CMSC 491/691

Lecture 10
Visual Recognition

IMAGE CLASSIFICATION OBJECT DETECTION INSTANCE SEGMENTATION




(Recap)

A ConvNet is a sequence of convolutional layers, interspersed with
activation functions (and possibly other layer types)

32 28 24
CONV, CONV, CONV,
RelU RelLU RelU
e.g.6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24




(Recap)

Convolution Layer

32x32x3 image

32 height

3 depth



(Recap)

Convolution Layer

32x32x3 image

5x5x3 filter
32 (4
I| Convolve the filter with the image
I.e. "“slide over the image spatially,

computing dot products”

32




(Recap)

CO nVOIUtlon Layer Filters always extend the full
_——— depthofthe input volume
32x32x3 image /
ox5x3 filter
32 44
I' Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”

32




(Recap)

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.,e. 5*5*3 = 75-dimensional dot product + bias)

3 wlz +b

~ 1 number:




(Recap)

Convolution Layer

activation map

__— 32x32x3 image
5x5x3 filter

=

32

convolve (slide) over all
spatial locations




Convolution Layer

I

(Recap)

__— 32x32x3 image

__ 5x5x3 filter
32 _—

e /

——0

32

convolve (slide) over all
spatial locations

consider a second, green filter

activation maps

y

o[

28



(Recap)

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

32

3

Convolution Layer

activation maps

A

A

We stack these up to get a “new image” of size 28x28x6!

28



Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Weights
L

Output

Input
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Convolution: Stride

During convolution, the weights “slide” along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = ZxrljkW.. +b

ijk
ijk

(channel, row, column)



Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2
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Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Size of the input

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

OO0 0|]0]10]10(O0

Output

||l OO |l O | OO | O | O
||l O || O |OC|O O] O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

OpFpO PO L0 0|0 (O

Output

||l O || O |OC|O O] O
||l O || O |OC|O O] O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O[O0 |0 pFOFO O O

Output

||l O || O |OC|O O] O
||l O || O |OC|O O] O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad =1, stride = 2

O[O0 ]1]010]10 OO

Output

||l O || O |OC|O O] O
O|j]oco|l O || O | OO | O | O

Input



Convolution:
How big is the output?

stride s
—p
Ol1ojlO0OlO0O]10]010]10|O0
o | g 0
0 kernel| & 0
0 O 1 In general, the output has size:
0 0
w.+2p—k
0 0 Wout — +1
b S —
0 0
0 0
OlojO0lO0]J0]0]10]0|O0
4+ < > 4—p

P width w,_ P



Convolution:

How big is the output?

stride s

O191919191°9 Y| Example: k=3, s=1, p=1

0 . 0

0 kernel k 0 W= Win+2p—kJ+1

0 0 i S

0 . w.+2-3

0 0 — + 1

i |

0 0

0 0 = Wi

ofoflofo|o]oO 0

VGGNet [Simonyan 2014]

28 width w,_ "P uses filters of this shape



Pooling

For most ConvNets, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

- The "max” operation is the most common
- Why might “avg” be a poor choice”?

downsampling
32

16

32

Figure: Andrej Karpathy



Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

—

|

— [ 112
downsampling
112

224

224



Max Pooling

Single depth slice

Jlr]1]2]4
max pool with 2x2 filters
516 |7 |8 and stride 2 6 | 8
312|110 3| 4
112 1|3 | 4
y

What's the backprop rule for max pooling?
- In the forward pass, store the index that took the max

- The backprop gradient is the input gradient at that index

Figure: Andrej Karpathy






Example ConvNet
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Figure: Andrej Karpathy



CONV POOL

Figure: Andrej Karpathy
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Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL FC
l RelLU l RelLU RelLU RelLU RelLU l ReLUl (Fu“y-connected)
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Figure: Andrej Karpathy



Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL FC
l RelLU l RelLU RelLU RelLU RelLU l ReLUl (Fu“y-connected)
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Example: AlexNet [Krizhevsky 2012]

convi conv2 conv3 conv4 convs fc6 fc7
1 sample
class
scores
384 384
227x227 55x55 27x27 13x13 13x13 13x13 4095 1000
conv conv conv conv conv max full
max max full
norm norm
|| I
| |
Extract high level features Classify

each sample
‘max”. max pooling
‘norm”: local response normalization
“full”: fuIIy connected Figure: [Karnowski 2015] (with corrections)



Training ConvNets



How do you actually
train these things”

Roughly speaking:

Gather Find a ConvNet Minimize
labeled data architecture the loss
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Training a convolutional
neural network

Split and preprocess your data

Choose your network architecture

Initialize the weights

Find a learning rate and regularization strength
Minimize the loss and monitor progress

Fiddle with knobs



Mini-batch Gradient Descent

Loop:

1. Sample a batch of training data (~100 images)
2. Forwards pass: compute loss (avg. over batch)
3. Backwards pass: compute gradient

4. Update all parameters

Note: usually called “stochastic gradient descent” even
though SGD has a batch size of 1



Regularization

Regularization reduces overfitting:

|
L — Ldata T Lreg Lreg — /’LEHW‘E

A =0.001 A =0.01 A=0.1

[Andre| Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]




Overtitting

Overfitting: modeling noise in the training set instead
of the “true” underlying relationship

Underfitting: insufficiently modeling the relationship in
the training set

15

General rule: models that are
“bigger” or have more capacity
are more likely to overfit

L
o
[ —




Summary of things to fiddle

* Network architecture
* [earning rate, decay schedule, update type

e Regularization (L2, L1, maxnorm, dropouit, ...)

* Loss function (softmax, SVM, ...)

Weight initialization

Neural network
parameters




(Recall) Regularization
reduces overfitting

|
L — Ldata T Lreg Lreg — /’LEHW‘E

A =0.001 A =0.01 A=0.1

[Andre| Karpathy http://cs.stanford. edu/people/karpathy/convnetjs/demo/classify2d.html]




Example Regularizers

L2 regularization L. = ﬂ«%‘ ‘WHE

(L2 regularization encourages small weights)

L1 regularization L., =AW = XZ‘WU‘
ij

(L1 regularization encourages sparse weights:
weights are encouraged to reduce to exactly zero)

“Elastic net” Lreg = ;Ll“W“l T ﬂ“zHW‘E

(combine L1 and L2 regularization)

Max norm
Clamp weights to some max norm

Wl <c



“Weight decay”

Regularization is also called “weight decay” because
the weights “decay” each iteration:

| I oL
L — —_ —_— —_—
reg ﬂl 2 ‘ ‘W‘ ‘2 aW AW
Gradient descent step: s

W« W —oAW — —2
oW

Weight decay: oA {weights always decay by this amount)

Note: biases are sometimes excluded from regularization

[Andre| Karpathy http://cs.stanford. edu/people/karpathy/convnetjs/demo/classify2d.html]




Dropout

Simple but powerful technique to reduce overfitting:

w PW
Present with Always
probability p present

(a) At training time (b) At test time

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]



Dropout

Simple but powerful technique to reduce overfitting:

®
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(a) Standard Neural Net (b) After applying dropout.

Note: Dropout can be interpreted as an approximation to taking the
geometric mean of an ensemble of exponentially many models

[Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014]



Dropout

Case study: [Krizhevsky 2012]

“Without dropout, our network exhibits Dropout here
substantial overfitting.” l 1
48 ’ . | 192 192 128 2048 Jo4g \dense
s 27 128 - T
I 1305, \13 A\
224 %455, ‘ 3 30[\ 3| |-
| N T R L3 R AR ' 13 dense| [dense
“itss P 3 N 1600
! | 192 192 128 Max | | ]
\ Stride Max 128 Max pooling 2048 K-~
Uof 4 pooling pooling T
3 78

But not here — why?

[Krizhevsky et al, “ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS 2012]



summary

Preprocess the data (subtract mean, sub-crops)
Initialize weights carefully

Use Dropout

Use SGD + Momentum

Fine-tune from ImageNet

Babysit the network as it trains



Common Architectures



VGG

Introduced by K. Simonyan and A.
Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image
Recognition”

One of the most common CNN
architectures used

Also typically used for feature extraction

Input

224 x 224 x3 224 x224 x 64

112 x 112 x 128

56| 56 x 256

7Xx7x512
28 x 28 x 512

14 x 14 x 512

() convolution+ReLU
) max pooling
fully nected+RelU
softmax

VGG-16

Conv 1-1

Conv 1-2

Pooing

Conv 2-1

Conv 2-2

Pooing
Conv 3-1
Conv 3-2
Conv 3-3

Pooing
Conv 4-1
Conv 4-2
Conv 4-3

Pooing
Conv 5-1
Conv 5-2
Conv 5-3

Pooing

Dense
Dense
Dense

=
Output

1x1x4096 1x1x1000



ResNet

* He, Kaiming; Zhang, Xiangyu; Ren, Shaoging; Sun, Jian
(2016). "Deep Residual Learning for Image
Recognition” (PDF). Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE.

* Deep networks with more layers does not always mean
better performance (vanishing gradient problem)

* Residual blocks = has skip connections

« Skipped layers train faster at the beginning, then later are
filled out

34-layer plain

image

34-layer residual

image

[ 77conv,68,/2 |

pool, /2

s

3x3 conv, 64 ‘

3x3 conv, 64

¥
3:3 conv, 64

3x3 conv, 64 ‘

¥
3x3 conv, 64

™

3x3 conv, 256

-«

3x3 conv, 256

-

3x3 conv, 256

-+

3x3 conv, 256

e

3x3 eonw, 512, /2

.

3x3 conv, 512 3x3 conw, 512
¥
3x3 conv, 512 | v
¥ ¥
3x3 conv, 512 [ v,
¥
[ 3x3con, 512 [ v,
¥ ¥
[__3x3conv, 512 [ n,
00!
v
fc 1000

*z
g
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¥
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http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf




Today

e Introduction to scene understanding
e (Object detection models

» Evaluating object detectors

e Future challenges



Image contains Photoshopped sign Source: Antonio Torralba



Label each pixel as a category. Each category has a unique color.




Label each pixel as a category. Each category has a unique color.




Scene-Level Classification: This is a “PARK”




 ;

.f

A view of a park on a nice spring day

Image Captioning: Describe the image in human language (e.g. English)



PEOPLE WALKING IN THE PARK

Do not | PERSON FEEDING
feed DUCKS IN THE PARK
the ducks B DyCKS LOOKING FOR FOOD

sign

Dense Image Captioning: Describe several parts of the image



What makes this challenging?



Why do we care about recognition”?

« The concept of “categories” encapsulates
semantic information that humans use
when communicating with each other.

« (Categories are also linked with what can
we do with those objects.




Object categories aren’t everything
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Object categories aren’t everything

A picture is worth a 1000 words...
Or just 10?7

sky

_building

LI _wall
street lamp
 bus  bus

m Source: A. Efros




How finegrained should categories be ?

I. ' s < .
¥ e ] e
L2 B u |
- —F -:'.. - -~ —
E:' a = 5 a £

A Beijing City Transit Bus #17, serial number 432537

Source: A. Efros



Need more general (useful) information

What can we say the very
first time we see this thing?

Functional:

* A large vehicle that may be moving fast, probably to the right, and  will hurt
you ifyou stand ip its way.

* However, at specified places, it will allow you to enteritand  transport
you quickly over large distances.

Communicational:
* bus, autobus, Aswpopsio, dnibus, aBTobyc, 23K ZE, etc.

Source: A. Efros



Visual challenges with categories

Chair

* A lot of categories are
functional

« Categories are 3D,
but images are 2D

« World is highly varied

train Source: A. Efros



Limits to direct perception

Bl;hz\lf




Importance of context

Source: Antonio Torralba



Today

e Introduction to scene understanding
e Object detection models

» Evaluating object detectors

e Future challenges



Image Classification

f > “Birds”




Object detection

Classification and localization

| |

| |

|

7 |
AL

| |

| |

Each bounding box is:
[Xy,w,h]
Challenge: unbounded number of detections, possibly multiple detections per pixel



Idea #1: regress bounding box

73



Idea #1: regress bounding box

Outputs Losses

1. Class label 1. Cross entropy loss

ground truth: dog
p(C|1) LCIS = = log(p()} = dog))

prediction: cat dog
N\ L duck
N 4 cat i 2. Squared distance

0 1

"o = ____2

ygt

Wgt

hg;

2. Box coords.

(x,y,w, h)

Doesn’t scale well to multiple objects.

74

Lbox =

:wgkx




Idea #2: sliding window

plcll)

dog
duck
no object

0

Bounding box
(x,y,w, h)

[

- i ‘ i et _'.-".‘?"'-_é:-*f- o
- . A e G 08 e

Need multiple scales and aspect ratios



Idea #2: sliding window

28

plcli)

dog
duck
no object

0

Bounding box
(x,y,w, h)




Example: histograms of oriented gradients (HOG)

Normalize Compute Weighted vote Contrast normalize
—»| gamma & —» gradients —>| into spatial &  [—[ over overlapping

colour orientation cells spatial blocks

Input
image

T
SR A
O S S e S
G e

e

-
-
e
-
-
-
o

P e

B e
e s R

B o t e

e O e

Image credit: N. Snavely

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005 Source: S. Lazebnik



Example: pedestrian detection with HOG

Train a pedestrian template using a linear classifier. Represent each window
using HOG.

positive training examples

Ao
A
-
/
"

. Dalal and B. Triggs, Histograms of Oriented Gradienits for Human Detection, CVPR 2005 Source: S. Lazebnik



Pedestrian detection with HOG

For multi-scale detection, repeat over multiple levels of a HOG pyramid

HOG feature map Template Detector response map

=1

SRR/ ot
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4
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y §
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i
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5.
X
I |
!
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s L *

Source: S. Lazebnik



Id_ea #3:

Object

Search Recognition

Original- Image Candidat Boxes Final Deections

* Problem: evaluating a detector is very expensive

- Animage with pixels has O(n?) windows

* Only generate and evaluate a few hundred region proposals
for regions that are “likely” to be an object of interest.

Source: S. Lazebnik



Selective

* Example: edge boxes [Zitnick &
Dollar, 2014]

* Heuristic: detect edges, group them
into contours

ST — I M 1 g \ ‘ ) T il_\‘l TR — = |
¥ l i :,-J oy -‘TJ_;L_H J{ \_f,'\_ ___%_._,‘_-_-\_Q_i_ — ,}\ ;{J\\ \‘\"\\ f R sk ‘Erw o = (F52S “‘f L 3"{{,\‘- }l
SEF BT = T . *‘T\._,___";‘i - : B : ; 1;\'\4’.“\“%} 'F/}"f/ JJ;- é’)./r /Jl\ /):”Jf\
palaf cH et L A & (!
e -.J\ n (] ]/ /r“ n,‘/[j .
i | » Rank each window based on

S number of contours in window

| \( /’T}’ ) / ; .
— I« These are the only windows our

'k w i\ detector will see




Recall: idea #3: selective search

Object

Original1 Image Candidat Boxes Final Deections

Problem: evaluating a detector is very expensive
. An image with n pixels has O(n4) windows

Only generate and evaluate a few hundred region proposals
for regions that are “likely” to be an object of interest.



R-CNN: Region proposals + CNN features

Linear

ConvNet

Linear

ConvNet

Linear

ConvNet

-
m—
”~

—

{ e
A\ ==,
P b

-

Classify regions with linear
classifier

Forward each region
through a CNN

Warped image regions

Region proposals from selective
search (~2K rectangles that are
likely to contain objects)

Input image

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR 2014

Source: R. Girshick



R-CNN at test time

Input  Extract region Compute CNN
image  proposals (~2k / image) features

Source: R. Girshick



R-CNN at test time

Input  Extract region Compute CNN
image  proposals (~2k / image) features

227 x 227

-

= o L
=EirE g
= IR T TET I TR

. ,-..-,.-.-..

Source: R. Girshick



R-CNN at test time

’ql aeroplane? no
person? yes.
tvmonitor? no.

Input  Extract region Compute CNN
image  proposals (~2k / |mage) features

TFETN

c. Forward propagate Output: “fc;” features

Source: R. Girshick



Warped proposa

R-CNN at test time

e

’ql aeroplane? no.

)
i

iy

| — - person? yes.

fj,!'l_ CNN N :

l‘ﬁ | 4 tvmonitor? no.
Input  Extract region Compute CNN Classify
image  proposals (~2k / image) features regions

person? 1.6
=i |
1= orse? -0.3

| 4096-dimensional

linear classifier
fcy feature vector

Source: R. Girshick



Proposal refinement

Linear regression

on CNN features

Original Predicted
proposal object bounding box

Bounding-box regression



Bounding-box regression

E Ah x h +h

original

predicted



Linear

ConvNet

Problems with R-CNN

Linear

ConvNet

Linear

ConvNet

1. Slow! Have to run CNN per
window

2. Hand-crafted mechanism
for region proposal might
be suboptimal.



“"Fast” R-CNN: reuse features between proposals

Softmax classifier

Bounding-box regressors

| Fully-connected layers

Ot‘

m
Reqi
egion 7

proposals i

Rol Pooling layer

Conv5 feature map of image

Forward whole image through ConvNet

ConvNet

Source: R. Girshick R. Girshick, Fast R-CNN, ICCV 2015




ROI Pooling

® How do we crop from a feature map?

® Step 1: Resize boxes to account for subsampling

Layer 3

Layer 2

Layer 1 Source: B. Hariharan



ROI Pooling

® How do we crop from a feature map?

® Step 2: Snap to feature map grid

Source: B. Hariharan



ROI Pooling

® How do we crop from a feature map?

® Step 3: Overlay a new grid of fixed size

Source: B. Hariharan



ROI Pooling

® How do we crop from a feature map?
® Step 4: Take max in each cell

® Can improve with bilinear sampling

Classification

) L

See more here: https://deepsense.ai/region-of-interest-pooling-explained/

Source: B. Hariharan
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“Faster” R-CNN: learn region proposals

detector

Region Z\
proposals &

/)

feature map

Region Proposal

Network feature map

share features

< >

CNN

T e R R

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks NIPS 2015




RPN: Region Proposal Network
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Source: R. Girshick



RPN: Region Proposal Network

o

[/;= FCNy J—’

3x3 “sliding window”
Scans the feature map
looking for objects

Source: R. Girshick



RPN: Anchor Box

Anchor box: predictions are
w.r.t. this box, not the 3x3
/ sliding window

[/;= FCNy J—>

3x3 “sliding window”
Scans the feature map
looking for objects = ,’

___________ |‘

Conyv feature map

Source: R. Girshick



RPN: Anchor Box

Anchor box: predictions are
w.r.t. this box, not the 3x3
/ sliding window

BT —

3x3 “sliding window”
> QObjectness classifier [0, 1]

> Box regressor
predicting (dx, dy, dh, dw)

___________ _

Cony feature map

Source: R. Girshick



RPN: Prediction (on object)

Objectness score

P(object) = 0.94
A

b

3x3 “sliding window”
> QObjectness classifier [0, 1]

> Box regressor
predicting (dx, dy, dh, dw)

A

Source: R. Girshick



RPN: Prediction (on object)

Anchor box: transformed by

/ box regressor
P(object) = 0.94
/ A, —

)

3x3 “sliding window”
> QObjectness classifier [0, 1]

I SN

— .y -

> Box regressor
predicting (dx, dy, dh, dw)

Source: R. Girshick



RPN: Prediction (off object)

Anchor box: transformed by

Objectness score box regressor

3x3 “sliding window” ct) =0.02
> QObjectness classifier

> Box regressor
predicting (dx, dy, dh, dw)

Source: R. Girshick



RPN: Multiple Anchors

Anchor boxes: K anchors
per location with different
scales and aspect ratios

[/;= FCNy J—

3x3 “sliding window”
> K objectness classifiers

> K box regressors

iture map

Source: R. Girshick



One network, four losses

Classification
loss

Classification
loss

Bounding-box
regression loss

1

N. &

proposaV

Region Proposal

Network

Bounding-box
regression loss

Rol pooling

feature map

Source: R. Girshick, K. He, S. Lazebnik



Faster R-CNN results

R-CNN ~50s 66.0
Fast R-CNN ~2s 66.9 70.0
Faster R-CNN 198ms 69.9 73.2

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

Source: S. Lazebnik



Streamlined detection architectures

 The Faster R-CNN pipeline separates
proposal generation and region classification:

RPN

Region

@ Proposals

)

Conv feature
map of the

entire image

Classification +

Regression

Rol
pooling

Rol
features

—)

Detections

* |s it possible do detection in one shot?

Conv feature

Classification +
Regression

map of the

)

entire image

64

Detections

Source: S. Lazebnik



Single-stage object detector

* Divide the image into a coarse grid using a fully convolutional net

o Directly predict class label, confidence, and a few candidate boxes for each
grid cell.

1"‘,1—1--" s’ e

i |

! ' | Ii

|l e i i HH
e T
L . i

- e e "
[ O | F G
Bounding boxes + confidence K

- .‘il

Mﬂrﬂw _' 2 b
S x S grid on input

Final detections

Class probability map
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J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection, CVPR 2016 Source: S. Lazebnik




YOLO detector

1. Take convolutional feature maps at 7x7 resolution

2. Predict, at each location, a score for each class and 2 bounding boxes (w/

confidence)

e E.g. for 20 classes, output is 7x7x30 (30 =20 + 2¥(4+1))

e 7/x speedup over Faster R-CNN (45-155 FPS vs. 7-18 FPS) but
less accurate (e.g. 65% vs. 72 mAP%)

e Extension: use anchor boxes in last layer e |

e e

& i |
= g
A HE

to try a few possible aspect ratios

Bounding boxes + confidence

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once6@nified, Real-Time Object Detection, CVPR 2016

Class probability map

Source: S. Lazebnik



Evaluating an object detector



Evaluating an object detector

* At test time, predict bounding boxes, class labels, and confidence scores

* For each detection, determine whether it is a true or false positive
Intersection over union (IoU):
Area(GT n Det) / Area(GT u Det) > 0.5

Ground truth (GT)




Evaluating an object detector

e g

Intersection over union (also known as Jaccard similarity)



Evaluating an object detector

* For each class, plot Precision-Recall curve and compute Average Precision
(area under the curve)

* Take mean of AP over classes to get mAP

Precision:

true positive detections /
total detections

Recall:

true positive detections /
total positive test instances




Average precision

1 e

true pos. /
total detections

Precision

Recall true positive detections /
total positive test instances



Average precision

true pos. /
total detections

Precision

Recall truepositive detections/ ]
total positive test instances



Non-maximum suppression

e Subtlety: we predict a bounding box for every
sliding window. Which ones should we keep?

e Keep only “peaks” in detector response.

e Discard low-prob boxes near high-prob ones

e Often use a simple greedy algorithm




Non-maximum suppression

Greedy algorithm, run on each class independently

let be the set of all bounding boxes
let be the set of detections we'll keep, D = &

while 4 + O:

remove the box with highest probability from

if doesn't significantly overlap with an existing box in  (e.g. IoU > 0.5):
D =D U{x}
return




e Introduction to scene understanding
e (Object detection models
« Evaluating object detectors

e Challenges



Handle the long tall of the distribution

Person, dog, table, ...

Frequency —

Kale, colander, Himalayan Salt,
birdfeeder, humidifier, ...

Object categories —
88



Handle the “long tail” of
the distribution

From COCO (80 categories) LVIS dataset (1000+ categories)
[Lin etal., 2014] “Few shot” (e.g. < 20 examples)
[Gupta et al., 2019]

89 Image source: R. Girshick



OWL-VIT: Open-vocabulary object detection model

[Submitted on 12 May 2022 (v1), last revised 20 Jul 2022 (this version, v2)]

Simple Open-Vocabulary Object Detection with Vision Transformers

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag
Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, Neil Houlsby

Combining simple architectures with large-scale pre-training has led to massive improvements in image classification. For object detection, pre-training and
scaling approaches are less well established, especially in the long-tailed and open-vocabulary setting, where training data is relatively scarce. In this paper,
we propose a strong recipe for transferring image-text models to open-vocabulary object detection. We use a standard Vision Transformer architecture with
minimal modifications, contrastive image-text pre-training, and end-to-end detection fine-tuning. Our analysis of the scaling properties of this setup shows that
increasing image-level pre-training and model size yield consistent improvements on the downstream detection task. We provide the adaptation strategies and

regularizations needed to attain very strong performance on zero-shot text-conditioned and one-shot image-conditioned object detection. Code and models
are available on GitHub.

Comments: ECCV 2022 camera-ready version



Simple Open-Vocabulary Object Detection 3

Image-level contrastive pre-training Transfer to open-vocabulary detection
|:| Object image embeddings
s ™ Text s ™ Query [ ] Object box embeddings
'bird Text embedding rgiraffe’ Text embeddings
sitting —= Transformer —»D—-\ 'trea’ —| Transformer DDD Predicted
on a tree'’ encoder 'car' encoder —) classes/gueries
\ / [(ITT] \ J E,-D 8 1 1—='giraffa
* - = =
D+ o= . EE— %,—*D B 4 00— r'giraffe’
--T; ]—/E,—-*D 2 8 0—='tree’
b Vision Contrastive / Vision ]V E ,—*l:l A 0 4 —»<ne abject> |058:L\p..$c:cb}:2ts
—{ Transformer [ J + loss over | Transformer ]y — Predicted boxes in an image.
encoder projection | Image ""’:g“r;” a LR aL/ &F encoder N\
“ embedding  Dateh- prer= ¥ \uﬂ{ e e w0 By
%, S ., v \E‘_ﬂ——‘l":' Yo Wyo h:?/_/
5'\—" |—|-|x__, Fyo W h.li'
E“—ﬁD———FIx‘. Foo W, hi}

Fig.1. Overview of our method. Left: We first pre-train an image and text encoder
contrastively using image-text pairs, similar to CLIP [33], ALIGN [19], and LiT [44].
Right: We then transfer the pre-trained encoders to open-vocabulary object detection
by removing token pooling and attaching light-weight object classification and local-
ization heads directly to the image encoder output tokens. To achieve open-vocabulary
detection, query strings are embedded with the text encoder and used for classification.
The model is fine-tuned on standard detection datasets. At inference time, we can use
text-derived embeddings for open-vocabulary detection, or image-derived embeddings
for few-shot image-conditioned detection.



OWL-VIT Demo

https://colab.research.google.com/qithub/huggingface/notebooks/blob/main/example
s/zeroshot object detection with owlvit.ipynb

https://colab.research.gooqgle.com/drive/1evZkcsqg4F TreFxGV6eJXDmymnYcqgWK43n



https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb
https://colab.research.google.com/drive/1evZkcsq4FTreFxGV6JXDmymnYcqWK43n
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