tejasgokhale.com

Artificial
Intelligence
ML Review
CMSC 491/691
Robust Machine Learning
§) = w ' x+b

UMBC



Course Staff

Assistant Professor, CSEE
OH:

Wed 2:30 — 3:30 PM ITE 214
gokhale@umbc.edu

TA/Grader ...

277


mailto:gokhale@umbc.edu

Course Website

https://courses.cs.umbc.edu/graduate/691rml/



https://courses.cs.umbc.edu/graduate/691rml/

Class Structure: Overview

 [Wed 08/28]: Today, Class Logistics and Introduction
* [Mon 09/02]: Labor Day, NO CLASS
* [Wed 09/04; Mon 09/09; Wed 09/11]: Machine Learning Review

* Every Week after that:
o MON:  [TEJAS] Overview of a Robustness Challenge
o WED: [STUDENTS] Quiz; Paper Presentations; Class Discussion



Announcements

(1) I sent a “Welcome™ announcement on Blackboard. No one read it ...

Student Preview Exit

CMSC491_2533_FA2024

CMSC 491 Special Topics in Computer Science (24.2533/CMSC691_2534) FA2024

Content  Calendar Announcements Discussions Gradebook Messages  Analytics  Groups

1 Total Q

Announcement < Posted =

1) Q”: Welcome, Useful Resources, and Logistics
Hello everyone, Welcome to the Robust Machine Learning class! We will be using Blackboard for assignment submissions, ...

8/30/24, 5:10 PM

(2) This week and the next, we will do ML review.
(3) Please sign up for presentations and surveys. Link is in Blackboard Announcement.

(4) Start forming project groups / thinking about ideas. Discuss with me in OFFICE HOURS.



Forcing Function

« CMSC 491/691 RML Presentation and Survey Signup - Google Sheets

HGE s sr



https://docs.google.com/spreadsheets/d/1lZVxFEji3HSeHghE9h8rRcrYKnx8CxYw3_ia0BWNJv4/edit?gid=0#gid=0

Machine Learning Review

Machine Learning Training and Inference Pipeline
Neural Networks / Deep Learning

ML methods for visual recognition



MASTER THEART OF ML
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THAT'S GOOD STUFF!
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Motivating Example: Image Classification

What is this?
{dog, cat, ailrplane, bus, laptop,
chair ..}

What animal is this ?

{dog, cat, lion, tiger, duck, cow,
giraffe, ..}

What type of cat is this?

{Cheshire, Siamese, Persian,
Shorthailr, Bombay, ..}




Challenges: Viewpoint Variation

[123 187 96 86 B3 112 153 149 122 109 104 75 89 107 112 99]

All pixels change when
the camera moves!

Slide Credit; Fei-Fei Li



Challenges: lllumination

Slide Credit: Fei-Fei Li



Challenges: Background Clutter

Slide Credit; Fei-Fei Li



Challenges: Occlusion

Slide Credit; Fei-Fei Li



Challenges: Pose and Deformation
(Cat Yoga)

Slide Credit: Fei-Fei Li



Challenges: Inter-Class Variation

Slide Credit; Fei-Fei Li
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Slide Credit; Fei-Fei Li
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An image classifier
def classify_image(image):
return class_label
Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.



Machine Learning
1.

Collect a dataset of images and labels

2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

def train(images, labels):
# Machine learning!
return model

def predict(model, test_images):
# Use model to predict labels
return test_labels

Example training set

airplane ’ W==ﬁ-i.
automoblle.gamﬂg
bird “: ]
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Nearest Neighbor Classifier

def train(images, labels):

# MadCiline Lwearl

return model

def predict(model, test_images):

2y ~ —~ =
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e W = i - L™ | L

return test_lab

els
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Memorize all

g data and labels

Predict the label

> of the most similar
training image



Nearest Neighbor Classifier

deer bird car

Training data with labels

querydata  “)

Distance Metric




Learning

Data

%

Learner

—  Model

Inference

Input — | Model

—  Output



def train(images, labels):

return model

def predict(model, test_images):

return test labels




The goal of learning is to extract lessons from past
experience in order to solve future problems.



What does % do?

2 %3 =36

7Ty 1=49

5% 2 =100

2w 2=16



Goal: answer future queries mvolving >

Approach: figure out what ¢ is doing by observing its behavior on examples

Past experience Future query
=9
2w 3=36 3K =0
7% 1=49
5% 2=100

2% 2=16
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[Learning from examples

(aka supervised learning)

Training data

{input:
{input:
{input:
{input:

2,3]
7,1]
5,2]
2,2]

,output:36}
,output:49}
,output:100}
,output:16}

%

Learner




[Learning from examples

(aka supervised learning)

Training data

{x(l)’ y(l)}
{£@,y} —
{z1), 43}

Learner

— X =Y
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62.0

61.5 A

61.0 A

60.5 A

60.0 A

59.5 A1

59.0 A

58.5 1

Training data

Learner
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Hypothesis space

The relationship between X and Y is roughly linear:

—>  Jo(z) = bz + bo

yz@laz—l—é’o



62.0

61.5 A

61.0 A

60.5 A

60.0 A

59.5 A1

59.0 A

58.5 1

Training data

Search for the parameters, 6 = {6, 6.},
that best fit the data.

fo(z) = 012 + 6o

Best fit in what sense?



Training data

62.0

Search for the parameters, 6 = {6,, 6.},
that best fit the data.

61.5 A

61.0 A

Y
60.5 - : f@(x) — 0]_37 —I_ 00
60.0 - .
59.5 1 . :. Best fit in what sense?
59.0 A L
feo1 B, {z®,y WYL,
5851 N NN

se0 595 600 605 610 615 620 x |he least-squares objective (aka loss) says the
best fit is the function that minimizes the squared
error between predictions and target values:

— )% §= fola)



Training data

62.0

Search for the parameters, 6 = {6,, 6.},
that best fit the data.

fo(z) = 61z + O

61.5 A
61.0
60.5 A
60.0 A
59.5 A1

Best fit in what sense?

59.0 A

58.5 1

s90 595 600 605 610 615 620 x |he least-squares objective (aka loss) says the
best fit is the function that minimizes the squared
error between predictions and target values:

— )2 9= folx)



Training data

Y
- Complete learning problem:

. —
60.0- 0* — arggmln ;(fe (3;(%)) _ y(z))

" g
sl I = arg min ;(6’1:13( ) + 0 — y®)
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Training data Test query
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Training data

Test query
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How to mmimize the objective w.r.t. 07
N . .
¢* = arg min Z(fg(a:(z)) — ()2
o =1

Use an optimizer!

Input —> —» Qutput —> Score

Machine with knobs



How to mmimize the objective w.r.t. 07

In the linear case: Learning problem
A N
0* — 0,20 + 0y — ()2
argemlnzz:;( 1T 0o—y") :
N (1) (1)
: : x 1 i
J(0) = 0 () O — (7))2 () (2)
(9) ;( 12" + 6 — y'*’) x=|" 1 9= (0 0) y= y:
= (y — X0)" (y — X0) o o
0% = argemin J(6) 2(XTX0* — XTy) =0 Solution
2J(6) _, XTX0* = XTy /
o0 _ 9* _ (XTx)—ley




Empirical Risk Minmaization

(formalization of supervised learning)

Linear least squares learning problem

proTTeTTTTTTT ERRRRE bbb
' §* = arg min 3 (612D + g — y?)? /



Empirical Risk Minmaization

(formalization of supervised learning)

Objective function
(loss)

/

f* —a,rgmmZE x(1)), y ()
fer 4 X ’

Training data
Hypothesis space



Case study #1: Linear least squares

Learner

Objective
L(fo(x),y) = (folx) —y)?
Data

(o), gy [ Tpothesisspace ) g

f9(aj) — ‘91517+(90

Optimizer




Data —

Learner

Objective
Hypothesis space

Optimizer

+

Compute



Example 1: Linear least squares

a0 Data

= §

S Learner | — fa

5

2

:'c% Input — —  Output
—




Training

Example 2: Program mduction

Data

Learner

___>

def predict(x):
y = 0.8%xx + 2

return y

Testing

def predict(x):
y = 0.8%x + 2

return y

—> Output



Training

Data

Example 3: Deep learning

x Y
..~ —» | Learner | — O<8>O

Testing

x Y
Input — O(:g:‘.O — Output




Learnmng for vision

Big questions:

1. How do you represent the mput and output?

2. What 1s the objective?

3. What 1s the hypothesis space? (e.g., linear, polynomial, neural net?)
4. How do you optimize? (e.g., gradient descent, Newtoné method?)

5. What data do you tram on?



Image classification

e —

image x label y



Image classification

e —

image x label y



Image classification

e —

image x label y



Image classification

e —

image x label y
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How to represent class labels?

One-hot vector

Training data Training data Training data

X Y
\ ’ /

“Grizzly” ¢

s

G ' “Chameleon”}
Y,




What should the loss be?

0-1 loss (number of misclassifications)

L(y,y) =1(y =y) <= discrete, NP-hard to optimize!

Cross entropy

K .
R R A continuous,
C(y, Y) = H(y,y) = — Z?/k log yx e= differentiable,

k=1 convex



Ground truth label y

[0,0,0,0,0,1,0,0,...]




Ground truth label y

dolphin
cat
grizzly bear

angel fish

chameleon

clown fish (I

iguana

elephant

00 0 Prob



Prediction logy Ground truth label y

f@ : X — RE
dolphin || dolphin
cat |l cat
grizzly bear || grizzly bear
f angel fish ||l angel fish
chameleon ||} chameleon
clown fish | IIGTEN clown fish || GG
iguana |l iguana
elephant | elephant

- 00 log prob O O Prob



Prediction logy Ground truth label y Score —L(y,y)

K
fo : X - R"® —H(y,9) =) _yrlog i
dolphin (I dolphin =
cat |l cat
grizzly bear || grizzly bear
f angel fish ||l angel fish How much better you
chameleon ||} @ chameleon could hT’fdone
clown fish | Gz clown fish | G ﬁ
iguana |l iguana
elephant | elephant

- 00 log prob O O Prob 1 - 00 - Loss 0O



Prediction logy Ground truth label y Score —L(y,y)

fo : X - R"® —H(y,9) =) _yrlog i
dolphin [ dolphin =

ol | cat

grizzly bear ([N  orizzly bear |GG . .
f angel fish ] angel fish
chameleon || @ chameleon
clown fish || clown fish
iguana |l iguana
elephant [ | elephant

- 00 log prob O O Prob 1 - 00 - Loss 0O



Prediction logy Ground truth label y Score —L(y,y)

K
fo : X - RY ~H(y,9) =) yxlog g
dolphin | dolphin =

cat |l cat

grizzly bear || grizzly bear

f angel fish (|} angel fish
chameleon (Il @ chameleon |GGG -

clown fish [l clown fish

iguana |INGEG iguana

elephant i elephant

- 00 log prob O O Prob 1 - 00 - Loss 0O



Softmax regression (a.k.a. multinomial logistic regression)

f@ : X — RK
Z = fp (X) <4 |logits: vector of K scores, one for each class
y = softmax(z) <— squash into a non-negative vector that sums to 1
— i.e. a probability mass function!
. e
Yy; = K B dolphin [
Zk:l e %k cat i
grizzly bear |
angel fish |1l
1t — chameleon |l
y clown fish |
iguana |l

elephant [l

0 1



Softmax regression (a.k.a. multinomial logistic regression)

Probabilistic interpretation:

y=[P(Y =1X =x),...,P(Y = K|X =x)] <= predicted probability of
each class given input x

K
H(y,y) =— Zyk log 1. <= picks out the -log likelihood
k=1 of the ground truth class y

under the model prediction y

N
f*=argmin) H(y",y") <= max likelihood learner
fer 3



Softmax regression (a.k.a. multinomial logistic regression)

f@lX-)RK

z = fo(x)

y = softmax(z)

Data
{m(i)a y(i)}ﬁ\le —

Learner

Objective
L(y, fo(x)) = H(y, softmax(fy(x)))




Generalization

“The central challenge m machme learning is that our algorthm must perform
well on new, previously unseen mputs—not just those on which our model
was tramed. The ability to perform well on previously unobserved mputs is
called generalization.

... [this 1s what] separates machme learning from optimization.”

— Deep Learning textbook (Goodfellow et al.)



testng domain

tramm main
g do (where we actualuse our model)

p

Domain gap between Ptrain and Ptest
will cause us to fail to generalize.

Space ofnatural images

Traming data

Test data




People telling me Al is going

to destroy the world My neural network

Vool



Parametric Approach

Image
10 numbers givin
> f(x,W) - 9ving
class scores
Array of 32x32x3 numbers T
(3072 numbers total) W
parameters

or weights



Parametric Approach: Linear Classifier

f(x, W) = WXx

Image

- f(x,W) _ 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights



Parametric Approach: Linear Classifier
3072x1
|mage f(X’W) — IVKI

10x1  10x3072 .
- f(x,W) _ 10 numbers giving

class scores
Array of 32x32x3 numbers T

(3072 numbers total) W

parameters
or weights




Parametric Approach: Linear Classifier
3072x1

f(x,W)

Image

10x1

Array of 32x32x3 numbers
(3072 numbers total)

WK +

10x3072

T

> f(X,W)

W

parameters
or weights

b

g

10x1

10 numbers giving
class scores



Limitations to linear classifiers




Wrong!

N\

Limitations to linear classifiers

rong!




Limitations to linear classifiers

Wrong!




Goal: Non-linear decision boundary




Perceptron

® In 1957 Frank Rosenblatt invented the perceptron

® Computers at the time were too slow to run the perceptron, so Rosenblatt
built a special purpose machine with adjustable resistors

® New York Times Reported: “The Navy revealed the embryo of an electronic
computer that it expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence”




Minsky and Papert, Perceptrons, 1972

Marein L. Minsky
Sevenowr A. Papert

FOR BUYING OPTIONS, START HERE

Paperback | $35.00 Short | £24.95 |
ISBN; 0780262631112 | 308 pp. |6 x
8.9 in | December 1987

Select Shipping Destination H

Perceptrons, expanded edition

An Introduction to Computational Geometry
By Marvin Minsky and Seymour A. Papert

Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anvone who wants to understand the connectionist counterrevolution that
is going on today.

Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neurcnlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
far enough to show the exact limitations of a class of computing machines that could seriously be
considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that ean simulate networks of automata have given
Perceptrons new importance.

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
which they discuss the current state of parallel computers, review developments since the appearance of
the 1972 edition, and identify new research directions related to connectionism. They note a central
theoretical challenge facing connectionism: the challenge to reach a deeper understanding of how
"objects” or "agents” with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind."



Perceptrons,
1958

enthusiasm

Minsky and Papert,

1972

time



Parallel Distributed Processing (PDP), 1986

PARALLEL DISTRIBUTED! |
'PROCESSING”

Explor s i |
‘l..l"r_ i FOUNGETIONS

: tiﬁM!E'.l E.RUMELHART, JAMES L. MoCLELLAND,
< AND THE PDP RESEARCH GROUP

Source: Isola, Torralba, Freeman



Perceptrons, PDP book,

. 1958 1986
enthusiasm

Minsky and Papert,
1972

time

Source: Isola, Torralba, Freeman



LeCun convolutional neural networks

PROC. OF THE TEEE, NOVEMBER 1998

C3:f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2:f. maps C5: layer

N

FuII conr‘aecnon Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full connectlon

F6 layer OUTPUT

e

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://yann.lecun.com/exdb/lenet/index.html

Source: Isola, Torralba, Freeman


http://yann.lecun.com/exdb/lenet/index.html

Yann LeCun

Was at Bell Labs when
this video was recorded

Now
Prof @ NYU
Chief Scientist (@ Meta

Turng Award 2018
(shared with Hinton and
Bengio)




Perceptrons,  PDP book,
1958 1986

enthusiasm

Minsky and Papert, Neural network winter,
1972 2000

time



ImageNet:
First (?) large-scale computer vision dataset

 Millions of images; 1000 categories

* Pl: Fei-Fei Li
e Then: Prof Princeton
* Now: Prof Stanford

« 2019 Longuet-Higgins Prize

« Some argued that Li deserved
the 2018 Turing Award along with
Hinton, LeCun, Bengio

 Their work could not have been
empirically tested without ImageNet!




Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
“AlexNet”

22222

N ARE
e
’ 13

5
\ dense dense
) 27 ol
L. __'_‘_-_-_..__’55 & ' 1000
1 Aot 128 Max ... |
) 2048 048
228|| &4 g a Maxl 128 Max pooling
Uot 4 pooling pooling
48

Got all the “pieces” right, e.g.,

« Trained on ImageNet
« 8 layer architecture (for reference: today we have architectures with 100+ layers)

 Allowed for multi-GP training



Krlzhevskv, Sutskever, and Hinton, NeurIPS 2012

miie ' ' cuhtamea [+] motor scooter

mite container ship motor scooter | leapard
black widow | | lifeboat go-kart | jaguar
cockroach amphibian mioped cheatah
tick Tireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

B %

- ] o f e
- B
%

grille mushroom cherry adagascar cat
convertible | | agaric dalmatian q:ul-rrel monkey
grille milushroam grape | spider monkey
plekup jelly fungus elderberry | titi
beach wagon | gill fungus |[ffordshire bullterrier | indri
fire engine | dead-man’'s-fingers currant | howler monkey




container ship

motor scooter

Krlzhevsky, Sutskever, and Hinton, NeurIPS 2012

grille

mite container ship motor scooter | leapard
black widow | | lifeboat go-kart | jaguar
cockroach amphibian mioped cheatah
tick Tireboat bumper car snow leopard

starfish drilling platfarm golfcart

cherry

agascar cat

convertible
grille

fire engine

| agaric

pickup |
beach wagon |

mills hiroom
jelly fungus

dalmatian

grape |
elderberry |
gill fungus |ffordshire bullterrier

dead-man’'s-fingers currant |

squirrel monkey
spider monkey
Liti

indri

howler monkey




28 years 28 years
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Krizhevsky,
Sutskever,
Hinton, 2012

Perceptrons, PDP book,

_ 4+ 1958 1986
enthusiasm

Minsky and Papert, Neural net winter,

1070 2NNN >
L ot 1 = (4R VAV AWV j

time

Source: Isola, Torralba, Freeman



28 years 28 years

< >

Krizhevsky, ?

Sutskever, n
Hinton, 2012

Perceptrons, PDP book,

» 1958 1986 -
Diffusion Models

Transformers ...

enthusiasm

VISION + LANGUAGE

Minsky and Papert, Neural net winter,

1070 2NNN >
L ot 1 = (4R VAV AWV j

time

Source: Isola, Torralba, Freeman



Inspiration: Hierarchical Representations

A Best to treat as inspiration.
- (L The neural nets we'll talk about
‘ */ \@ aren’t very biologically plausible.
/“ A
@JAL@
V1/V2 L '“
OO @@@@

Source: Isola, Torralba, Freeman [Serre, 2014]



Object recognition

Pixel 1

Neural Network

- |s dog?

Pixel 2

Pixel 2
_|_
_|_
Paw

Pixel 1 Fur

Goal: automatically learn a function that maps data from the input space to a
feature space, i.e., "feature learning”, rather than use hand-crafted features



Computation in a neural net

Let’'s say we have some 1D input that we want to convert to some new feature space:

Linear layer

Input Output / weights
representation representation

Vi = i WijX;

Adapted from: Isola, Torralba, Freeman



Computation in a neural net
Let's say we have some 1D input that we want to convert to some new feature space
Linear layer
Input Output /weights
representation representation

Yj = D Wij X+ bi

_

bias

Adapted from: Isola, Torralba, Freeman



Example: Linear Regression

Linear layer

Input Output
representation representation
®
®
®
®
16 P % y
3
® 8
2 T
C fwp(X) =x"W+b
1 C

Adapted from: Isola, Torralba, Freeman



Computation in a neural net — Full Layer

Linear layer y=Wx+b
Input Output  |fWi1 ** Winrxa] [b1] v
representation representation || s [ X2 + |b2] = |2

. Oyl ¢ y (] (] - L
® Oyz W co e W x b -
C Qs j1 jn 1l A5 1 L5
®

X ‘
® 1Y .0 —
= : parameters of the model: H — {W, b}
®
C b, Y

1 C

Adapted from: Isola, Torralba, Freeman



Computation in a neural

net — Full Layer
Linear layer

Input Output
representation representation
® OV1
® OB
o QY3
DS o =——— |y
C o
®
@ | Y
1C |

Adapted from: Isola, Torralba, Freeman

Full layer
y=Wx+b
_ - 'xl'
W oo W
.11 : " b.l X2
Xn
Wit Win by |

V1

y2

i

Can again simplify notation by

appendinga 1to X




Computation in a neural net — Recap

We can now transform our input representation vector into some output
representation vector using a bunch of linear combinations of the input:

Input Output
representation representation
®) O O
®) O O
8 8 8 We can repeat this as
X S Y '®) Z '®) many times as we want!
O O O
O O O
®) O O

41



What is the problem with this idea?

E
e
S
=
S

=
=

E
»e

OO0O0O0000O0
OO0O0O000O0O0
OO0O00000O0

OO0O00000O0

Can be expressed as single linear layer!

(G Wl) X = WX
i

Limited power: can't solve XOR ®



Solution: simple nonlinearity

Linear layer
1, if y>0
9(y) =

Input Output 0, otherwise
representation representation 1.0
° Oo—O
O O0—O0
® O0—O 0.6
® O—O
) o T = 9(y) ..
® : 0.2
o Oo0—O
o o—-0 0.0
bj —4 —2 0 2 4
10 y g)

_ d
Pointwise

Non-linearity



Example: linear classification with a perceptron

L2

80

60

40

20

Source: Isola, Torralba, Freeman



Example: linear classification with a perceptron

L2

y=x'w+b

() = 1, if y>0
S = 0, otherwise

80

60

40

20




Example: linear classification
with a perceptron

L2

y=x'w+b

80

60

0, otherwise

40

{1, it y>0

“when vy is greater than 0, set all
pixel values to 1 (green),
otherwise, set all pixel valuesto 0
(red)”

20




Example: linear classification with a perceptron
9(y)

L2

y=x'w+b

80

60

9(y) = 0, otherwise

40

{1, it y>0

? “when vy is greater than 0, set all

pixel values to 1 (green), otherwise,
set all pixel values to 0 (red)”




Computation in a neural net - nonlinearity

Linear layer
1, if y>0
9(y) = {

Input Output 0, otherwise
representation representation 1.0
o O—O
® O—O 0.8
o O—O0 0e
® O—0O)
x () } ) N g(y)o4
® o—-O0 0>
® O—O
o o—-0 0.0
b N T T
10 y g)

d
Can’t use with gradient descent, 559 = 0



Computation in a neural net - nonlinearity

Linear layer Sigmoid
1
Input Output g(y) =o(y) = 11+ e
representation representation o

- .

® 0.8

: 0.6
X A~ \ g(y) 0.4

o 0.2

®

- bj o —4 =2 0 2 4
10 y 9O) Y



Computation in a neural net - nonlinearity

- Bounded between [0,1] Sigmoid
B B 1
» Saturation for large +/- inputs 9(y) =o(y) = 1+ e Y
- Gradients go to zero 0:8:
0.6 1
9(Y) ..



Computation in a neural net — nonlinearity

» Unbounded output (on positive side)

. . : . Og O, it y<O0
Efficient to implement: 9y~ {1, £ >0
* Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.

2012])

« Drawback: if strongly in negative
region, unit is dead forever (no gradient).

» Default choice: widely used in current
models!

Rectified linear unit (ReLU)

g9(y) = max(0, y)

9(y)

Source: Isola, Torralba, Freeman



Computation in a neural net — nonlinearity

» where a is small (e.g.,
0.02)

« Efficient to implement:

« Has non-zero gradients
everywhere (unlike ReLU)

@_ —a, if y<0
Oy |1, if y>0

Leaky RelLU

max(0,y), if y>0
9(y) = . .
amin(0,y), if y <O




Stacking layers

Input Intermediate Output
representation representation representation

00000000

h = “hidden units”



Connectivity patterns

Input Output Input Output

representation Wb representation representation —c representation

Fully connected layer Locally connected layer
(Sparse W)



Stacking layers

Input Intermediate Output
representation representation representation

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ..., b1}

Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ..., b1}



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relU O = {W1, ..., WL b, ..., b1}

Source: Isola, Torralba, Freeman



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+bl) y=gW?h+ b?)
relU -~ O = {W1, ..., WL b1, .. b1



Stacking

layers
Input Intermediate Output
representation representation representation

negative

h=gWlx+b!) y=g(W2h+ b?)

/

RelU

o = (Wl .., WLbl .. bl



Stacking layers

Input Intermediate Output
representation representation representation

negative

h=gWlx+b!) y=g(W2h+ b?)

/

RelU

o = (Wl .. WLbl .. bL



Stacking layers - What's actually happening?

Low level features: higher level features: even higher level features:
e.g., edge, texture, ... e.g., shape e.g., “paw”, “fur”

OO0O0O0000O0

OO0O0O000O0O0
\/

00000000

OO0OO0000O0O0



Source: Isola, Torralba, Freeman

Deep nets
R

|

|

|
\l/

fx)=f(. . :(f2(fi(x)))

“dog”



Source: Isola, Torralba, Freeman

Deep nets - Intuition

“has horizontal edge”
“has vertical edge”

[e)We)]

\l/

“dog



Deep nets - Intuition

“has rounded edge”

- - - ~~ T ”
I I7 dog

N O

Source: Isola, Torralba, Freeman



Deep nets - Intuition

“has white fur”
“has paw”
etc

How do we
make a
classification?

”

|
1
1
\l/

“dog

o O

Source: Isola, Torralba, Freeman



Deep nets - Intuition Recall:

“has white fur”
“has paw”
etc

Paw

Fur

/

Classify

Source: Isola, Torralba, Freeman



Computation has a simple form

« Composition of linear functions with nonlinearities in between

- E.g. matrix multiplications with ReLU, max(0, X) afterwards

* Do a matrix multiplication, set all negative values to O, repeat

But where do we get the weights from?



Computation has a simple form

. [
)” -
4




How would we learn the parameters?

Y1
“dog”

JV

— L(fo(x1),y1)
/ AN

predicted ground truth

Learned . (91 (92 93 94 95 ‘96

N
0* = arg min Z L(fo(xi),¥3)

0 1=1



local
Savieze 9l0Dal minima

S S, i H H
e 111 M1 M A}

FES - Seo—i it — S



Let’'s start easy



world’'s smallest neural network!
(a “perceptron™)




Training a Neural Network

Given a set of samples and a Perceptron

{mi: yi—}
y = frer(z;w)

Estimate the parameter of the Perceptron

w



Given training data:

x Y

10 | 10.1
2 1.9
3.5 | 3.4
1 1.1

What do you think the weight parameter is?

Y = W



Given training data:

x Y
10 | 10.1
2 1.9
3.5 | 3.4
1 1.1

What do you think the weight parameter is?
Yy = wx

not so obvious as the network gets more complicated so we use ...



An Incremental Learning Strategy

(gradient descent)

Given several examples

{1, 01),(z2,%2),-. ., (ZN,yN)}

and a perceptron

o

Y = W



An Incremental Learning Strategy

(gradient descent)

Given several examples

{1, 01),(z2,%2),-. ., (ZN,yN)}

and a perceptron

o

Y = W

Modify weight W suchthat 9 gets ‘closer’to Y



An Incremental Learning Strategy

(gradient descent)

Given several examples

{(1,11), (z2,92),-.., (ZN,YN)}

and a perceptron

o

Y = W

Modity weight such that ?} gets ‘closer’ to

perceptron perceptron true
parameter output label



wow* How dID

GET UIKE
THAT?

\/—

Neural
Network

.

L

EVERY TIME I SEE

A NEW TRAINING
EXAMPLE ...

L

N

\/‘

Neural
Network

N

I DO ONE
ITERATION
OF WEIGHT
TRAINING

SHEN COMIX




L1 Loss L2 Loss

0(g,y) = 19—yl £3,y) = (§ —y)*

Zero-One Loss Hinge Loss
£(9,y) = 1[g =y £(9,y) = max(0,1 —y-g)




Gradient descent:

update rule:



Backpropagation

Geoff Hinton after writing the
paper on backprop i 1986

E:Ih.: ]

I guess you gu snren'i't re::;d' arthat
SEERUR BRGNS

MR e =

T S

o=
'r.‘l‘l
Ii‘ 1

bu!_;_ your kidsiare gonna love it.



TweaKing NeuraiNet

Backpropagation iﬁ

Pa ra m EIE r&HEEENTEE{ L0




dLl

— ...Is the rate at which this will change...

dw
L)
L=-(y—9) <

2

the loss function

... per unit change of this

e

the weight parameter

Let’'s compute the derivative...



Compute the derivative

iwod(1,
%—%{ﬁ(y—y)}

ol
|
@ =
]
S =
&
| ‘
<
S

That means the weight update for gradient descent is:

w = U — V’{U move in direction of negative gradient

=w+ (y —9)x



Gradient Descent (world’s smallest perceptron)

For each sample

1Zi ¥i }

1. Predict
a. Forward pass i = wx;
b. Compute Loss Eizzl@ﬁ__gﬁ
2
2. Update
. dl; .
a.Back Propagation ¥ = —(y; — 9)x; = Vw
w

b.Gradient update w=w-— Vw



multi-layer perceptron

function of FOUR parameters and FOUR layers!



sum  activation activation activation

input weight weight weight

r — Wb~ W9 |— w3 —

input hidden hidden output
layer 1 b 1 layer 2 layer 3 layer 4




= —

e

i sum  activation activation activation
input weight weight weight
r — wi Wy |— w3 —
L
|
input hidden hidden output
layer 1 b 1 layer 2 layer 3 layer 4




= —

i sum  activation activation activation
input weight weight weight
r — wi Wy |— w3 —
L
|
input hidden hidden output
layer 1 b 1 layer 2 layer 3 layer 4




input

weight

r’“ . .
& sum  activation

weight

activgtion

Wo

input
layer 1

“hidden
layer 2

a1 = w1 -+ by

layer 3

activation

output
layer 4



& sum  activation

input weight weight weight
Tr — W1 Wo Ws
input Thidden ~hidden
layer 1 b 1 layer 2 layer 3

activation

output
layer 4



sum  activation rd activation

TR

input weight weight { weight
J — 'UJl f— w2 wB
input hidden hidden
layer 1 b 1 layer 2 layer 3 layer 4




sum  activation & i activation

input weight weight { weight

layer 1 b 1 layer 2 layer 3

a1 = w1 -+ by
az = ws  f1(wy - x + b1)
a3 = ws - fa(wa - f1(wy -z + b1))



Tr — W

layer 1 bl

a1 = w1 -+ by
az = ws  f1(wy - x + b1)
a3 = ws - fo(wy - f1(w1 -z +b1))



sum  activation activation

a1 =wy T+ by
az = ws  f1(wy - x + b1)
a3 = ws -+ fo(ws - fr(wy -z + by))
y = f3(ws - fo(wsz - fi(wi-z+b1)))



Entire network can be written out as one long equation

y = fa(ws - fa(wz - fi(w1 -z + b1)))

We need to train the network:
What is known? What is unknown?



Entire network can be written out as a long equation

y = fs(ws - fa(wsz - f1(ws & b1)))

A

\\ nown -

We need to train the network:

What is known? What is unknown?



Entire network can be written out as a long equation

y = fa(ws - fa(wz - fi(w1 -z + b1)))

AR OA A A A
/ \ K /

activation function . .

sometimes has - unknown -

parameters

We need to train the network:
What is known? What is unknown?



Learning an MLP

Given a set of samples and a MLP
{mi: y’a}
y = fmrp(z; 0)

Estimate the parameters of the MLP

f={f,w,b}



Gradient Descent
For each random sample {z;,v;}
1. Predict
a. Forward pass § = fmre(zs; 0)
b. Compute Loss

2. Update
oL o
D vector of parameter partial derivatives

a.Back Propagation o0

b. Gradient update -

vector of parameter update equations



SO we need to compute the partial derivatives

oL | 9L 0L 0L oL
89 - _(‘)wg 8’&)2 é)wl 66_




Remember,

oL

Partial derivative —— describes...
awl

affect...

M ~js
oW,
_..-f“w
. _J (loss layer)
Tr — W1 p— — W9 |— w3 — ‘y




According to the chain rule...

Intuitively, the effect of weight on loss function :

rest of the network =

AL OL dfs das
(91U3 - fafb 6%1318QU3

oL

w3

|-

y L(y, 9)

N
' depends on

depends on
P 8f3 depends on
a v

e das oL

Ows 8—f3



rest of the network f2 — wS _>—> ‘3} L(y’ g)

9L 0L Ofs das
8w3 - afg 8a3 a’w;g

Chain Rule!



rest of the network f2 — wS _>—> ‘3} L(y’ g)

0L  OL dfs das
Ows ~ Ofs Oas Ows
.\ O0f3 Oas
B _n(y Bl y) aag a’w;g |
Just the partial

r—
derivative of L2 loss
1-’“‘"’#;:”.




rest of the network f2 — wS _>—> ‘3} L(y’ g)

0L L dfs das

Ows  Ofs Oas Ows /_\
_ ( - A)afg 8&‘,3 .
o 77 y y 8(1,3 awg \

Let's use a Sigmoid function

ds(z)
) _ o)1 - s(a)




rest of the network f2 — wS _>—> ‘3} L(y’ g)

OL  OL Ofs Oas
Ows  Ofs Oas Ows

df3 Oaz
=-n(y —9) as Don

oa
= —n(y — 9)f3(1 — f3) ‘z

= —n(y —9)f3(1 - f3)f2



-

7

8_L o oL 8f3 8{1,3 8f2 é?ag
8‘&)2 - 8f3 8&33 8f2 é?ag 811;2




OL
a‘lﬂg

> E——— )
oGl =)

(OL 9fs10as 01> das

afg 6a3 !afz c':?ag a’lﬂg

already computed.
re-use (propagate)!



The chain rule says...

depends on

74
Tr — W

f— CE]“ffl

/

b1

depends on

w9

depends on

depends on depends on depends on

depends on

8_L o 8L 8f3 8(13 8f2 8612 8f1 8(1,1
awl - 8f3 8a3 an 8652 8f1 8@1 8’&)1




The chain rule says...

depends on

k i
$—w1_>a1f1 W9

/

depends on depends on depends on depends on depends on

b depends on
1

AL _|OL dfs dag df2)0as 0f1 Da
8‘11)1 - @fg 84’13 a_fz 855% 8f1 8{1‘,1 8‘&)1

already computed.
re-use (propagate)!




depends on

r — W1~ 31‘f1 — Wo

/

depends on dep

ends on

oL [OL 6fs|0as

dws {;_ 0 f3 dasz)Ows
OL >| 0L dfs|0az Of2 Das

Owy | dfs Baz|0fz Oag dws

% . oL af3 8(13 8f2 8&2 8f1 aal

8’&)1 - 8f3 8(13 8f2 8&2 8f1 80',1 8’11}1
% 0L 0f3 Dag dfy Dag Of1 Oay
86 - afg 8a3 8f2 8&2 é)fl 8@1 é)b

:




depends on

SN

/

al‘fl _

depends on depends on

OL  OL Ofs Das

8’&)3 - 8f3 8&3 8’11)3
oL 0L 0fs Oag dfs|0as

3_’11»’25 df3 Oaz 0f2 Oaz w2
oL - 3 0az 0J20az 0f1 Oaq

Ow, | Ofs Oaz Of2 Oas 0.f1 Oay Ow;
a[, 3 0dsg 2 8@2 8f1 8&1

b~ Ofs Oas Ofy Oay Of, Oay Ob




depends on

_,al‘fl_

/

depends on depends on

9L AL fs das
Ows ~ Ofs Oaz Ows

0L  OL 0fs daz df2 Das
dwy  Ofs Das dfa ag dws

oL 3o0agz Jjg 0aa UJ1 Paq

dw, ,| 0 fs Bas Ofs Dag Of1 Day Ow,
((Mlg g3 dag dJo Oag 0J1 Oaq

86 8f3 8(13 8f2 8&2 3f1 8&1 \86




Gradient Descent
For each example sample
1. Predict
a. Forward pass
b. Compute Loss
2. Update

a. Back Propagation

b. Gradient update

i Yi }

§ = fmrp(zi; 0)
L,

DL _ OL 0fs day
811)3 N (9f3 (961',3 6?1)3
OL _ OL Ofs Day Oz day

Ows  Ofsz Baz Of2 Hag Ows
AL AL Ofs Dag Ofz Dag Dfy Da

w3 = w3 — Vw3

wo = wa — NVws

wy = wy —nVw;
b=b—nVb



Gradient Descent

For each example sample {mhgﬁ}

1. Predict
a.Forward pass = fumrp(zs;0)
b. Compute Loss Li
2. Update
oL
a. Back Propagation 90
vector of parameter partial derivatives
0L
)+ 0 — -rgﬁ

b. Gradient update

vector of parameter update equations



Larpdiiry DHagcent

L e
FIF: *-Ilill
' = Bl i
Ll v .




Learning rates

" | original v,

oL Step size: learning rate
0 -n— Too big: will miss the minimum
0 Too small: slow convergence

negative gradient direction



Learning rate scheduling

* Use different learning rate at each iteration.

* Most common choice:
No

Nt \/E

Need to select initial learning rate ng

More modern choice: Adaptive learning rates.

veof(), )

Many choices for G (Adam, Adagrad, Adadelta).



Momentum Update  guadien

update
96 - n‘z—g //

o momentum

Take direction history

L
+ (1 —w)A6O ,
into account!

" o6

weights grad = evaluate gradient(loss fun, data, weights)
vel = vel * 0.9 - step size * weights grad
weights += vel

AO «




Many other ways to perform optimization...

- Second order methods that use the Hessian (or its
approximation): BFGS, LBFGS, etc.

- Currently, the lesson from the trenches is that well-tuned
SGD+Momentum is very hard to beat for CNNSs.

- No consensus on Adam etc.: Seem to give faster
performance to worse local minima.
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I HOME -

MENU -

CONNECT

THELATEST

POPULAR MOST SHARED

]U BREAKTHRUUGH Introduction The 10 Technologies Past Years
{ll‘l
zzad TECHNOLOGIES 2013
Temporary Social Prenatal DNA Additive Baxter: The Blue-
Media Sequencing Manufacturing Collar Rohot
Reading the DNA of
With massive amounts fetuses will be the Rodney Brooks's
of computational next frontier of the Skeptical about 3-D newest creation is
power, machines can Messages that quickly genomic revolution. printing? GE, the easy to interact with,
now recognize objects seli-destruct could But do you really want world's largest but the complex
and translate speech enhance the privacy of to know about the manufacturer, is on innovations behind the
in real time. Arfificial online communications genetic problems or the verge of using the robot show just how
intelligence is finally and make people freer musical aptitude of technology to make jet hard itis to get along
getting smart. to be spontaneous. your unborn child? parts. W with people. 8
Memory Implants SmartWatches Ultra-Efficient Solar Big Data from Supergrids



(Unrelated) Dog vs Food

> |
eeec0 Verizon T 4:20 PM 76% . » seeee \lerizon T 4:20 PM 34% >4

{ Albums  chihuahua or muffin Select < Albums puppy or bagel Select

BB karen zack eenybscut Mar 7

# - BB chihuahua or muffin ? B puppy or bagel 7
0 I .

[Karen Zack, @teenybiscuit]



(Unrelated) Dog vs Food

S s |
eeeeo Verizon F 4:20 PM 69% W eeec0 Verizon F 4:20 PM 69% .
<{ Albums shiba or marshmallow Select { Albums  kitten or ice cream Select

[Karen Zack, @teenybiscuit]



CNNs in 2012: “SuperVision”
(aka “AlexNet”)

“AlexNet” — Won the ILSVRC2012 Challenge

W

Major breakthrough 15 3% Top-5 error on ILSVRC2012
(Next best: 25.7%)
22 T T T ElL = — % | ’
57 Bn: A = 3|\ piEES 13 dense dense
% “'\’""\"fffss 3| N 1000
X7 192 192 128 Max L | L
224 S"t/r‘ide Max 128 Max pooling 2048 2048
Uof 4 pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896—64,896—43,264—

4096-4096-1000.
[Krizhevsky, Sutskever, Hinton. NIPS 2012]



Recap: Before Deep Learning

e .
T i — [SvM | — Ans
N |'| ‘ 1 /

V- N
Input Extract Concatenate into  Linear
Pixels Features a vector x Classifier

Figure: Karpathy 2016



The last layer of (most) CNNs are
linear classifiers

This piece is just a linear classifier

(GoogLeNet)
Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable



ConvNets

They're just neural networks with
3D activations and weight sharing



What shape should the
activations have?

X — Layer — h(l)—> Layer —> h(z)—p cee —» f

\

- The input Is an image, which is 3D
(RGB channel, height, width)




What shape should the
activations have?

X — Layer — h(l)—> Layer — h(z)—p cee —p f

\

- The input Is an image, which is 3D
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure



What shape should the
activations have?

X — Layer — h(l)—> Layer — h(z)—p cee —p f

\

- The input Is an image, which is 3D
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

- What about keeping everything in 3D7



ConvNets

They're just neural networks with
3D activations and weight sharing



3D Activations

before:

output layer
input
layer hidden layer (1D vectors)

Figure: Andrej Karpathy



3D Activations

before:

output layer
input
layer hidden layer (1D vectors)

. — E—
NOw: h1 h2

(3D arrays)

Figure: Andrej Karpathy



3D Activations

All Neural Net
activations

arranged in 3
dimensions:

Figure: Andrej Karpathy

HEIGHT

/ WIDTH
>

DEPTH



3D Activations

All Neural Net
activations

arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

Figure: Andrej Karpathy

DEPTH



3D Activations

1D Activations:

™~
70

O OO

Figure: Andrej Karpathy



3D Activations

1D Activations: 3D Activations:

32
a hidden neuron in

—0C =0

O OO

32

Figure: Andrej Karpathy



3D Activations

32

32

Figure: Andrej Karpathy

a hidden neuron in
next layer

- The input is 3x32x32

- This neuron depends

on a 3x5x5 chunk of
the input

- The neuron also has a

3x5x5 set of weights
and a bias (scalar)



3D Activations

Example: consider the
32 region of the input “X"”
xr a hidden neuron in
next layer . 7
@>O With output neuron A
.
5 h
32

Figure: Andrej Karpathy



3D Activations

32

32

Figure: Andrej Karpathy

a hidden neuron in
next layer

hr

Example: consider the
region of the input “X"”

With output neuron i’

Then the output is:

h' = zxrijku/ijk +b

ijk



3D Activations

32

32

Figure: Andrej Karpathy

a hidden neuron in
next layer

hr

Example: consider the
region of the input “X"”

With output neuron i’

Then the output is:

h' = zxrijku/ijk +b

ijk

Sum over 3 axes



3D Activations

32
xr a hidden neuron in
next layer
@>O
hr
5 1
32

Figure: Andrej Karpathy



3D Activations

32
xr a hidden neuron in
next layer
@>@ e
r r
5 h 1 h 2
32

Figure: Andrej Karpathy



3D Activations

3 With 2 output neurons

X a hidden neuron in

tl ro v
o hy = ZJC Wi t by
5 O ijk

n,h
o h, = zxrijkWZIjk +b,

ijk

Figure: Andrej Karpathy



3D Activations

3 With 2 output neurons

X a hidden neuron in
next layer h?’ — zx” + F
| = ijk "M 1k
@>® O "

ijk
r r
hl h2

h', = zxrijkuﬁtjk T

ijk

Figure: Andrej Karpathy



3D Activations

depth dlmensmn

@>ooooo

32

Figure: Andrej Karpathy



3D Activations

32 depth dimension

ﬁ>ooooo

32

Figure: Andrej Karpathy

We can keep adding
more outputs

These form a column
In the output volume:
[depth x 1 x 1]



3D Activations

32

32

Figure: Andrej Karpathy

depth dimension

@>ooooop
|

\I/

Each neuron has its
own 3D filter and
own (scalar) bias

We can keep adding
more outputs

These form a column
In the output volume:
[depth x 1 x 1]



32

3D Activations

32

=0 000D

g

D sets of weights
(also called filters)

Figure: Andrej Karpathy

Now repeat this
across the input



3D Activations

Now repeat this

> across the input

[~
ﬁ\>0 OO0

— Weight sharing:
Each filter shares
32 the same weights

5 (but each depth
« > INndex has its own

D sets of weights set of weights)

(also called filters)

Figure: Andrej Karpathy
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3D Activations
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D sets of weights
(also called filters)
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3D Activations
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=0 000D
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D sets of weights
(also called filters)

Figure: Andrej Karpathy

With weight

sharing,

this is called
convolution



3D Activations

With weight
sharing,
this Is called

- convolution
ﬁ\>@ OO0OP

Without weight
sharing,

this is called a

P R locally

D sets of weights connected layer
(also called filters)

32

32

Figure: Andrej Karpathy



3D Activations

Output of one filter One set of weights gives

/ one slice Iin the output

N\

To get a 3D output of depth D,
ﬁ§> use D different filters
"
/ In practice, ConvNets use
| | / many filters (~64 to 1024)
(input (output

depth) depth)



3D Activations

Output of one filter One set of weights gives

/ one slice Iin the output

/|

§> use D different filters

To get a 3D output of depth D,

/ In practice, ConvNets use

L _ - many filters (~64 to 1024)
(input (output
depth) depth)

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)



3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
“ CINEEREDNNZIIAYREENE SESARTINEEREESR S

one filter = one depth slice (or activation map) ( 32 f i|’[er8, each 3X5X5)
Activations:

.ﬁ..-
=N = AN
Bt AR 7SN
N

Figure: Andrej Karpathy



3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
) CINEEREDNNZIIAYREENE SESARTINEEREESR S

u one filter = one depth slice (or activation map) ( 32 fj |’[erS, each 3X5X5)

Activations:

Figure: Andrej Karpathy



3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

Activations:

GO ELREFIEY B TASTUEET BV T LB
one filter =\gne depth slice (or activation map) (32 fi|’[er8, each 3)(5)(5)

Figure: Andrej Karpathy




3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

’
L

Activations:

O ERETRIEYD B TASTEET BE 1] LB
one filter =\gne depth slice (or activation map) (32 fi|’[er8, each 3)(5)(5)

T H
A | 2B ) 2l

s @ :
Figure: Andrej Karpathy

IVAS e {t




(Recap)

A ConvNet is a sequence of convolutional layers, interspersed with
activation functions (and possibly other layer types)

32 28 24
CONV, CONV, CONV,
RelLU RelLU RelLU
e.g.6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24




(Recap)

Convolution Layer

32x32x3 image

32 height

3 depth



(Recap)

Convolution Layer

32x32x3 image

5x5x3 filter
32 (4
I| Convolve the filter with the image
I.e. "“slide over the image spatially,

computing dot products”

32




(Recap)

CO nVOIUtlon Layer Filters always extend the full
_——— depthofthe input volume
32x32x3 image /
ox5x3 filter
32 44
I' Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32




(Recap)

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.,e. 5*5*3 = 75-dimensional dot product + bias)

3 wlz +b

~~ 1 number:




(Recap)

Convolution Layer

activation map

__— 32x32x3 image
5x5x3 filter

=

32

convolve (slide) over all
spatial locations




Convolution Layer

I

(Recap)

__— 32x32x3 image

_ 5x5x3 filter
32 _—

e /

——0

32

convolve (slide) over all
spatial locations

consider a second, green filter

activation maps

y

[

28



(Recap)

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolution Layer

activation maps

A

A

We stack these up to get a “new image” of size 28x28x6!

28



Convolution: Stride

During convolution, the weights “slide™ along the input to
generate each output

Weights
L

Output

Input
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Convolution: Stride

During convolution, the weights “slide™ along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = zxrzjijk +b

ijk

(channel, row, column)



Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input
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Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Size of the input

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

OO0 0|]0]10]10(O0

Output

||l OO || O |OC O | O | O
||l OO || O |OC|OC O] O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

OO PO L0 0|0 (O

Output

||l OO || O |OC|OC O] O
||l OO || O |OC|OC O] O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

OO0 |0 pFOFO O O

Output

||l OO || O |OC|OC O] O
||l OO || O |OC|OC O] O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O[O0 ]1]010]10 OO

Output

||l OO || O |OC|OC O] O
||l OO || O | OO | O | O

Input



Convolution:
How big is the output?

stride s
4+—lp
ololoflo|lo]o|lo]oOo|oO
0 . g 0
0 kerrnel| & 0
0 O 1 In general, the output has size:
0 0
w.+2p—k
0 0 Wout = +1
S S —
0 0
0 0
ofoloflolo]o|lo]oOo|oO
<) » 4P

P width w,_ P



Convolution:

How big is the output?

stride s

O191919191°9 Y| Example: k=3, s=1, p=1

0 . 0

0 kernel k 0 W = Win+2p—kJ+1

0 0 i S

0 . w.+2-3

0 0 — + 1

i |

0 0

0 0 = Wi

ofoflofofo]oO 0

VGGNet [Simonyan 2014]

28 width w,_ "P uses filters of this shape



Pooling

For most ConvNets, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

- The "max” operation is the most common
- Why might “avg” be a poor choice”?

downsampling
32

16

32

Figure: Andrej Karpathy



Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

—

|

.
downsampling
112

224

224



Max Pooling

Single depth slice

Jlr]1]2]4
max pool with 2x2 filters
516 |7 |8 and stride 2 6 | 8
31 2|1]0 3| 4
112 1|3 | 4
y

What's the backprop rule for max pooling?
- In the forward pass, store the index that took the max

- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy






Example ConvNet

BREkEIR uw

DAVIE PSS

FEND

i R B BR

Figure: Andrej Karpathy



Example ConvNet

CONV POOL
l RelLU l

G ol -

RelLU
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Figure: Andrej Karpathy



Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL FC
l RelLU l RelLU RelLU RelU RelLU l ReLUl (Fu“y-connected)

. ! , }
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truck

l
L
I
Lo
L 3 =E
Ei_ .
-
-
=
™

JEEEE

girplane
Ship

horse
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HERENEANREE -

-
-
o
-
—

Figure: Andrej Karpathy



Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL FC
l RelLU l RelLU RelLU RelU RelLU l ReLUl (Fu“y-connected)

. ! , }

-
-

truck

|
v
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v
ot
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™
|
™

JEEEE

girplane
Ship
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HERENEANREE -

-
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10x3x3 conv filters, stride 1, pad 1
2x2 pool filters, stride 2 T T Rp—



Example: AlexNet [Krizhevsky 2012]

convi conv2 conv3 conv4 convs fc6 fc7
1 sample
class
scores
384 384
227x227 55x55 27x27 13x13 13x13 13x13 4095 1000
conyv conv conv conv conv max full
max max full
norm norm
|| I
| |
Extract high level features Classify

each sample
‘max’”. max pooling
‘norm”: local response normalization
“full”: fuIIy connected Figure: [Karnowski 2015] (with corrections)
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