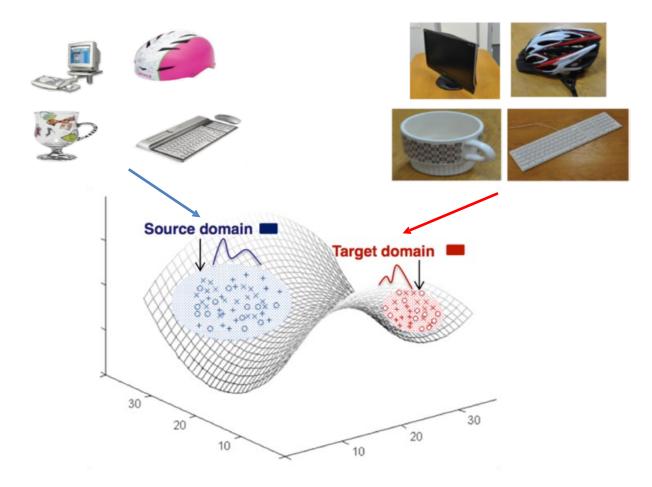
Setup

- Each sample is represented by a feature vector:
 - In the traditional methods, e.g., bag of SURF features
 - More recently, features extracted by a deep backbone network



Label: $\{y_s^i\}_{i=1}^n$

• The domain shift is defined as a difference in the distribution of the source and target samples



• Typically, the literature focuses on the covariate shift case, where

 $p_t(x_t) \neq p_s(x_s)$

• But

 $p_t(y|x_t) = p_s(y|x_s)$

 The goal of domain adaptation is then often expressed as that of finding a transformation T(.), such that

$$p_t(T(x_t)) = p_s(T(x_s))$$

- Note that other types of shift have been studied. For example:
 - Long et al., ICCV 2013

$$p_t(y|x_t) \neq p_s(y|x_s)$$
 (concept shift)

- Gong et al., ICML 2016

 $p_t(y|T(x_t)) \neq p_s(y|T(x_s))$

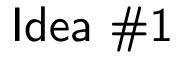
- Kouw & Loog, 2018

 $p_t(y) \neq p_s(y)$ (prior shift)

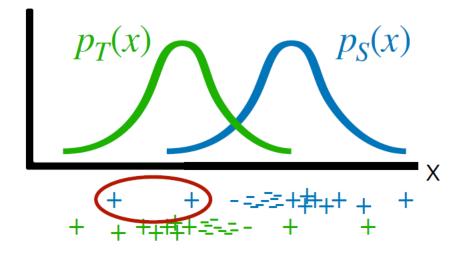
• In this part, I will nonetheless focus on the covariate shift problem

Domain Adaptation Scenarios

(adapted from Chelsea Finn)



Toy domain adaptation problem



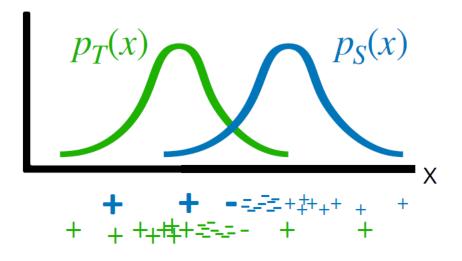
e.g. sample selection bias

Problem: Classifier trained on $p_S(x)$ pays little attention to examples with high probability under $p_T(s)$

> How can we learn a classifier that does well on $p_T(x)$? (using labeled data from $p_S(x)$ & unlabeled data from $p_T(x)$)

> > from Chelsea Finn

Toy domain adaptation problem



e.g. sample selection bias

Problem: Classifier trained on $p_S(x)$ pays little attention to examples with high probability under $p_T(s)$

Solution: Upweight examples with high $p_T(x)$ but low $p_S(x)$

Why does this make sense mathematically?

Domain adaptation via importance sampling

Empirical risk minimization on source data: $\min_{\theta} \mathbb{E}_{p_{S}(x,y)}[L(f_{\theta}(x), y)]$ **Goal**: ERM on target distribution: $\min_{\theta} \mathbb{E}_{p_T(x,y)}[L(f_{\theta}(x), y)]$ $\mathbb{E}_{p_T(x,y)}[L(f_{\theta}(x), y)] = \left[p_T(x, y)L(f_{\theta}(x), y)dxdy \right]$ $= \int p_T(x, y) \frac{p_S(x, y)}{p_S(x, y)} L(f_{\theta}(x), y) dx dy$ $= \mathbb{E}_{p_{S}(x,y)} \left| \frac{p_{T}(x,y)}{p_{S}(x,y)} L(f_{\theta}(x),y) \right|$ Note: p(y|x) cancels out if it is the same for source & target

Solution: Upweight examples with high $p_T(x)$ but low $p_S(x)$

from Chelsea Finn

Domain adaptation via importance sampling

$$\min_{\theta} \mathbb{E}_{p_{S}(x,y)} \left[\frac{p_{T}(x)}{p_{S}(x)} L(f_{\theta}(x), y) \right]$$

How to estimate the importance weights $\frac{p_T(x)}{p_S(x)}$?

Option 1: Estimate likelihoods $p_T(x)$ and $p_S(x)$, then divide. But, difficult to estimate accurately.

Can we estimate the ratio *without* training a generative model?

Bayes rule:

$$p(x | \text{target}) = \frac{p(\text{target} | x)p(x)}{p(\text{target})}$$

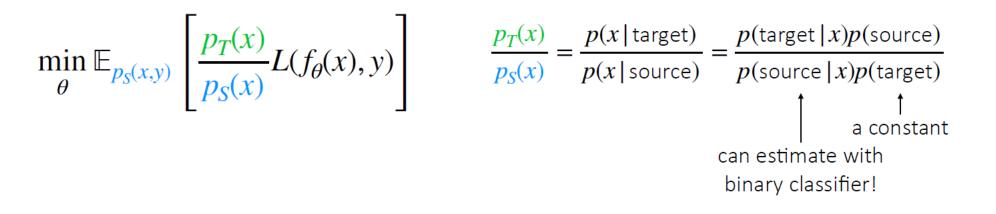
$$p(x | \text{source}) = \frac{p(\text{source} | x)p(x)}{p(\text{source})}$$

$$\frac{p(x | \text{source})}{p(\text{source})} = \frac{p(\text{source} | x)p(x)}{p(\text{source})}$$

$$\frac{p(x | \text{source})}{p(\text{source})} = \frac{p(\text{source} | x)p(x)}{p(\text{source})}$$

from Chelsea Finn

Domain adaptation via importance sampling



Full algorithm:

- 1. Train binary classifier c(source | x) to discriminate between source and target data.
- 2. Reweight or resample data \mathscr{D}_S according to $\frac{1 c(\text{source} | x)}{c(\text{source} | x)}$.
- 3. Optimize loss $L(f_{\theta}(x), y)$ on reweighted or resampled data.

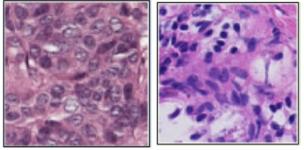
What assumption does this make?

$$\min_{\theta} \mathbb{E}_{p_{S}(x,y)} \left[\frac{p_{T}(x)}{p_{S}(x)} L(f_{\theta}(x), y) \right]$$

Source $p_S(x)$ needs to cover the target $p_T(x)$. Formally: if $p_T(x) \neq 0$, then $p_S(x) \neq 0$.

Tumor detection & classification

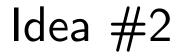
Source hospital Target hospital



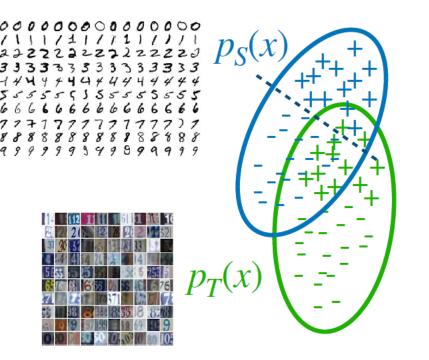
—> May have enough coverage of distr.

-> Source probably won't cover target distr!

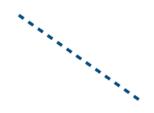
from Chelsea Finn



Domain adaptation if support is not shared?



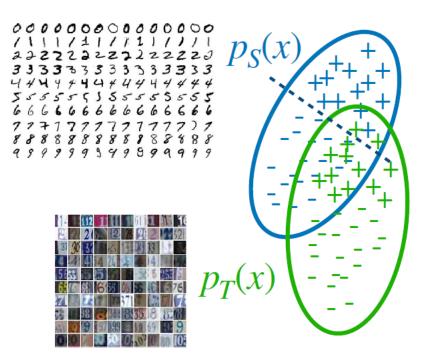
Can we align the features?



Source classifier in *aligned feature space* is more accurate in target domain.

How to align the features?

Domain adaptation if support is not shared?



How to align the features?

Source encoder f_{θ_s} Target encoder f_{θ_T}

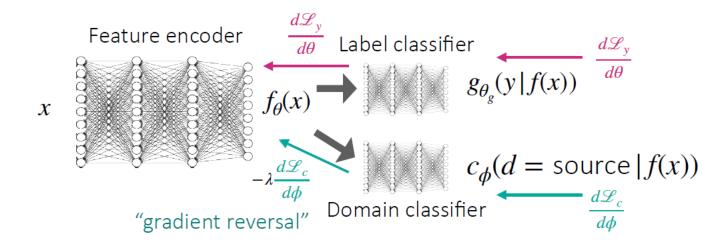
Need to match features at *population-level*.

i.e. make encoded samples $f_{\theta_S}(x), x \sim p_S(\cdot)$ indistinguishable from $f_{\theta_T}(x), x \sim p_T(\cdot)$

Key idea: Try to fool a domain classifier c(d = source | f(x)).

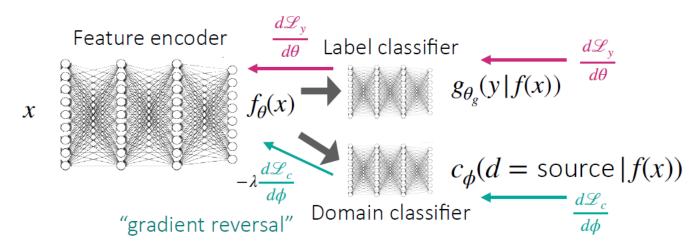
If samples are indistinguishable to discriminator, then distributions are the same.

Key idea: Try to fool a domain classifier c(d = source | f(x)).



Minimize label prediction error & maximize "domain confusion"

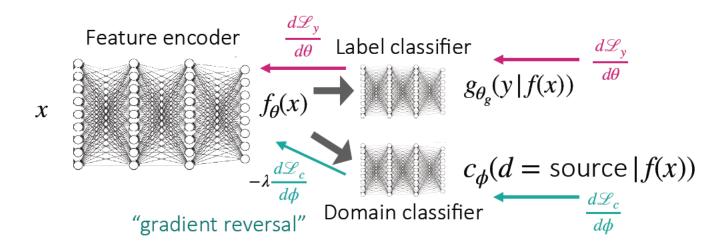
Tzeng et al. Deep Domain Confusion. arXiv '14



Full algorithm:

- Randomly initialize encoder(s) $f_{ heta}$, label classifier $g_{ heta_{o'}}$ domain classifier c_{ϕ} 1.
- 2. Update domain classifier: $\min \mathscr{L}_c = -\mathbb{E}_{x \sim D_s}[\log c_{\phi}(f(x))] \mathbb{E}_{x \sim D_T}[1 \log c_{\phi}(f(x))].$
- Update label classifier & encoder: $\min_{\theta, \theta_g} \mathbb{E}_{(x,y) \sim D_S}[L\left(g_{\theta_g}(f_{\theta}(x)), y\right)] \lambda \mathscr{L}_c$ Repeat steps 2.8.2 3.
- Repeat steps 2 & 3. 4.

Tzeng et al. Deep Domain Confusion. arXiv '14



Can learn separate source and target encoder

Source encoder f_{θ_S} Target encoder f_{θ_T}

Make encoded samples $f_{\theta_s}(x), x \sim p_s(\cdot)$ indistinguishable from $f_{\theta_T}(x), x \sim p_T(\cdot)$

-> can give model more flexibility

Different forms of domain adversarial training.

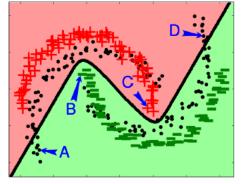
Option 1: Maximize domain classifier loss (gradient reversal, same as GANs)

Option 2: Optimize for 50/50 guessing

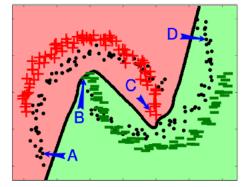
Tzeng et al. Deep Domain Confusion. arXiv '14

Toy example

source domain: +, target domain data: •



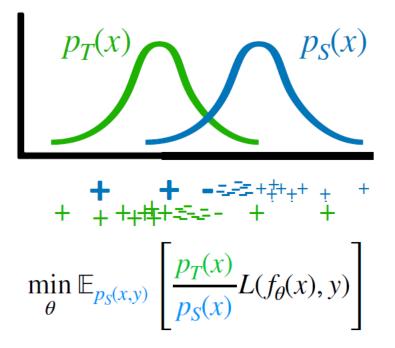
standard NN training



domain adversarial training

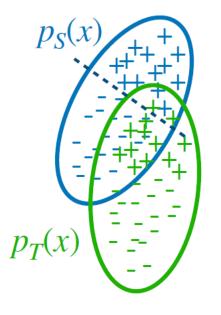
	Source	401	9 \$88	7 3 10	🛆 🔞 👀
	TARGET	<u> </u>	41825	242	7
Method	Source	MNIST	Syn Numbers	SVHN	Syn Signs
	TARGET	MNIST-M	SVHN	MNIST	GTSRB
Source only		.5225	.8674	.5490	.7900
DANN		$.7666\ (52.9\%)$. 9109 (79.7%)	.7385 (42.6%)	.8865 (46.4%)
TRAIN ON TARGET		.9596	.9220	.9942	.9980

Importance weighting

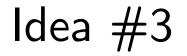


- + simple, can work well
- requires source distr. to cover target

Feature alignment



- + fairly simple to implement, can work quite well
- + doesn't require source data coverage
- involves adversarial optimization
- requires clear alignment in data



What if it is hard to align features?

Idea: translate between domains

$$\text{i.e.}\ F: X_S \to X_T \quad \text{or}\ G: X_T \to X_S$$

If you could translate source examples to target examples:

- 1. Translate labeled source dataset to target domain with F.
- 2. Train predictor on translated dataset.
- 3. Deploy predictor.

Alternatively, if you could translate from target to source:

- 1. Train predictor on source dataset.
- 2. Translate target example to source domain with G.
- 3. Evaluate predictor on translated example.

Key question: How to translate between domains?

Domain Translation with CycleGAN

Idea: translate between domains

i.e. $F: X_S \to X_T$ or $G: X_T \to X_S$ Key question: How to translate between domains?

Step 1: Train *F* to generate images from $p_T(x)$ and *G* to generate images from $p_S(x)$ Using GAN objective: $\mathscr{L}_{GAN} = \mathbb{E}_{x \sim p_T(\cdot)}[\log D_T(x)] + \mathbb{E}_{x \sim p_S(\cdot)}[1 - \log D_T(F(x))]$

Challenge: The mapping is underconstrained, can be arbitrary. Can we encourage models to learn a consistent, bijective mapping?

> **Step 2**: Train *F* and *G* to be cyclically consistent. $F(G(x)) \approx x$ and $G(F(x)) \approx x$

Domain Translation with CycleGAN Idea: translate between domains i.e. $F: X_{S} \to X_{T}$ or $G: X_{T} \to X_{S}$ **Step 1**: Train F to generate images from $p_T(x)$ and G to generate images from $p_{s}(x)$ Using GAN objective: $\mathscr{L}_{GAN} = \mathbb{E}_{x \sim p_T(\cdot)}[\log D_T(x)] + \mathbb{E}_{x \sim p_S(\cdot)}[1 - \log D_T(F(x))]$ **Step 2**: Train F and G to be cyclically consistent. $F(G(x)) \approx x$ and $G(F(x)) \approx x$ i.e. $\mathbb{E}_{x \sim p_{c}(\cdot)} \|G(F(x)) - x\|_{1} + \mathbb{E}_{x \sim p_{r}(\cdot)} \|F(G(x)) - x\|_{1}$

Full objective: $\mathscr{L}_{GAN}(F, D_T) + \mathscr{L}_{GAN}(G, D_S) + \lambda \mathscr{L}_{CVC}(F, G)$

Domain Translation with CycleGAN

Idea: translate between domains

i.e.
$$F: X_S \to X_T$$
 or $G: X_T \to X_S$

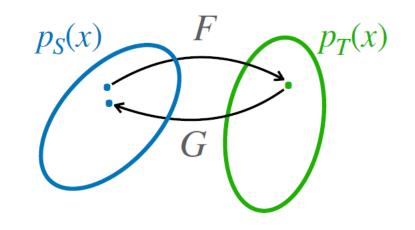
Importance weighting

Feature alignment

- + simple, can work well
- requires source distr.
 to cover target

- + fairly simple to implement, can work quite well
- + doesn't require source coverage
- involves adversarial optimization
- requires clear alignment in data

Domain translation



- + conceptually neat, can work quite well
- + interpretable (easier to debug, cool pictures)
- -- involves generative modeling & adversarial optimization
- -- requires clear alignment in data