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Welcome to the class!

This is an interactive class.
Don’t just consume – participate!

This is a research class.
Don’t just “learn” – critique, ideate, design, evaluate!



tejasgokhale.com

Tejas ~ TAY + JUSS
Gokhale ~ GO + CLAY
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Research Areas

Current Projects Highlights / Activities

Tejas Gokhale, Assistant Professor

Cognitive Vision Group,  ITE 368

• Domain Adaptation/Generalization

• Quantifying Visual Typicality

• Visual Semantics and Pragmatics

• Continual Concept Learning

• Generative Model Evaluation

• Multimodal Active Inference

• AAAI 2024:  New Faculty 
Highlights Invited Talk

• ECCV’24 & WACV’24:  Tutorials on 
Reliability of Generative Models

• Area Chair:  NeurIPS, ACL ARR, 
EMNLP, NAACL, WACV

• UMBC PPR Seminar

www.tejasgokhale.com

• Computer Vision
• Vision & Language
• Image Generation
• Robustness & Reliability
• Active Perception

https://www.tejasgokhale.com/


Course Staff

Instructor: Tejas Gokhale
Assistant Professor, CSEE

OH:  
Wed 2:30 – 3:30 PM ITE 214

gokhale@umbc.edu

TA/Grader …

mailto:gokhale@umbc.edu


Course Website

https://courses.cs.umbc.edu/graduate/691rml/ 

https://courses.cs.umbc.edu/graduate/691rml/


Quick Introductions

(1)  Name 

(2)  Major (e.g. CS)

(3)  Level (BS/MS/PhD)

(4)  Why are you taking this class?

(5)  Something you did this summer

Course Website



Class Structure:  Overview

• [Wed 08/28]:  Today, Class Logistics and Introduction

• [Mon 09/02]:  Labor Day, NO CLASS

• [Wed 09/04]:  Machine Learning Review

• Every Week after that:

o MON:   [TEJAS]  Overview of a Robustness Challenge

o WED: [STUDENTS] Quiz; Paper Presentations; Class Discussion

We have 12 Robustness Topics



Class Structure:  Tentative Schedule
We have 12 Robustness Topics



Class Structure:  Grading



Class Structure:  Grading

• Paper Presentations 20% pick two topics (10% each)

• Survey Papers  20% pick two topics (≠ your presentation topic)

• Quizzes (each Wed) 25% best 10 out of 12 (2.5% each)

• Project (group of 3)* 35%

o Proposal (5%), Midterm Update Video (5%), Final Presentation (10%), Final Report (15%)

o *If you’re a PhD/MS thesis student, you can opt to work alone
‒ But you need my APPROVAL!

• Extra Credit   max 10% (opportunities will be announced periodically) 

We have 12 Robustness Topics



Class Structure:  Deadlines & Late Submission
• Paper Presentations: In class (sign up sheet will be shared)

o If you are scheduled to present, but can’t make it, send an email to me and the TA to request date-change

o Permissible reasons:  unforeseen events (illness, injury, emergency), travel to academic conferences, interviews

o Bottom Line:  I reserve the right to approve or deny date-change requests

• Survey Papers:    Due “next Wednesday 2359 UMBC time”. See example below.

o If  Lecture on “Domain Adaptation” is on  Monday, Sept 09.  

o Then Survey paper on “Domain Adaptation” is due on Wednesday, Sept 18, 2359 UMBC time.

o Late submissions:  10% deducted for each late day.

• Quizzes:   In class.  12 quizzes.  Your highest 10 grades will be chosen.

o Bottom Line:  if you miss a quiz, you miss a quiz.

• Project:    Each milestone has fixed deadline.

o Late Submissions:  10% deducted for each late day FOR ALL GROUP MEMBERS



Academic Integrity

• Presentations, Survey Papers, Quizzes must be done 
independently.

• Do not plagiarize. Consequences will not be pleasant.

• Do not use “AI” assistants for any part of any 
assignment. Consequences will not be pleasant.

• Familiarize yourself with UMBC policy on plagiarism 
and other forms of cheating:
https://academicconduct.umbc.edu/resources-for-students/ 

• Read the syllabus for consequences of academic 
integrity violations.

I take academic integrity very seriously.  You should too.
If you’re unsure about something, ask us.

You are at a top-tier (R1) research university.
Use this privilege to learn. A good grade will follow.

Don’t throw away this opportunity by cheating.

https://academicconduct.umbc.edu/resources-for-students/
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Seek Help Early!

Help us help you.



491 (Undergrad) vs 691 (Grad)
This is a “Research” class – anyone with the right mindset (+ an intro ML class) is ready

Main difference: projects (scope and novelty)

• Projects will be graded in terms of “relative growth”
o Some may have previous research experience
o Some are taking this class to get research experience

• Grad projects:
o Original & unique research hypothesis with a potential for publication

• Undergrads projects can be:
o Original & unique research hypothesis with a potential for publication

o Working on an idea that we provide (i.e. you get to skip “ideation”)

o Innovative applications or combination of existing work



FAQ:  Can I join your research lab?

• Joining (See FAQ on my website)
o Take this class and talk to me during office hours about your interests

• Will I get paid for research ?

o Depends (I currently only have funding for PhD students)

o Undergraduate Research & Prestigious Scholarships - UMBC

o CWIT Scholars – Center for Women in Technology – UMBC

o You can also do research for credit (e.g. CMSC 299, 499, 698, 699)

https://ur.umbc.edu/
https://cwit.umbc.edu/cwitscholars/


Other Questions?



Robust Machine Learning
Lecture 0: Introduction



Machine Learning: The Success Story



Machine Learning: The Success Story



Models that learn from data are embedded in our lives



Recent advances have been rapidly adopted by common, non-expert users
Models that learn from data are embedded in our lives



But what do these results really mean?

ImageNet: An ML Home Run
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A Limitation of the (Supervised) ML Framework

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

Training Inference



Training Inference

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

What can go wrong?

=
A Limitation of the (Supervised) ML Framework



Standard i.i.d. Assumption in Machine Learning

“Independent and Identically Distributed” 
Models learn useful patterns

Training Data
Distribution

Test Data
Distribution=



Standard i.i.d. Assumption in Machine Learning

IID Assumption collapses in real-world “in-the-wild” settings
Model performance deteriorates

Training Data
Distribution

Test Data
Distribution≠



Robustness in Computer Vision
Findings from Previous Work



Poses can fool Image Classifiers

Alcorn et al. CVPR 2019 



• Goal: correctly classify previously unseen test images.

• Statistical ML operates with the “i.i.d.” assumption
• But real-world test inputs are often NOT i.i.d. !!!

• Poses can fool classifiers
• Rotation
• Translation
• Scale
• Occlusion
• … 

Alcorn et al. CVPR 2019 

Poses can fool Image Classifiers



Natural Corruptions affect accuracy

Hendrycks et al. ICLR 2019



Spurious Correlations / Biased Datasets

Sagawa et al. ICLR 2020



Adversarial Attacks on Image Classifiers
• Algorithms that can “find” perturbations to add to images, in order to 

fool classifiers 
• Given image 𝒙𝒙,  find 𝒈𝒈(𝒙𝒙) s.t.   𝒙𝒙 + 𝝐𝝐𝒈𝒈(𝒙𝒙) fools classifier
• Perturbations are typically norm-bounded

Goodfellow et al. ICLR 2015



Lack of Diverse Data hurts Reliability

Test

ML Model “Penguin”Mallard
Snow Background

Training

ML Model

Mallard
Water Background

Penguin
Snow Background

0
100



Lack of Diverse Data hurts Reliability

0
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Domain Shift is a Nuisance
Training



ML Predictions Are (Mostly) Accurate but Brittle

“pig” (91%) noise (NOT random) “airliner” (99%)

+ 0.005 x =

[Szegedy Zaremba Sutskever Bruna Erhan Goodfellow Fergus 2013] 
[Biggio Corona Maiorca Nelson Srndic Laskov Giacinto Roli 2013]

But also: [Dalvi Domingos Mausam Sanghai Verma 2004][Lowd Meek 2005] 
[Globerson Roweis 2006][Kolcz Teo 2009][Barreno Nelson Rubinstein Joseph Tygar 2010]

[Biggio Fumera Roli 2010][Biggio Fumera Roli 2014][Srndic Laskov 2013]



Pedestrian Sign

Persons

Biker



11
Biker

+ .007 =

Adversarial 
Perturbation Attack

Green Traffic 
Light

Small but carefully-crafted 
adversarial perturbation



Pedestrian Sign

Speed Limit 45 
Sign

Adversarial 
Rotation Attack



No Person

Adversarial 
Patch Attack

Persons



Adversarial Examples
• In 2014, one of the seminal papers of Goodfellow et al. shows that an adversarial image of a 

panda can fool the ML model to output “gibbon”, which started the area of adversarial ML

Small adversarial noiseClassified as panda 
57.7% confidence

Original image

Classified as gibbon 
99.3% confidence

Adversarial image

Gibbon

Picture from: Goodfellow et al. (2014) – Explaining and Harnessing Adversarial Examples



Adversarial Examples
• Similar example, from Szagedy et al. (2014)

Picture from: Szagedy et al. (2014) – Intriguing Properties of Neural Networks





Adversarial Attacks
Algorithms that can “find” perturbations to add to images, in order to fool 
classifiers
Given image 𝒙𝒙,  find 𝒈𝒈(𝒙𝒙) s.t.   𝒙𝒙 + 𝝐𝝐𝒈𝒈(𝒙𝒙) fools classifier
Perturbations are typically norm-bounded

Goodfellow et al. ICLR 2015



Adversarial Training
Leverages the concept of adversarial examples, in 
order to improve classifier robustness to such 
attacks
min—max optimization

maximization: find adversarial images
minimization: train classifier to correctly classify such images 

norm-bounded perturbations 
==> robustness within the norm-ball

Madry et al. ICLR 2018



Physical-World Attack: Printed Adversarial Images
• Not only adversarial examples in the digital world, but printed adversarial 

images can also fool machine learning models



Physical-World Attack: Adversarial STOP Sign
• An example of manipulating a STOP sign with adversarial patches

• Methodology: carefully design a patch and attach it to the STOP sign
• Cause the DL model of a self-driving car to misclassify it as a Speed Limit 45 sign

• The authors achieved 100% attack success in lab test, and 85% in field test

Picture from: Eykholt (2017) - Robust Physical-World Attacks on Deep Learning Visual Classification



Physical-World Attack: Adversarial STOP Sign
• More examples of lab test for STOP signs with a target class Speed Limit 45

Picture from: Eykholt (2017) - Robust Physical-World Attacks on Deep Learning Visual Classification



Physical-World Attack: Adversarial Patch
• Not only adversarial patch can fool a classifier, but also a SOTA detector
• An example of a person wearing an adversarial patch who cannot be detected by a 

YOLOv2 model
• This can be used by intruders to get past security cameras

Thys et al. (2019) - Fooling automated surveillance cameras: adversarial patches to attack person detection



Physical-WorldAttack: Attack Tesla Autopilot System
• Non-scientific example: a Tesla owner checks if the car can distinguish a person wearing a 

cover-up from a traffic cone



Why should we care?
→ People suffer consequences because of use in real-world systems

→ Safety, security, trust in the systems that we engineer

https://www.youtube.com/watch?v=TIUU1xNqI8w

https://www.youtube.com/watch?v=_1MHGUC_BzQ

http://www.youtube.com/watch?v=TIUU1xNqI8w
http://www.youtube.com/watch?v=_1MHGUC_BzQ


Data Poisoning
Goal: Maintain training accuracy but hamper generalization



Data Poisoning
Goal: Maintain training accuracy but hamper generalization

→ Fundamental problem
in “classic” ML (robust statistics)

→ But: seems less so in deep learning
→ Reason: Memorization?



Data Poisoning
Goal: Maintain training accuracy but hamper generalization

[Koh Liang 2017]: Can manipulate many
predictions with a single “poisoned” input

“van” “dog”

[Gu Dolan-Gavitt Garg 2017][Turner Tsipras M 2018]: 
Can plant an undetectable backdoor that 

gives an almost total control over the model

But: This gets (much) worse
(To learn more about backdoor attacks:
See poster #148 on Wed [Tran Li M 2018])

classification of specific inputs



You don’t even need poisonous samples.
 
Re-ordering training batches of clean data  failures



Are we doomed?



Are we doomed?
(Is ML inherently not reliable?)



Are we doomed?

We need to re-think how we do ML

(Is ML inherently not reliable?)





Robustness Definitions

(or the lack thereof)



Adversarial vs. Out-of-distribution

• Each of the described attacks can further be:
• Adversarial example (algorithmically manipulated example)

• Out-of-distribution example (natural example)



Robustness
Predictor 𝑓𝑓
 𝑓𝑓 𝑥𝑥 = 𝑦𝑦  for  𝑥𝑥 ∈ 𝒳𝒳

Robustness to small perturbations:
 𝑓𝑓 𝑥𝑥 + Δx = ? s.t. Δ𝑥𝑥 𝑝𝑝 ≤ 𝜖𝜖

Robustness to small transformations:

 𝑓𝑓 𝑔𝑔 𝑥𝑥 = ?  s.t. 𝑔𝑔 𝑥𝑥 − 𝑥𝑥 𝑝𝑝 ≤ 𝜌𝜌 
    and 𝑔𝑔:𝒳𝒳 → 𝒳𝒳

Examples from “ImageNet-C” and “ImageNet-P” datasets – Hendrycks et al. ICLR 2019

Tilt

Impulse
 

Noise



Generalization
IID Generalization
Training and Testing inputs sampled independently and identically from a common 
underlying distribution 𝒳𝒳

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝒳𝒳
𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝒳𝒳

OOD Generalization aka Domain Generalization
Training and Testing inputs samples from non-identical distributions 𝒳𝒳𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡  and 
𝒳𝒳𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
Thus test images are “out-of-distribution” for the classifier that has seen training 
images.

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝒳𝒳𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡
𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∼ 𝒳𝒳𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡



Some of Tejas’ Research

(or why I care about Robust Machine Learning)



Perception & Reasoning with Robustness
Robust Image Recognition

Dealing with Style Shift

Gokhale AAAI’21; 
Gokhale ACL’22; 
Gokhale WACV’23; 
Cheng ICCV ‘23; 
Wisdom arxiv 2023; 
Kulkarni CVPR-W’21

Robust Overhead image recognitionDealing with Attribute-Level Shift

Effects of multiple data sources
on OOD and adversarial robustness

Scene Completion for Missing Sensor/Modality



Perception & Reasoning with Robustness
Robust Visual Reasoning (Visual QA, Video Captioning, V&L Inference)

V&L Robustness: Logical, Semantic, Spatial
(use additional knowledge sources and sensors)

Gokhale ECCV ‘20; Gokhale EMNLP’20; Gokhale ACL’21; 
Fang EMNLP’20; Banerjee ICCV’21; Patel EMNLP’22

Understanding Agent Actions in Videos with Commonsense, 
Counterfactual and Physics-Based Reasoning
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V&L Robustness: Logical, Semantic, Spatial
(use additional knowledge sources and sensors)

Gokhale ECCV ‘20; Gokhale EMNLP’20; Gokhale ACL’21; 
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Concept Learning/Distillation in Text-to-Image Generation
Few-Shot Concept Leaning in Text-to-Image Models

Patel AAAI ‘24; Gokhale Tech Rep 2022; Chatterjee ECCV ‘24; Chatterjee ECCV ‘24

• learn common visual concepts from a few images
• assign semantic meaning (in latent space)
• Reproduce the concept (novel view synthesis)

Spatial Reasoning in Text-to-Image Models

• Evaluation Dataset (SR2D) and Metrics (VISOR)

• Improving T2I spatial reasoning with 
1. Recaptioning

(how can a very small number of specialized 
“spatial” captions” help finetune T2I models?)

2. guidance from graphics engines
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Spatial Reasoning in Text-to-Image Models

• Evaluation Dataset (SR2D) and Metrics (VISOR)

• Improving T2I spatial reasoning with 
1. Recaptioning

(how can a very small number of specialized 
“spatial” captions” help finetune T2I models?)

2. guidance from graphics engines



Next Time:

Machine Learning Review

• Machine Learning Training and Inference Pipeline

• Neural Networks / Deep Learning

• ML methods for visual recognition
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