
tejasgokhale.com

ML Review
CMSC 491/691        

Robust Machine Learning



Course Staff

Instructor: Tejas Gokhale
Assistant Professor, CSEE

OH:  
Wed 2:30 – 3:30 PM ITE 214

gokhale@umbc.edu

TA/Grader …

???

mailto:gokhale@umbc.edu


Course Website

https://courses.cs.umbc.edu/graduate/691rml/ 

https://courses.cs.umbc.edu/graduate/691rml/


Class Structure:  Overview

• [Wed 08/28]:  Today, Class Logistics and Introduction

• [Mon 09/02]:  Labor Day, NO CLASS

• [Wed 09/04; Mon 09/09; Wed 09/11]:  Machine Learning Review

• Every Week after that:

o MON:   [TEJAS]  Overview of a Robustness Challenge

o WED: [STUDENTS] Quiz; Paper Presentations; Class Discussion



Announcements
(1) I sent a “Welcome” announcement on Blackboard. No one read it …

(2) This week and the next, we will do ML review.

(3) Please sign up for presentations and surveys. Link is in Blackboard Announcement.

(4) Start forming project groups / thinking about ideas.  Discuss with me in OFFICE HOURS.



Forcing Function

• CMSC 491/691 RML Presentation and Survey Signup - Google Sheets

https://docs.google.com/spreadsheets/d/1lZVxFEji3HSeHghE9h8rRcrYKnx8CxYw3_ia0BWNJv4/edit?gid=0#gid=0


Machine Learning Review

Machine Learning Training and Inference Pipeline

Neural Networks / Deep Learning

ML methods for visual recognition







Motivating Example:  Image Classification

What is this?
{dog, cat, airplane, bus, laptop, 
chair …}

What animal is this ?
{dog, cat, lion, tiger, duck, cow, 
giraffe, …}

What type of cat is this?
{Cheshire, Siamese, Persian, 
Shorthair, Bombay, …}



Challenges: Viewpoint Variation

Slide Credit:  Fei-Fei Li



Challenges:  Illumination

Slide Credit:  Fei-Fei Li



Challenges:  Background Clutter 

Slide Credit:  Fei-Fei Li



Challenges:  Occlusion

Slide Credit:  Fei-Fei Li



Challenges:  Pose and Deformation 
(Cat Yoga)

Slide Credit:  Fei-Fei Li



Challenges:  Inter-Class Variation

Slide Credit:  Fei-Fei Li



Challenges:  Illusions

Slide Credit:  Fei-Fei Li



Data !!!





1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

Example training set

Machine Learning



Nearest Neighbor Classifier



Nearest Neighbor Classifier

Distance Metric

Training data with labels

query data ?

deer bird plane cat car







The goal of learning is to extract lessons from past 
experience in order to solve future problems. 



2 ☆ 3 = 36

7 ☆ 1 = 49

5 ☆ 2 = 100

2 ☆ 2 = 16

What does ☆ do?



Past experience

2 ☆ 3 = 36

7 ☆ 1 = 49

5 ☆ 2 = 100

2 ☆ 2 = 16

Future query

3 ☆ 5 = ?

Goal: answer future queries involving ☆

Approach: figure out what ☆ is doing by observing its behavior on examples



2 ☆ 3 = 36

7 ☆ 1 = 49

5 ☆ 2 = 100

2 ☆ 2 = 16

☆

☆3 ☆ 5 225



Learning from examples
(aka supervised learning)



Learning from examples
(aka supervised learning)



?



Hypothesis space
The relationship between X and Y is roughly linear:



Search for the parameters,                  ,
that best fit the data.

Best fit in what sense?



Best fit in what sense?

Search for the parameters,                  ,
that best fit the data.

The least-squares objective (aka loss) says the 
best fit is the function that minimizes the squared 
error between predictions and target values:



Best fit in what sense?

Search for the parameters,                  ,
that best fit the data.

The least-squares objective (aka loss) says the 
best fit is the function that minimizes the squared 
error between predictions and target values:



Complete learning problem:



?





How to minimize the objective w.r.t. θ?

Use an optimizer!

Output ScoreInput

Machine with knobs



How to minimize the objective w.r.t. θ?

In the linear case: Learning problem

Solution



Empirical Risk Minimization
(formalization of supervised learning)

Linear least squares learning problem



Empirical Risk Minimization
(formalization of supervised learning)

Objective function
(loss)

Hypothesis space
Training data



Case study #1: Linear least squares





Example 1: Linear least squares



Example 2: Program induction



Example 3: Deep learning



Learning for vision
Big questions:

1. How do you represent the input and output?

2. What is the objective?

3. What is the hypothesis space? (e.g., linear, polynomial, neural net?)

4. How do you optimize? (e.g., gradient descent, Newtonés method?)

5. What data do you train on?



“Fish”Classifier

Image classification

image x label y



“Fish”

Image classification

Classifier

image x label y



“Fish”

Image classification

Classifier

image x label y



ƚ

image x

“Duck”

label y

Image classification

Classifier



“Fish”

Training data

ƚ

“Fish”

“Grizzly”

“Chameleon”



How to represent class labels?

Training data

…

“Fish”

“Grizzly”

“Chameleon”

Training data

…

1

2

3

One-hot vector

Training data
…

[0,0,1]

[0,1,0]

[1,0,0]



What should the loss be?

0-1 loss (number of misclassifications)

discrete, NP-hard to optimize!

continuous, 
differentiable,
convex

Cross entropy



[0,0,0,0,0,1,0,0,…]

Ground truth label



dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

Ground truth label

0 1Prob



dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

……

Prediction Ground truth label

- 0 1log prob Prob0



Score

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

……

Prediction Ground truth label

How much better you 
could have done

- 0 1log prob - LossProb0 - 0



dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

Prediction Ground truth label Score

- 0 1log prob - LossProb0 - 0



dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

ƚ

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

Prediction Ground truth label Score

- 0 1log prob - LossProb0 - 0



Softmax regression (a.k.a. multinomial logistic regression)

logits: vector of K scores, one for each class

squash into a non-negative vector that sums to 1 
— i.e. a probability mass function!

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

0 1

……



Softmax regression (a.k.a. multinomial logistic regression)

predicted probability of 
each class given input x

picks out the -log likelihood 
of the ground truth class 
under the model prediction 

Probabilistic interpretation: 

max likelihood learner!



Softmax regression (a.k.a. multinomial logistic regression)



Generalization
“The central challenge in machine learning is that our algorithm must perform 
well on new, previously unseen inputs—not just those on which our model 
was trained. The ability to perform well on previously unobserved inputs is 
called generalization.

… [this is what] separates machine learning from optimization.” 

— Deep Learning textbook (Goodfellow et al.)



Domain gap between             and           
will cause us to fail to generalize.  

training domain testing domain
(where we actual use our model)

Space of natural images

Training data

Test data





Parametric Approach

Image

f(x,W) 10 numbers giving 
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

68 April 6, 2023

Array of 32x32x3 numbers 
(3072 numbers total) W

parameters
or weights



ParametricApproach: Linear Classifier

Image

W
parameters
or weights

f(x,W) 10 numbers giving 
class scores

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

69 April 6, 2023

Array of 32x32x3 numbers 
(3072 numbers total)

f(x,W) = Wx



Image

W
parameters
or weights

10 numbers giving 
class scores

Array of 32x32x3 numbers 
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

f(x,W)

ParametricApproach: Linear Classifier
3072x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

70 April 6, 2023



Image

W
parameters
or weights

10 numbers giving 
class scores

Array of 32x32x3 numbers 
(3072 numbers total)

f(x,W) = Wx + b

ParametricApproach: Linear Classifier
3072x1

10x1 10x3072
f(x,W)

10x1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -

71 April 6, 2023



0

1

Limitations to linear classifiers

+-

0 1

0 0 1

1 1 0

XOR

+ -



Limitations to linear classifiers
Wrong!

+-

+ -

Wrong!

0

1

0 1

0 0 1

1 1 0

XOR



Limitations to linear classifiers

+-

+ -

Wrong!

Wrong!

0

1

0 1

0 0 1

1 1 0

XOR



Goal: Non-linear decision boundary

+-

+ -

0

1

0 1

0 0 1

1 1 0

XOR



Perceptron

• In 1957 Frank Rosenblatt invented the perceptron
• Computers at the time were too slow to run the perceptron, so Rosenblatt 

built a special purpose machine with adjustable resistors
• New York Times Reported: “The Navy revealed the embryo of an electronic

computer that it expects will be able to walk, talk, see, write, reproduce itself 
and be conscious of its existence”



Minsky and Papert, Perceptrons, 1972



time

enthusiasm
Perceptrons, 
1958

Minsky and Papert, 
1972



Parallel Distributed Processing (PDP), 1986

Source: Isola, Torralba, Freeman



time

enthusiasm
Perceptrons, 
1958

Minsky and Papert, 
1972

PDP book, 
1986

Source: Isola, Torralba, Freeman



LeCun convolutional neural networks

Demos: 
http://yann.lecun.com/exdb/lenet/index.html

Source: Isola, Torralba, Freeman

http://yann.lecun.com/exdb/lenet/index.html


Yann LeCun

Was at Bell Labs when 
this video was recorded

Now 
Prof @ NYU

Chief Scientist @ Meta

Turing Award 2018
(shared with Hinton and 

Bengio)



time

enthusiasm
Perceptrons, 
1958

Minsky and Papert, 
1972

PDP book, 
1986

Neural network winter, 
2000



ImageNet: 
First (?) large-scale computer vision dataset

• Millions of images; 1000 categories

• PI: Fei-Fei Li
• Then: Prof, Princeton
• Now: Prof, Stanford

• 2019 Longuet-Higgins Prize
• Some argued that Li deserved 

the 2018 Turing Award along with 
Hinton, LeCun, Bengio

• Their work could not have been 
empirically tested without ImageNet!



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012 

“AlexNet”

Got all the “pieces” right, e.g.,
• Trained on ImageNet
• 8 layer architecture (for reference: today we have architectures with 100+ layers)
• Allowed for multi-GP training



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012



23

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012



time

enthusiasm

Perceptrons, 
1958

Minsky and Papert, 
1972

PDP book, 
1986

Neural net winter, 
2000

Krizhevsky, 
Sutskever, 
Hinton, 2012

28 years 28 years

Source: Isola, Torralba, Freeman



time

enthusiasm

Perceptrons, 
1958

Minsky and Papert, 
1972

PDP book, 
1986

Neural net winter, 
2000

Krizhevsky, 
Sutskever, 
Hinton, 2012

28 years 28 years

Source: Isola, Torralba, Freeman

?
Diffusion Models
Transformers …

VISION + LANGUAGE



[Serre, 2014]

Inspiration: Hierarchical Representations

Source: Isola, Torralba, Freeman

Best to treat as inspiration.
The neural nets we’ll talk about
aren’t very biologically plausible.



Object recognition

Is dog?
Neural Network

Pixel 1

Pixel 2

Dog

Not dog

Pixel 1

Pi
xe

l2

Input Space

Fur

Pa
w

Feature Space

Goal: automatically learn a function that maps data from the input space to a 
feature space, i.e., "feature learning”, rather than use hand-crafted features

f(x)



Computation in a neural net
Let’s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Output 
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input 
representation

𝑥𝑥𝑖𝑖 𝑦𝑦j  = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖 

weights

Ne
uro
n

(a.
k.a
uni
t)

3
5

Adapted from: Isola, Torralba, Freeman



Computation in a neural net
Let's say wehave some 1D input that we want to convert to some new feature space

Linear layer

Output 
representation

𝑤𝑤𝑖𝑖j

𝑦𝑦j

Input 
representation

𝑥𝑥𝑖𝑖

weights

𝑦𝑦j  = ∑𝑖𝑖 𝑤𝑤𝑖𝑖j𝑥𝑥𝑖𝑖+ 𝑏𝑏j

bias

𝑏𝑏j

Ne
uro
n

(a.
k.a
uni
t)

3
6

Adapted from: Isola, Torralba, Freeman



Example: Linear Regression

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤 𝑦𝑦

𝑏𝑏

Adapted from: Isola, Torralba, Freeman

3
8



Computation in a neural net – Full Layer

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏

𝑤𝑤11 ⋯ 𝑤𝑤1𝑛𝑛
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯ 𝑤𝑤j𝑛𝑛

𝑦𝑦
parameters of the model:𝜽𝜽 = {𝑾𝑾,𝒃𝒃}

𝑥𝑥1
𝑥𝑥2…
𝑥𝑥𝑛𝑛

𝑏𝑏1

+ 𝑏𝑏2…
𝑏𝑏j

=

𝑦𝑦1

Adapted from: Isola, Torralba, Freeman

3
9

𝑦𝑦2…
𝑦𝑦j



Computation in a neural
net – Full Layer

Input 
representation

Output 
representation

Linear layer Full layer

𝑥𝑥 𝑤𝑤j

𝑦𝑦j𝑏𝑏j

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3

…

𝑦𝑦 = 𝑊𝑊𝑥𝑥 + 𝑏𝑏
𝑤𝑤11 ⋯
⋮ ⋱ ⋮
𝑤𝑤j1 ⋯

𝑤𝑤j𝑛𝑛 𝑏𝑏1
⋮

𝑤𝑤j𝑛𝑛 𝑏𝑏j

𝑦𝑦

𝑥𝑥1
𝑥𝑥…2
𝑥𝑥𝑛𝑛
1

=

𝑦𝑦

Adapted from: Isola, Torralba, Freeman

4
0

1
𝑦𝑦2…
𝑦𝑦j

Can again simplify notation by 
appending a 1 to 𝐱𝐱



Computation in a neural net – Recap

41

Input 
representation

Output 
representation

𝑥𝑥 𝑦𝑦

We can now transform our input representation vector into some output 
representation vector using a bunch of linear combinations of the input:

𝑧𝑧 We can repeat this as 
many times as we want!



What is the problem with this idea?

𝐖𝐖1𝐱𝐱 𝐖𝐖2𝐖𝐖1𝐱𝐱 𝐖𝐖3𝐖𝐖2𝐖𝐖1𝐱𝐱𝐱𝐱

Can be expressed as single linear layer!

𝖦𝖦 𝐖𝐖𝑖𝑖
𝑖𝑖

̂
𝐱𝐱 = 𝐖𝐖𝐱𝐱

Limited power: can’t solve XOR  



Pointwise 
Non-linearity

Solution: simple nonlinearity

Input 
representation

Output 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)



Example: linear classification with a perceptron

Source: Isola, Torralba, Freeman

4
4



Example: linear classification with a perceptron

4
5



Example: linear classification
with a perceptron

“when y is greater than 0, set all 
pixel values to 1 (green), 
otherwise, set all pixel values to 0 
(red)”

4
6



Example: linear classification with a perceptron

“when y is greater than 0, set all 
pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”

4
7



Computation in a neural net - nonlinearity

Input 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

𝛛𝛛
Can’t use with gradient descent, 𝛛𝛛𝑦𝑦 𝑔𝑔 = 0

Output 
representation



Computation in a neural net - nonlinearity

Input 
representation

Linear layer

𝑥𝑥 𝑤𝑤j

𝑏𝑏j 𝑦𝑦 𝑔𝑔(𝑦𝑦)

Sigmoid

Output 
representation



Sigmoid• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

Computation in a neural net - nonlinearity



Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (6x 
speedup vs. tanh in [Krizhevsky et al. 
2012])

• Drawback: if strongly in negative 
region, unit is dead forever (no gradient).

• Default choice: widely used in current 
models!

Computation in a neural net — nonlinearity

Source: Isola, Torralba, Freeman



Leaky ReLU• where α is small (e.g.,
0.02)

• Efficient to implement:

• Has non-zero gradients
everywhere (unlike ReLU)

Computation in a neural net — nonlinearity



Output 
representation

Intermediate 
representation

Input 
representation

Stacking layers

𝐡𝐡 = “hidden units”



Input 
representation

Output 
representation

Connectivity patterns

Fully connected layer Locally connected layer 
(Sparse W)

Input 
representation

Output 
representation



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚 positive

negative



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

positive

negative

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}
Source: Isola, Torralba, Freeman

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

positive

negative

ReLU

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)

Intermediate 
representation

𝒉𝒉

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}

𝒙𝒙

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking
layers

Output 
representation

𝑾𝑾2

Intermediate 
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}ReLU

𝑾𝑾1

𝒚𝒚



Input 
representation

Stacking layers

Output 
representation

𝑾𝑾2

Intermediate 
representation

𝒉𝒉
positive

negative
𝒙𝒙

𝒃𝒃1

𝒉𝒉 = 𝑔𝑔(𝑾𝑾1𝒙𝒙 + 𝒃𝒃1)
𝒃𝒃2

𝒚𝒚 = 𝑔𝑔(𝑾𝑾2𝒉𝒉 + 𝒃𝒃2)
ReLU

𝑾𝑾1

𝒚𝒚

𝜃𝜃 = {𝑾𝑾1, … ,𝑾𝑾𝐿𝐿, 𝒃𝒃1, … ,𝒃𝒃𝐿𝐿}



Stacking layers - What’s actually happening?

Low level features: 
e.g., edge, texture, …

higher level features: 
e.g., shape

even higher level features: 
e.g., “paw”, “fur”



“dog”…

Deep nets

= 𝑓𝑓𝐿𝐿( …𝑓𝑓3(𝑓𝑓2(𝑓𝑓1(𝑥𝑥)))𝑓𝑓 𝑥𝑥
Source: Isola, Torralba, Freeman

6
5



“dog”…

Deep nets - Intuition

“has horizontal edge” 
“has vertical edge”

Source: Isola, Torralba, Freeman

6
6



“dog”…

Deep nets - Intuition

“has rounded edge”

Source: Isola, Torralba, Freeman

6
7



…

Deep nets - Intuition
“has white fur” 

“has paw”
etc

How do we 
make a 

classification?

“dog”

Source: Isola, Torralba, Freeman

6
8



“dog”…

Deep nets - Intuition
“has white fur” 

“has paw”
etc

Classify

Fur

Source: Isola, Torralba, Freeman

6
9

Pa
w

Recall:
Feature Space



Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?



Computation has a simple form

• Composition of linear functions with nonlinearities in between

• E.g. matrix multiplications with ReLU, 𝑚𝑚𝑎𝑎𝑥𝑥(0, 𝐱𝐱) afterwards

• Do a matrix multiplication, set all negative values to 0, repeat

But where do we get the weights from?



“dog”

Learned

How would we learn the parameters?

predicted ground truth





Let’s start easy



world’s smallest neural network!
(a “perceptron”)

(a.k.a. line equation, linear regression)



Given a set of samples and a Perceptron

Estimate the parameter of the Perceptron

Training a Neural Network



What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:



What do you think the weight parameter is?

1 1.1

2 1.9

3.5 3.4

10 10.1

Given training data:

not so obvious as the network gets more complicated so we use …



Given several examples 

An Incremental Learning Strategy
(gradient descent)

and a perceptron



Given several examples 

Modify weight        such that gets ‘closer’ to 

and a perceptron

An Incremental Learning Strategy
(gradient descent)



Given several examples 

Modify weight        such that gets ‘closer’ to 

and a perceptron

perceptron 
output

true 
label

perceptron 
parameter

An Incremental Learning Strategy
(gradient descent)





L1 Loss L2 Loss

Zero-One Loss Hinge Loss



Gradient descent:

update rule:



Backpropagation



Backpropagation



…is the rate at which this will change…

… per unit change of this

the loss function

the weight parameter

Let’s compute the derivative…



Compute the derivative

That means the weight update for gradient descent is:

move in direction of negative gradient



Gradient Descent (world’s smallest perceptron)

For each sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



multi-layer perceptron

function of FOUR parameters and FOUR layers!



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



hidden
layer 2

hidden
layer 3

output
layer 4

weightinput
activationsum

weight weight
activation activation

input
layer 1



Entire network can be written out as one long equation

What is known? What is unknown?
We need to train the network:



Entire network can be written out as a long equation

What is known? What is unknown?

known

We need to train the network:



Entire network can be written out as a long equation

What is known? What is unknown?

unknown

We need to train the network:

activation function 
sometimes has 

parameters



Given a set of samples and a MLP

Estimate the parameters of the MLP

Learning an MLP



Gradient Descent

For each random sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update
vector of parameter update equations

vector of parameter partial derivatives



So we need to compute the partial derivatives



Partial derivative describes…

(loss layer)

Remember,



rest of the network

Intuitively, the effect of weight on loss function :

depends on

depends on
depends on

According to the chain rule…



rest of the network

Chain Rule!



rest of the network

Just the partial 
derivative of L2 loss



rest of the network

Let’s use a Sigmoid function



rest of the network





already computed.
re-use (propagate)!



The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on



The chain rule says…

depends ondepends on
depends on

depends ondepends on

depends on

depends on

already computed.
re-use (propagate)!



depends ondepends on
depends on

depends ondepends on

depends on

depends on



depends ondepends on
depends on

depends ondepends on

depends on

depends on



depends ondepends on
depends on

depends ondepends on

depends on

depends on



Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update



vector of parameter update equations

vector of parameter partial derivatives

Gradient Descent

For each example sample

1. Predict

a. Forward pass

b. Compute Loss

2. Update

a. Back Propagation

b. Gradient update





Step size: learning rate
Too big: will miss the minimum
Too small: slow convergence

-

Learning rates



Learning rate scheduling
• Use different learning rate at each iteration.
• Most common choice: 

η𝑡𝑡 =
η0
𝑡𝑡

 Need to select initial learning rate η0
More modern choice: Adaptive learning rates.

η𝑡𝑡 = 𝐺𝐺
𝜕𝜕𝜕𝜕
𝜕𝜕θ 𝑖𝑖=0

𝑡𝑡

 Many choices for G (Adam, Adagrad, Adadelta).



-

Δθ ← 𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕θ

+ 1 − 𝑤𝑤 Δθ Take direction history 
into account!



- No consensus on Adam etc.: Seem to give faster 
performance to worse local minima.





Motivation







[Krizhevsky, Sutskever, Hinton. NIPS 2012]

“AlexNet” — Won the ILSVRC2012 Challenge

CNNs in 2012: “SuperVision”  
(aka “AlexNet”)

Major breakthrough: 15.3% Top-5 error on ILSVRC2012  
(Next best: 25.7%)



Recap: Before Deep Learning

Input  
Pixels

Extract  
Features

Figure: Karpathy 2016

Concatenate into  
a vector x

SVM

Linear  
Classifier

Ans



The last layer of (most) CNNs are 
linear classifiers

Input  
Pixels

Ans

Perform everything with a big neural  
network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get  
to the end of the network, the classes are linearly separable

(GoogLeNet)











ConvNets
They’re just neural networks with  

3D activations and weight sharing






























































































































	ML Review
	Course Staff
	Course Website��https://courses.cs.umbc.edu/graduate/691rml/ ���
	Class Structure:  Overview
	Announcements
	Forcing Function
	��Machine Learning Review�
	Slide Number 8
	Slide Number 9
	Motivating Example:  Image Classification
	Challenges: Viewpoint Variation
	Challenges:  Illumination
	Challenges:  Background Clutter 
	Challenges:  Occlusion
	Challenges:  Pose and Deformation �(Cat Yoga)
	Challenges:  Inter-Class Variation
	Challenges:  Illusions
	Data !!!
	Slide Number 19
	Machine Learning
	Nearest Neighbor Classifier
	Nearest Neighbor Classifier
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Case study #1: Linear least squares
	Slide Number 44
	Example 1: Linear least squares
	Example 2: Program induction
	Example 3: Deep learning
	Slide Number 48
	Image classification
	Image classification
	Image classification
	Image classification
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Generalization
	Slide Number 66
	Slide Number 67
	Slide Number 68
	f(x,W) = Wx
	Slide Number 70
	Slide Number 71
	Limitations to linear classifiers
	Limitations to linear classifiers
Wrong!
	Limitations to linear classifiers
	Goal: Non-linear decision boundary
	Perceptron
	Minsky and Papert, Perceptrons, 1972
	Perceptrons, 1958
	Parallel Distributed Processing (PDP), 1986
	Perceptrons, 1958
	LeCun convolutional neural networks
	Slide Number 82
	Perceptrons, 1958
	ImageNet: �First (?) large-scale computer vision dataset
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012 “AlexNet”
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
	Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
	28 years
	28 years
	Inspiration: Hierarchical Representations
	Object recognition
	Computation in a neural net
	Computation in a neural net
	Example: Linear Regression
	𝑦 = 𝑊𝑥 + 𝑏
	Computation in a neural net – Full Layer
	Computation in a neural net – Recap
	What is the problem with this idea?
	Solution: simple nonlinearity
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Example: linear classification with a perceptron
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net - nonlinearity
	Computation in a neural net — nonlinearity
	Computation in a neural net — nonlinearity
	Stacking layers
	Connectivity patterns
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers
	Stacking layers - What’s actually happening?
	Deep nets
	Deep nets - Intuition
	Deep nets - Intuition
	Deep nets - Intuition
	Deep nets - Intuition
	Computation has a simple form
	Computation has a simple form
	How would we learn the parameters?
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Backpropagation
	Backpropagation
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159
	Slide Number 160
	Slide Number 161
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Learning rates
	Learning rate scheduling
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Motivation
	Slide Number 181
	Slide Number 182
	CNNs in 2012: “SuperVision”  (aka “AlexNet”)
	Recap: Before Deep Learning
	The last layer of (most) CNNs are linear classifiers
	Slide Number 186
	Slide Number 187
	Slide Number 188
	Slide Number 189
	Slide Number 190
	Slide Number 191
	Slide Number 192
	Slide Number 193
	Slide Number 194
	Slide Number 195
	Slide Number 196
	Slide Number 197
	Slide Number 198
	Slide Number 199
	Slide Number 200
	Slide Number 201
	Slide Number 202
	Slide Number 203
	Slide Number 204
	Slide Number 205
	Slide Number 206
	Slide Number 207
	Slide Number 208
	Slide Number 209
	Slide Number 210
	Slide Number 211
	Slide Number 212
	Slide Number 213
	Slide Number 214
	Slide Number 215
	Slide Number 216
	Slide Number 217
	Slide Number 218
	Slide Number 219
	Slide Number 220
	Slide Number 221
	Slide Number 222
	Slide Number 223
	Slide Number 224
	Slide Number 225
	Slide Number 226
	Slide Number 227
	Slide Number 228
	Slide Number 229
	Slide Number 230
	Slide Number 231
	Slide Number 232
	Slide Number 233
	Slide Number 234
	Slide Number 235
	Slide Number 236
	Slide Number 237
	Slide Number 238
	Slide Number 239
	Slide Number 240
	Slide Number 241
	Slide Number 242
	Slide Number 243
	Slide Number 244
	Slide Number 245
	Slide Number 246
	Slide Number 247
	Slide Number 248
	Slide Number 249
	Slide Number 250
	Slide Number 251
	Slide Number 252

