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A Limitation of the (Supervised) ML Framework

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

Training Inference



Training Inference

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

What can go wrong?

=
A Limitation of the (Supervised) ML Framework



Standard i.i.d. Assumption in Machine Learning

“Independent and Identically Distributed” 
Models learn useful patterns

Training Data
Distribution

Test Data
Distribution=



Standard i.i.d. Assumption in Machine Learning

IID Assumption collapses in real-world “in-the-wild” settings
Model performance deteriorates

Training Data
Distribution

Test Data
Distribution≠



Example Scenarios

Figure Source:  Kate Saenko 
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Example Scenarios

Figure Source: Chelsea Finn



Distribution shift is unavoidable for models that learn from data



Distribution shift is unavoidable for models that learn from data

Distribution shift causes failures of ML models



Benchmarks / Challenge Datasets

DomainBed (Gulrajani and Lopez Paz ICLR 2021)



Benchmarks / Challenge Datasets

Pang Wei Koh “WILDS” (Koh et al. 2021)



Domain Adaptation

• Problem Setup (Handwritten Notes)

• Theory

o A theory of learning from different domains (Ben-David et al. MLJ 2010) 
https://link.springer.com/content/pdf/10.1007/s10994-009-5152-4.pdf 

o Learning from multiple sources (Crammer et al. JMLR 2008) 
https://www.jmlr.org/papers/volume9/crammer08a/crammer08a.pdf 

https://link.springer.com/content/pdf/10.1007/s10994-009-5152-4.pdf
https://www.jmlr.org/papers/volume9/crammer08a/crammer08a.pdf


Domain Adaptation Scenarios

(adapted from Mathieu Salzmann)



Standard Visual Recognition

Train a classifier on the training data and directly apply it to the test data

Training data Test data



Domain Shift

Source domain Target domain

A classifier trained on one domain may perform poorly on another domain

Training data Test data



Semi-supervised vs Unsupervised

• Semi-supervised: Some labeled target data, but not enough to train from 
scratch

Source data Target data

Fully-labeled A few labels



Semi-supervised vs Unsupervised

Source data Target data

Fully-labeled

• Unsupervised: No labels for the target data



Single vs Multiple Source Domains
Target domain

• Moving towards domain generalization

Source domain 2

Source domain 1



Domain Adaptation: Other Scenarios
Synthetic (source domain)

Real (target domain)



Domain Adaptation: Other Scenarios



Domain Adaptation: Other Scenarios

Satellite 6D pose estimation

Synthetic (source)

Real (target)



Setup



Domain Shift
• The domain shift is defined as a difference in the distribution of the 

source and target samples



Domain Shift



Domain Shift



Domain Adaptation Scenarios

(adapted from Chelsea Finn)



Idea #1



from Chelsea Finn



from Chelsea Finn
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Idea #2

















Idea #3
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