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Announcements

* Team formation is due by next Monday

o Announcement on Blackboard has sign-up link (same link as Presentation/Survey)

* Project Proposals will be due around Sept 23 (tentative)

o Announcement coming soon. 2-page proposal

o Rough outline:
— Title of the project
— MNames and emails of group members
— Problem you wish to tackle (and why)
— Proposed approach and methods
— Novelty (how is your approach better or different than previous work)
— Timeline
— Plan for Individual Contributions (What each student in the group will do)

— Expected Outcome and Worst-Case Outcome: tell us the what you ideally want to achieve through this project



Label each pixel as a category. Each category has a unique color.




Scene-Level Classification: This is a "“PARK”




S

4

A view of a park on a nice spring
day

Image Captioning: Describe the image in human language (e.g. English)



* i

PEOPLE WALKING IN THE
PARK

Do not - PERSON FEEDING
feed DUCKS IN THE PARK
the ducks BSDUCKS LOOKING FOR FOOD

sign

Dense Image Captioning: Describe several parts of the image



What makes this challenging?



Why do we care about recognition?

» The concept of “categories” encapsulates
semantic information that humans use
when communicating with each other.

» Categories are also linked with what can
we do with those objects.




Object categories aren't everything
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Object categories aren't everything

A picture is worth a 1000 words...
Or just 107

sky

_building

street lamp

Source: A. Efros



How finegrained should categories be ?

A Beijing City Transit Bus #17, serial number 432537

Source: A. Efros



4 W, 5

———

Need more general (useful) information

What can we say the very
first time we see this thing?

Functional:

® A large vehicle that may be moving fast, probably to the right, and  will hurt

you if you stand in its way.
® However, at specified places, it will allow you to enter it and transport

you quickly over large distances.

Communicational:

® bus, autobus, Aewyopeio, dnibus, aBTobyc, 2N H %5, etc.

Source: A. Efros



Visual challenges with categories

Chair

* A lot of categories are
functional

» Categories are 3D,
but images are 2D

» World is highly varied

train

Source: A. Efros



Limitsto direct perception




Importance of Context

Source: Antonio Torralba



We might think seeing is believing ...

Video by Antonio Torralba (starring Rob Fergus)



But i1s 1t ?

=

Video by Antonio Torralba (starring Rob Fergus)






Image classification

Classifier e

Image X label y

Source: Isola, Torralba, Freeman



Image classification

What should these be?
e

— | | || | || | | —— |“Fish”

Image X label y

Source: Isola, Torralba, Freeman



ldea #1: Fully-connected network

Fully-connected (linear) layer

C
C
: o Is really big! E.g. 256 x 256
C




Can we use convolution in a neural network?

Source: Isola, Torralba, Freeman



Recall: Sparsely connected network

Each unit is connected to a subset
of the units in the previous layer.
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Source: Isola, Torralba, Freeman



Convolutional neural network

Conv layer

Each output unit is computed
from an image patch.

3830435

Source: Isola, Torralba, Freeman



Conv layer

Welight sharing

TLALAL]

e
y 8(V)

We “share” weights for each patch.

If a feature is useful in one position,
it should be useful in others, too.

Source: Isola, Torralba, Freeman



Convolution is a linear function

K ((+1) w (1)

® Constrained linear layer e.g., image
®* Fewer parameters: easier to learn, less overfitting
® Usually use zero padding

Source: Isola, Torralba, Freeman



Multiple channels

Conv layer
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Source: Isola, Torralba, Freeman



Conv layer

Multiple channels

E.g.:
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Source: Isola, Torralba, Freeman



Multiple channels

Conv layer

(1) (l+1)

W 1)

00000000
00000000
v
v
00000000

=100000000

.
X

Source: Isola, Torralba, Freeman



Multiple channels: Example

X(l) X(l+1)

v/ 4
128
E> Filter Bank with E>
3x3 filters
128

3 96

1238

How many parameters does each filter have?
(@) 9 (b)27 (c)96 (d) 2592

ource: Isola, Torralba, Freeman



Multiple channels: Example

X(l) X(l+1)

v/ 4
128
E> Filter Bank with E>
3x3 filters
128

3 96

128

How many parameters total does this layer have?
(@) 9 (b)27 (c)96 (d) 2592



Image classification

—_— ReLU ReLU RelU — |“Fish”

Image X label y

Source: Isola, Torralba, Freeman



Filter

OOQTQOOO

Pooling

Pool

TESLISLS

000O0000

Max pooling

L, =

max g(V;)

J2N (j)

Source: Isola, Torralba, Freeman



Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

Source: Isola, Torralba, Freeman



Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

large response
regardless of exact
position of edge

Source: Isola, Torralba, Freeman



Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

Source: Isola, Torralba, Freeman



Computation in a neural net

O 93 EY

~

— — "clown fish

J(X) = fu(. .. fa(f1(X)))

Source: Isola, Torralba, Freeman



Filter

OOQTQOOO

Downsampling

Pool and downsample

-5gebe0ss
slelelelelelole

Source: Isola, Torralba, Freeman



Strided operations

Conv layer

Strided operations combine a
8 O—C given operation (convolution or
O Stride 2 pooling) and downsampling into
® @O a single operation.
O
O -0 Strided convolution is an
8 alternative to pooling layers:

y 9(v) just do a strided convolution!

Source: Isola, Torralba, Freeman



Computation in a neural net

B

- - \ T - %
— e —»I — “clown fish

J(x) = fr(. .. f20f1(x)))

Source: Isola, Torralba, Freeman



ImageNet Challenge

* ~14 million labeled images, 20k classes
* |Images gathered from Internet

e Human labels via Amazon MTurk

 |ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC):

1.2 million training images, 1000 classes

[Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Knhosla, Bernstein, Berge, Fei-Fel,
“ImageNet Large Scale Visual Recognition Challenge”, 2015]



5,0

0,0

ImageNet Classification Error (Top 5)

i I I 1l aAm

2011 (XRCE) mu 1Alnlht} 2013 (2ZF) 2014 (VGG) 2014 uman zms (ResNet)
(GoogleNet)



Network designs



ImageNet classification (top 5) 2012: AlexNet

00 T 5 conv. layers

11x11 conv, 96, /4, pool/2 I

|_5x5 cun_v,ijﬁ, pool/2 |

3x3 conv, 384 |

v

3x3 conv, 384 |

4

3x3 conv, 256, pool/2 |

fc, 4096 |

v

fc, 4096 |

v

fc, 1000 |

5,0 -

0,0

2011 (XRCE) 2012 (AlexNet) Error: 16.4%

[Krizhevsky et al: ImageNet Classification with Deep Convolutional Neural Networks, NeurlPS 2012]

Source: Isola, Torralba, Freeman



Alexnet — [Krizhevsky et al. NIPS 2012]

[227x227x3] INPUT

55x55x96] CONV1: 96 11x11 filters at stride 4, pad O
\ 11x11 conv, 96, /4, pool/2 < 27x27x96] MAX POOL1: 3x3 filters at stride 2
| * 27x27x96] NORM1: Normalization layer

-
[_5x5 conv, 256, pool/2 27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
* 13x13x256] MAX POOL2: 3x3 filters at stride 2

| 3x3 conv, 384 | \ 13x13x256] NORM2: Normalization layer

‘ 3x3 conv, 384

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

. * w— \ [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
| 3x3 conv, 256, pool/2

* \ [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
| fc, 4096 [6x6x256] MAX POOL3: 3x3 filters at stride 2

' f 3195
| S v ~__
T~

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

| fc, 1000

[1000] FC8: 1000 neurons (class scores) 35

Source: Isola, Torralba, Freeman



2014: VGG
16 conv. layers

| 3x3 conv, 64

v

|
| 3x3conv, 64, pool/2 |
|
|

ImageNet Classification Error (Top 5)

| 3x3 conv, 128

v

| 3x3 conv, 128, pool/2
25,0 - ‘
3x3 conv, 256
\ 4
3x3 conv, 256
\ 4
WMo - 3x3 conv, 256
’ \ 4
3x3 conv, 256, pool/2
v
3x3 conv, 512
\ 4
15,0 - 3x3 conv, 512
\ 4
3x3 conv, 512
v
3x3 conv, 512, pool/2
: \ 4
10,0 3x3 conv, 512
\ 4
3x3 conv, 512
\ 4
3x3 conv, 512 |
5.0 - v
3x3 conv, 512, pool/2 |
\ 4
fc, 4096
A 4
0,0 | | fc, 4096

\ 4
2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) fc, 1000

Error: 7.3%

[Simonyan & Zisserman: Very Deep Convolutional Networks
Source: Isola, Torralba, Freeman o3 for Large-Scale Image Recognition, ICLR 2015]




VGG-Net [Simonyan & Zisserman, 2015]

2014: VGG
16 conv. layers

Main developments

®* Small convolutional kernels: only 3x3

® Increased depth (5-> 16/19 layers)

R T T P R R I Pt

Error: 7.3%

54 Source: Isola, Torralba, Freeman



Other tricks for designing convolutional nets



Chaining convolutions

3x3 3x3

Source: Isola, Torralba, Freeman

5x5

Nonlinearity in between.
25 coefficients, but only
18 degrees of freedom

9 coefficients, but only
6 degrees of freedom.
Less common.

56



1x1 convolutions

3x3

1x1

0 Why do this?

(nonlinearity in between)



Grouped Convolutions

Input:
N/2 channels

Output:
N channels

Concatenate— ---

Split channels into N groups, and process separately with N convolution:layers.



ImageNet Classification Error (Top 5)

25,0 -

0,0 -

15,0 -

10,0 -

) l:
0,0 . .

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG)

Source: Isola, Torralba, Freeman



ImageNet Classification Error (Top 5)

15,0 -
10,0 -
) I I

2011 (XRCE) :nu 1Ah:l'|ht} 2013 (ZF) 2014 (VGG) 2014 uman zms (ResNet)
(GoogleNet)

2016: ResNet
>100 conv. layers

B 1 -ITII

! -.1. G000 ED .a|-||i||-|||:|.

YU LSS UG BLY S LSS S

Error: 3.6%

[He et al: Deep Residual Learning for Image Recognition, CVPR 2016]

Source: Isola, Torralba, Freeman



2016: ResNet

>100 conv. layers ReSNet [He et al, 201 6]

Main developments

® Increased depth possible
through residual blocks

‘ weight layer ‘

lrehj
X

‘ weight layer ‘

identity

SUBELLLUEEEEUBEUELUNBUEEEUEE UL BEEBUEREE Y,

yius

Erro:r:I 3.6%

Source: Isola, Torralba, Freeman



Residual Blocks

Problem: Hard to train very deep nets (50+ layers). This is an optimization issue,
not overfitting: shallow models often get higher fraining accuracy than deep ones!

ldea: Make it easy to represent for the network to implement the identity.

Normal convolution + relu: Residual connection

Xi+1 = I'GIU(Xl' Of) Xi+1 = relu((xl- Of) + Xl')

In general, do multiple convolutions (with nonlinearities) before summing:

Xi+1 = FGIU(F(Xi) + X,‘)



Residual Blocks

Why do they work?

!
| weight layer | * Gradients can propagate faster
Flx) ‘ _ghllri'“ ‘ X (via the identity mapping)
Welght ayer identity

® Within each block, only small
residuals have to be learned

Source: Isola, Torralba, Freeman



Normalization layers

Standardize activations by subtracting mean and dividing by standard
deviation (averaged over all spatial locations).

This provides a constant “interface” for later layers of the networks.
Ensures that the previous layer will have zero mean,

Obtains invariance to mean and variance.



Source: Isola, Torralba, Freeman

Normalizationlayers

RelLU

/gg 8

- O 3

@ U
C

E[hy]
Var[hy]




Source: Isola, Torralba, Freeman

Normalization layers

h

RelLU O

O

O

O

O
_ P
/Var[hy]

W



Source: Isola, Torralba, Freeman

Normalization layers

RelLU

OOO0O0OF

W



Source: Isola, Torralba, Freeman

Normalization layers

RelLU

W



Instance normalization

Instance Norm Average and standard deviation
each filter response, estimated
Filter value in a CNN layer over instance.
HH"‘*H
AN #S5s l
L H:HMH" P
o o [ .
NNNN T o hi — Elhy
e == hk —
o \/Var[hy]

Normalize a single hidden unit's activations to be mean 0O, standard deviation 1.

[Figure from Wu & He, arXiv 2018] [Ulyanov et al., 20135]



Batch normalization

Batch Norm

Average and standard deviation
each filter response, estimated

5 AN Filter value ina CNN layer ~ over whole batch.
- H HIH‘
g |
& hi, — E[h
{ 7 kK — “[ k]
{__'_H hk —
\/Var[hy]

Normalize a single hidden unit's activations to be mean 0O, standard deviation 1.
At test time, remember the mean and standard deviation seen during training.

Can allow you to train with larger learning rate and significantly speed up training!

[Figure from Wu & He, arXiv 2018] [loffe & Szegedy, 2015]



What filters are learned?



What filters are learned?

Source: Marc’Aurelio Ranzato & Isola, Torralba, Freeman



Filters In first layer

Afy

-

\

11x11 convolution kernel
(3 color channels)

Source: Isola, Torralba, Freeman



Filters In first layer

Afy

Source: Isola, Torralba, Freeman



Filters In first layer

Afy

Source: Isola, Torralba, Freeman



Filters In first layer

Afy

e
| E

Source: Isola, Torralba, Freeman



Filters In first layer

Afy

=

Source: Isola, Torralba, Freeman



Filters In first layer

Afy

Source: Isola, Torralba, Freeman



Filters In first layer

Afy

Source: Isola, Torralba, Freeman



Filters In first layer

«ETPD D EEDDEEEREE
AL EENEL o o | || @ ||
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Bl = R EEE
WL s F i “ . \ EEEH LD ERENE
= B =T d! = B IRRNREHNE
dEVv=0N==vk BERERHRENEEE
Nnusg=-zazl RENANARNAE
EeE==E e DML ™

96 Units in conv1

Source: Isola, Torralba, Freeman



A few practical issues



Dealing with rectangular images

Rectangular _
images Resize,then take square

crop from center




Training with data augmentation

Flipping

* Less susceptible to overfitting.
* |Improves performance by simulating examples.

Original image



Training with data augmentation

Flipping Cropping

[ o
y ‘-
\ s 5
_ ’
-~

Original image Scaling Color jittering




Beyond image labeling



Object recognition: what objects are in the image?

f “Birds”

Source: Torralba, Freeman, Isola



Semantic segmentation

(Colors represent categories)

General technique: predict something at every pixel!

Source: Torralba, Freeman, Isola



ldea #1: Independently classity windows



Training data
- -\ Bird
; '\ “Bird”
| \ “Sky”

N

Y

\
™

) [l
) ]

-
=

L
L
!‘ L

o

) B

) [

f What's the object class of the center pixel?

-

Source: Torralba, Freeman, Isola



ldea #2: Fully convolutional networks



Reuse features across windows

Convolution layers
5555
227x221 / Fully connected layer
27x27

13x13 /
e P——— |cat

© .00 0
qf)ﬁ 3%0‘ 3‘6& 166&09 5‘09 \'QQ

90 _

HxW
' What do we do with the fully connected layers?

[Shelhamer, Long, Darrell, “Fully convolutional retworks for semantic segmentation”, CVPR 2015}



Converting fully connected layer to convolution

4096-dim. vector
256 channels

5 flatten j>

RNXNXC—)C'

Fully connected layer:



Converting fully connected layer to convolution

C C’/

N
M f> M
N

M M

Convertintoan N X N convolution!




Fully Convolutional Networks

95x55
227x227

1x1

&09%‘69%000

ol
A 15°

HxW 9 H/4xW/4

H/8xW/8
H/16xW/16

H/32xW/32

s) g@) QQ
b b 6&°gm° A0
Vel e

250

Upsampling

Source: Isola, Torralba, Freeman



What if we remove subsampling layers?

— — — —
— — — —
—_— — — —

Problems: small receptive fields (and expensive)




ldea #3: Dilated convolutions



Dilated convolutions

5x5

3x3 il il Bl Il » Alternative to pooling that

b | c o(o|lo|0]|O . f size

— T preserves inpu

1 olololo]o * 9 degrees of freedom
g[o[h[o]i » 5X5 receptive field




Architectures with dilated convolutions

» Architecture design: dilation by 2~ instead of striding  times
» Obtains comparable receptive field to CNN with strides.

[Yu and Koltun 2016, https://arxiv.org/pdf/1511.07122.pdf]

Adapted from: Isola, Torralba, Freeman



CNN without dilated convolutions

\@
¢ Ny K £
'\ 0 =

Apply CNN convolutionally



CNN with dilated convolutions

\~ O
¢ & e &
NP %) NARE &°
Q\\- < \ﬁ(\g Q\ o o

Even with dilated convolutions, still not full resolution



ldea #4: Encoder-decoder models



Encoder-decoder architectures

Convolutions Deconvolutions

Source: Torralba, Freeman, Isola



Upsampling

111|212
1T | 2 111|212 |
— =P Convolution
3 | 4 3(3[/4]4
3(3[4]4

* Often using nearest-neighbor upsampling
* Can also use interpolation.

* Produces fewer “checkerboard” artifacts



Transposed convolution

- +

N
w
w
N
o(N O |o|w|=
I NI=IRI=1F NI ¥
o|o|o| |o|o|o
o|o|o| |o|o|o
O WMo |ow =
—
Slo|o| [ofaN

/ [

* Weight the filter by the image coefficient and sum.
* Also sometimes called “upconvolution” or “deconvolution”.

14

10

17

12




Transposed convolution

1 1 1 2
2 3 3 4
/ F
Can lead to “checkerboard” artifacts. Donahue, et al, 2016 [3

[Odena et al. Distill article]




Encoder-decoder architectures

Skip connections

Decoder

Convolutions Deconvolutions

Source: Torralba, Freeman, Isola



Encoder-decoder architectures

Transposed convolution Early layers and late layers have

/ same shape. Concatenate channel-wise!

“Vanilla” encoder-decoder architecture U-Net

Figures from [Isola et al., “Image-to-Image Translation with Conditional Adversarial Networks”, 2017]



Encoder-decoder architectures

SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image
Segmentation

RGB Image

Convolutional Encoder-Decoder

polla, Senior Member, IEEE,

Pooling Indices

| - Conv + Batch Normalisation + RelU
I Pooling [ Upsampling Softmax

Output

Segmentation

rk architecture for semantic pixel-wise segmentation
1etwork, a corresponding decoder network followed
Jlogically identical to the 13 convolutional layers in the
ncoder feature maps to full input resolution feature
ich the decoder upsamples its lower resolution input
} -pooling step of the corresponding encoder to
_The upsampled maps are sparse and are then
oposed architecture with the widely adopted FCN
. This comparison reveals the memory versus

designed to be efficient both in terms of memory and
f trainable parameters than other competing

e also performed a controlled benchmark of SegNet
entation tasks. These quantitative assessments

| most efficient inference memory-wise as compared
:: b demo at http://mi.eng.cam.ac.uk/projects/segnet/,

sntation, Indoor Scenes, Road Scenes, Encoder,

and understand the spatial-relationship (context) be-
rent classes such as road and side-walk. In typical road
-majority of the pixels belong to large classes such
ilding and hence the network must produce smooth
ons. The engine must also have the ability to delineate
ed on their shape despite their small size. Hence it is
retain boundary information in the extracted image
on. From a computational perspective, it is necessary
work to be efficient in terms of both memory and
time during inference. The ability to train end-to-end
jointly optimise all the weights in the network using
‘weight update technique such as stochastic gradient

his is primarily because max pooling and sub-sampling reduce ;..o

feature map resolution. Our motivation to design SegNet arises
from this need to map low resolution features to input resolution
for pixel-wise classification. This mapping must produce features
which are useful for accurate boundary localization.

Our architecture, SegNet, is designed to be an efficient ar-
chitecture for pixel-wise semantic segmentation. It is primarily
motivated by road scene understanding applications which require
the ability to model appearance (road, building), shape (cars,

o V. Badrinarayanan, A. Kendall, R. Cipolla are with the Machine Intelli-
gence Lab, Department of Engineering, University of Cambridge, UK.
E-mail: vb292,agk34,cipolla @ eng.cam.ac.uk

Source: Torralba, Freeman, Isola

D) [17] is an additional benefit since it is more easily
ne. The design of SegNet arose from a need to match these

The encoder network in SegNet is topologically identical to
the convolutional layers in VGG16 [I]. We remove the fully
connected layers of VGG16 which makes the SegNet encoder
network significantly smaller and easier to train than many other
recent architectures [2], [@], [11], [18]. The key component of
SegNet is the decoder network which consists of a hierarchy
of decoders one corresponding to each encoder. Of these, the
appropriate decoders use the max-pooling indices received from
the corresponding encoder to perform non-linear upsampling of
their input feature maps. This idea was inspired from an archi-
tecture designed for unsupervised feature learning []]'_9'[] Reusing
max-pooling indices in the decoding process has several practical



Source: Torralba, Freeman, Isola



	Visual Recognition with Deep Neural Networks
	Announcements
	Slide Number 3
	Park
	A view of a park on a nice spring day
	PEOPLE WALKING IN THE PARK
	What makes this challenging?
	Why	do	we	care	about	recognition?
	Object categories aren’t everything
	Object categories aren’t everything
	How finegrained should categories be ?
	Need more general (useful) information
	Visual challenges with categories
	Limits	to	direct	perception
	Importance of Context
	We might think seeing is believing …
	But is it ?
	Slide Number 18
	Image classification
	Image classification
	Idea #1: Fully-connected network
	Can we use convolution in a neural network?
	Recall: Sparsely connected network
	Convolutional neural network
	Weight sharing
	Convolution is a linear function
	Multiple channels
	Multiple channels
	Multiple channels
	Multiple channels: Example
	Multiple channels: Example
	Image classification
	Pooling
	Pooling — Why?
	Pooling — Why?
	Pooling — Why?
	Computation in a neural net
	Downsampling
	Strided operations
	Computation in a neural net
	ImageNet	Challenge
	Slide Number 43
	Network designs
	Slide Number 45
	Alexnet — [Krizhevsky et al. NIPS 2012]
	Slide Number 47
	VGG-Net	[Simonyan	&	Zisserman,	2015]
	Other tricks for designing convolutional nets
	Chaining convolutions
	1x1 convolutions
	Grouped Convolutions
Input: N/2 channels
	Slide Number 53
	Slide Number 54
	ResNet	[He	et	al,	2016]
	Residual Blocks
	Residual Blocks
	Normalization	layers
	Normalization	layers
	Normalization	layers
	Normalization	layers
	Normalization	layers
	Instance	normalization
	Batch	normalization
	What filters are learned?
	What filters are learned?
	Filters in first layer
	Filters in first layer
	Filters in first layer
	Filters in first layer
	Filters in first layer
	Filters in first layer
	Filters in first layer
	Filters in first layer
	A few practical issues
	Dealing with rectangular images
	Training with data augmentation
	Training with data augmentation
	Beyond image labeling
	Object recognition: what objects are in the image?
	Semantic	segmentation
	Idea #1: Independently classify windows
	Slide Number 83
	Idea #2: Fully convolutional networks
	Reuse features across windows
	Converting fully connected layer to convolution
	Converting fully connected layer to convolution
	Fully Convolutional Networks
	What if we remove subsampling layers?
	Idea #3: Dilated convolutions
	Dilated convolutions
	Architectures with dilated convolutions
	CNN without dilated convolutions
	CNN with dilated convolutions
	Idea #4: Encoder-decoder models
	Encoder-decoder architectures
	Upsampling
	Transposed convolution
	Transposed convolution
	Encoder-decoder architectures
	Encoder-decoder architectures
	Encoder-decoder architectures
	Slide Number 103

