
1

The Web Service Modeling Framework WSMF

D. Fensel1 and C. Bussler2

1 Vrije Universiteit Amsterdam (VU)
Faculty of Sciences, Division of Mathematics and Computer Science

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
Fax: +31-(0)84-872 27 22, phone: +31-(0)6-51850619

E-mail: dieter@cs.vu.nl

2 Oracle Corporation
500 Oracle Parkway, Redwood Shores, 94065, CA, U. S. A.

Phone: +1-650-607-5684,
E-mail: chris.bussler@oracle.com

Abstract. Web Services will transform the web from a collection of information
into a distributed computational device. In order to employ their full potential,
appropriate description means for web services need to be developed. For this
purpose, we define a fully-fledged Web Service Modeling Framework (WSMF)
that provides the appropriate conceptual model for developing and describing web
services and their composition (complex web services). In a nutshell, its
philosophy is based on the following principle: maximal de-coupling
complemented by a scalable mediation service .

1 Introduction

“Web services are a new breed of Web application. They are self-contained, self-
describing, modular applications that can be published, located, and invoked
across the Web. Web services perform functions, which can be anything from
simple requests to complicated business processes. ... Once a Web service is
deployed, other applications (and other Web services) can discover and invoke
the deployed service.”
IBM web service tutorial

The current web is mainly a collection of information but does not yet provide support
in processing this information, i.e., in using the computer as a computational device.
Recent efforts around UDDI1, WSDL2, and SOAP3 try to lift the web to a new level of
service. Software programs can be accessed and executed via the web based on the idea
of web services . A service can provide information, e.g. a weather forecast service, or it

1. UDDI provides a mechanism for clients to find web services. Using a UDDI interface,
businesses can dynamically lookup as well as discover services provided by external
business partners. http://www.uddi.org/
2. WSDL defines services as collections of network endpoints or ports. In WSDL the abstract
definition of endpoints and messages is separated from their concrete network deployment or data
format bindings. http://www.wsdl.org/
3. SOAP is a message layout specification that defines a uniform way of passing XML-encoded
data. http://www.soap.org/

2

may have an effect in the real world, e.g. an online flight-booking service. Web services
can significantly increase the Web architecture's potential, by providing a way of
automated program communication, discovery of services, etc. Therefore, they are the
focus of much interest from various software development companies.4

The ultimate vision is that a program tasked to achieve a result can use web services as
support for its computation or processing. The program can discover web services and
invoke them fully automated. Hence, it becomes a service requester. If the web services
have a cost attached, the program knows when to search for a cheaper service and
knows all the possible payment methods. Furthermore, the program might be able to
mediate any differences between its specific needs and a web service that almost fits.

In a business environment this translates into automatic cooperation between
enterprises. Any enterprise requiring a business interaction with another enterprise can
automatically discover and select the appropriate optimal web services relying on
selection policies. They can be invoked automatically and payment processes can be
initiated. Any necessary mediation is applied based on data and process ontologies and
the automatic translation of their concepts into each other. An example would be supply
chain relationships where an enterprise manufacturing short-lived goods has to
frequently seek suppliers as well as buyers dynamically. Instead of employees
constantly searching for suppliers and buyers, the web service infrastructure does it
automatically within the defined constraints.

Still, more work needs to be done before the web service infrastructure can make this
vision come true. Current technology around UDDI, WSDL, and SOAP provide limited
support in mechanizing service recognition, service configuration and combination (i.e.,
realizing complex workflows and business logics with web services), service
comparison and automated negotiation. Therefore, there are proposals such as WSFL
[Leymann, 2001] that develops a language for describing complex web services or
DAML-S [Ankolenkar et al., 2001] that employs semantic web technology ([Berneers-
Lee et al., 2001], [Fensel & Musen, 2001], and [Fensel et al., 2002]) for service
description. The Web Service Modeling Framework (WSMF) follows this line of
research. It is a fully-fledged modeling framework for describing the various aspects
related to web services. Fully enabled ecommerce based on workable web services
requires a modeling framework that is centered around two complementary principles:

• Strong de-coupling of the various components that realize an e-commerce
application.

• Strong mediation service enabling anybody to speak with everybody in a scalable
manner.

These principles are rolled out in a number of specification elements and an architecture
describing their relationships.

The contents of the paper are organized as follows. In Section 2, we provide a
motivation for web services, an analysis of the state of the art of this technology, we
identify eight layers as being necessary to achieve automatic web service discovery,
selection, mediation and composition into complex services, and introduce the main

4. http://www.w3.org/2001/01/WSWS/

3

principles of WSMF. Section 3, provides the architecture and the main modeling
primitives of WSMF. Section 4 discusses related work and Section 5 puts web services
in the context of the semantic web. Conclusions are provided in Section 6.

2 Web Services

This section briefly recalls the vision of web services. Then we analyze the current
infrastructure with which web services are realized and indicate the future steps to take
to make the vision workable.

2.1 The Vision
Web Services connect computers and devices with each other using the Internet to
exchange data and combine data in new ways. Web Services can be defined as software
objects that can be assembled over the Internet using standard protocols to perform
functions or execute business processes. The key to Web Services is on-the-fly software
creation through the use of loosely coupled, reusable software components. This has
fundamental implications in both technical and business terms.5 Software can be
delivered and paid for as fluid streams of services as opposed to packaged products. It is
possible to achieve automatic, ad hoc interoperability between systems to accomplish
business tasks. Business services can be completely decentralized and distributed over
the Internet and accessed by a wide variety of communications devices. Businesses can
be released from the burden of complex, slow and expensive software integration and
focus instead on the value of their offerings and mission critical tasks. Then the Internet
will become a global common platform where organizations and individuals
communicate with each other to carry out various commercial activities and to provide
value-added services. The barriers to providing new offerings and entering new markets
will be lowered to enable access for small and medium-sized enterprises. The dynamic
enterprise and dynamic value chains become achievable and may be even mandatory for
competitive advantage.

2.2 State of the Art
The web is organized around URIs, HTML, and HTTP. URIs provide defined IDs to
refer to elements on the web, HTML provides a standardized way to describe document
structures (allowing browsers to render information comprehensible to the human
reader), and HTTP defines a protocol for retrieving information from the web. Not
surprisingly, web services require a similar infrastructure around UDDI, WSDL, and
SOAP.

UDDI provides a mechanism for clients to find web services. Using a UDDI interface,
businesses can dynamically look up as well as discover services provided by external
business partners. A UDDI registry is similar to a CORBA trader, or it can be thought of
as a DNS service for business applications. A UDDI registry has two kinds of clients:
businesses that want to publish a service description (and its usage interfaces), and
clients who want to obtain services descriptions of a certain kind and bind

5. See http://www.diffuse.org/WebServices.html.

4

programmatically to them (using SOAP). UDDI itself is layered over SOAP and
assumes that requests and responses are UDDI objects sent around as SOAP messages.
The UDDI information contains four levels: the top level element is the Business entity,
which provides general data about a company such as its address, a short description,
contact information and other general identifiers. This information can be seen as the
white pages of UDDI. Associated with each business entity is a list of Business services.
These contain a description of the service and a list of categories that describe the
service, e.g. purchasing, shipping etc. This can be considered as the yellow pages of
UDDI. Within a business service, one or more Binding templates define the green
pages: they provide the more technical information about a web service (cf. [Lemahieu,
2001]).

WSDL defines services as collections of network endpoints or ports. In WSDL the
abstract definition of endpoints and messages is separated from their concrete network
deployment or data format bindings. This allows the reuse of abstract definitions of
messages, which are abstract descriptions of the data being exchanged, and port types,
which are abstract collections of operations. The concrete protocol and data format
specifications for a particular port type constitute a binding. A port is defined by
associating a network address with a binding; a collection of ports defines a service.

SOAP is a message layout specification that defines a uniform way of passing XML-
encoded data. It also defines a way to bind to HTTP as the underlying communication
protocol for passing SOAP messages between two endpoints. Instead of being
document-based, automated B2B interaction requires integration of processes.
However, although techniques such as DCOM, RMI and CORBA are successful on the
local network, they largely fail when transposed to a web environment. They are rather
unwieldy, entail too tight a coupling between components and above all conflict with
existing firewall technology. Replacing this by a simple, lightweight RPC-like
mechanism is the aim of SOAP. SOAP uses XML messaging over plain HTTP, thus
avoiding firewall problems (asynchronous communication can also be accomplished via
SMTP). Hence SOAP is basically a technology that allows for “RPC over the web”
providing a very simple one-way as well as request/reply mechanism.

2.3 Functionalities required for successful web services
UDDI, WSDL, and SOAP are important steps in the direction of a web populated by
services. However, they only address part of the overall stack that needs to be available
in order to eventually achieve the above vision. [Bussler, 2001c] identifies the following
elements as being necessary to achieve scalable web service discovery, selection,
mediation and composition:

• Document types . Document types describe the content of business documents like
purchase orders or invoices. The content is defined in terms of elements like an
order number or a line item price. Document types are instantiated with actual
business data when a service requester and a service provider exchange data. The
payload of the messages sent back and forth is structured according to the
document types defined.

• Semantics . The elements of document types must be populated with correct values
so that they are semantically correct and are interpreted correctly by the service

5

requesters and providers. This requires that vocabulary is defined that enumerates
or describes valid element values. For example, a list of product names or products
that can be ordered from a manufacturer. Further examples are units of measure as
well as country codes. Ontologies provide a means for defining the concepts of the
data exchanged. If ontologies are available document types refer to the ontology
concepts. This ensures consistency of the textual representation of the concepts
exchanged and allows the same interpretation of the concepts by all trading
partners involved. Finally, the intent of an exchanged document must be defined.
For example, if a purchase order is sent, it is not clear if this means that a purchase
order needs to be created, deleted or updated. The intent needs to make
semantically clear how to interpret the sent document.

• Transport binding. Several transport mechanisms are available like HTTP/S, S/
MIME, FTP or EDIINT. A service requester as well as a service provider has to
agree on the transport mechanism to be used when service requests are executed.
For each available transport mechanism the layout of the message must be agreed
upon and how the document sent shall be represented in the message sent. SOAP
for example defines the message layout and the position within the message layout
where the document is to be found. In addition, header data are defined, a
requirement for SOAP message processing.

• Exchange sequence definition . Communication over networks is currently
inherently unreliable. It is therefore required that service requester and service
provider make sure themselves through protocols that messages are transmitted
exactly once. The exchange sequence definition achieves this by defining a
sequence of acknowledgment messages in addition to time-outs, retry logic and
upper retry limits.

• Process definition. Based on the assumption that messages can be exchanged
exactly once between service requester and service provider the business logic has
to be defined in terms of the business message exchange sequence. For example, a
purchase order might have to be confirmed with a purchase order
acknowledgment. Or, a request for quotation can be responded to by one or more
quotes. These processes define the required business message logic in order to
derive to a consistent business state. For example, when goods are ordered by a
purchase order and confirmed by a purchase order acknowledgment they have to
be shipped and paid for, too.

• Security. Fundamentally, each message exchange should be private and
unmodified between the service requester and service provider as well as non-
reputable. Encryption, as well as signing, ensures the unmodified privacy whereby
non-repudiation services ensure that neither service requester nor service provider
can claim not to have sent a message or to have sent a different one.

• Syntax. Documents can be represented in different syntaxes available. XML is a
popular syntax, although non-XML syntax is used, too (e.g. EDI6).

• Trading partner specific configuration . Service requesters or service providers

6. http://www.x12.org/

6

implement their business logic differently from each other. The reason is that they
establish their business logic before any cooperation takes place. This might
require adjustments once trading partners are found and the interaction should be
formalized using web services. In case modifications are necessary, trading partner
specific changes have to be represented.

Current web service technology scares rather low compared to these requirements.
Actually, SOAP provides support on information binding. Neither UDDI nor WSDL
add any support in the terms enumerated above. Many organizations had the insight that
message definition and exchange are not sufficient to build an expressive web services
infrastructure. In addition to UDDI, WSDL and SOAP standards for process definitions
as well as exchange sequence definitions are proposed such as WSFL [Leymann, 2001],
XLANG [Thatte, 2001], ebXML BPSS [Waldt & Drummond], BPML [Arkin, 2001]
and WSCL [Christensen et al., 2001]. Still, there are important features missing in all of
the mentioned frameworks. Very important is to reflect the loose coupling and scalable
mediation of web services in an appropriate modeling framework. This requires
mediators that map between different document structures and different business logics
as well as the ability to express the difference between publicly visible workflows
(public processes) and internal business logics of a complex web service (private
processes). Therefore, we developed a fully-fledged Web Service Modeling
Framework (WSMF). It provides a rich conceptual model for the development and the
description of web services bringing this technology to its full potential. In section 4, we
provide a detailed comparison of WSMF with the other proposals.

2.4 The main principles of WSMF
There are important steps to take to bring web services and fully enabled e-commerce to
reality. Bringing e-commerce to its full potential requires a Peer-to-Peer (P2P)
approach. Anybody must be able to trade and negotiate with everybody else. However,
such an open and flexible e-commerce has to deal with many obstacles before it
becomes reality:

• Mechanized support is needed in finding and comparing vendors and their offers.
Currently, nearly all of this work is done manually which seriously hampers the
scalability of electronic commerce. Semantic Web Technology can make it a
different story: machine-processable semantics of information permits the
mechanization of these tasks. We will further discuss this aspect in Section 5.

• Mechanized support is needed in dealing with numerous and heterogeneous data
formats. Various “standards” exist for how to describe products and services,
product catalogues, and business documents. Ontology technology (cf. [Fensel,
2001]) is required to better define such standards and to map between them.
Efficient bridges between different terminologies are essential for openness and
scalability. We will further discuss this aspect in Section 3.

• Mechanized support is needed in dealing with numerous and heterogeneous
business logics. Again, various “standards” exist that define the business logic of a
trading partner. Mediation is needed to compensate for these differences, allowing
partners to cooperate properly (cf. [Bussler, 2001a]). We will further discuss this
aspect in Section 3.

7

These requirements are explicit rationales underlying the development of WSMF. Fully
enabled e-commerce based on workable web services requires a modeling framework
that is centered around two complementary principles:

• Strong de-coupling of the various components that realize an e-commerce
application. This de-coupling includes information hiding based on the difference
of internal business intelligence and public message exchange protocol interface
descriptions (see [Bussler, 2001a]). Coupling of processes can only be achieved via
interfaces to keep the amount of interactions scalable.

• Strong mediation service enabling anybody to speak with everybody in a scalable
manner. This mediation service includes the mediation of different terminologies
[Fensel, 2001] as well as the mediation of different interaction styles [Bussler,
2001a].

The design of the WSMF is organized around these two principles. We de-couple
various aspects of web service enabled e-commerce to the maximum and provide
scalable interaction on the basis of public interfaces and a mediation service. None of
the other approaches we found in the literature take our point to such an extent. We will
find many (intended) similarities to existing approaches (see Section 4), however, none
of them would really provide scalable interoperability.

3 The Web Service Modeling Framework WSMF

The WSMF consists of four different main elements: ontologies that provide the
terminology used by other elements, goal repositories that define the problems that
should be solved by web services; web services descriptions that define various aspects
of a web service; and mediators which bypass interoperability problems.

3.1 Ontologies
Ontologies (cf. [Fensel, 2001]) are a key enabling technology for the semantic web.
They interweave human understanding of symbols with their machine-processability.
Ontologies were developed in Artificial Intelligence to facilitate knowledge sharing and
reuse. Since the early nineties, Ontologies have become a popular research topic. They
have been studied by several Artificial Intelligence research communities, including
Knowledge Engineering, Natural Language Processing and Knowledge Representation.
More recently, the concept of Ontology is also becoming widespread in fields, such as
intelligent information integration, cooperative information systems, information
retrieval, electronic commerce, and knowledge management. The reason ontologies are
becoming so popular is largely due to what they promise: a shared and common
understanding of a domain that can be communicated between people and application
systems. In a nutshell, Ontologies are formal and consensual specifications of
conceptualizations that provide a shared and common understanding of a domain, an
understanding that can be communicated across people and application systems. Thus,
Ontologies glue together two essential aspects that help to bring the web to its full
potential:

• Ontologies define formal semantics for information, consequently allowing

8

information processing by a computer.

• Ontologies define real-world semantics, which make it possible to link machine-
processable content with meaning for humans based on consensual terminologies.

In our framework, ontologies are used to define the terminology that is used by other
elements of WSMF specifications. Therefore, they enable reuse of terminology as well
as interoperability between components referring to the same or linked terminology.

3.2 Goal Repositories
The description of a goal7 specifies objectives that a client may have when he consults a
web service. A goal specification consists of two elements:

• Pre-conditions describe what a web service expects for enabling it to provide its
service. Asking for the nearest Cuban restaurant only makes sense if I can tell the
web service where I am in a way it understands. Asking for the best hotel in a city
requires that I have already explained what I understand by “best”.

• Post-conditions describe what a web service returns in response to its input. In
response to geographical information it may return the closest Cuban restaurant or
it may return the best hotel according to the preferences of a client.

Goal specifications should be kept separate from actual web service descriptions
because there is an n2m mapping between them, i.e., the same web service can serve
different goals and obviously different (competing) web services can serve the same
goal. For example, Amazon could be used to buy a book, however, in the same way it
can be used as an information broker on bibliographic information about books.
Conversely, different book stores may subscribe to the same goal.

Always, at least one ontology is imported by a goal specification to further define the
terms that are used to describe it. For example, the relationship nearest should fulfill
certain properties:

• nearest(x) implies there exists no y and y nearer than x, i.e., nearer(y,x) is false; x
is an optima .

• not nearer (x,x), i.e., nearer is irreflexive.

• nearer(x,y) and nearer(y,z) implies nearer(x,z), i.e., nearer is transitive.

• nearer(x,y) implies not nearer(y,x), i.e., nearer is asymmetric.

• nearer(x,y) or nearer(y,x), i.e., nearer is linear.

And there are even more properties that could or could not be enforced for such a
relationship. Such properties determine heavily whether there is one, many or no
solution for a goal. Ontologies provide reusable vocabulary with precisely defined
properties. Software that handles one, many, or potentially no solution can be securely
used by referring to an ontology with precisely defined properties of its concepts and
relationships. Without such precision, a web service that assumes the transitivity of a
nearer relationship may fall into endless sleep8 if the actual relationship does not
provide this property.

7. [Fensel et al., to appear]
8. That is, it stays in an endless loop.

9

3.3 Web Service
The complexity is in the eye of the observer …
as much as the object allows.

Many web service description languages distinguish between elementary and complex
web services. Elementary web services are simple input/output boxes, whereas complex
web services break down the overall process into sub-tasks that may call other web
services. Strictly speaking, such a distinction is wrong and may lead to mis-
conceptualizations in a web service modeling framework. It is not the complexity of the
web service that makes an important distinction. It is rather the complexity of its
description or its interface (in terms of static and dynamic) that makes a difference. A
complex web service such as a logical inference engine with a web interface can be
described as rather elementary. It receives some input formulas and derives--after a
while--a set of conclusions. A much simpler software product such as a simple
travelling information system may be broken down into several web services around
hotel information, flight information, and general information about a certain location.
Therefore, it is not the inherent complexity of a web service, it is the complexity of its
external visible description that makes the relevant difference in our context. This
insight may look rather trivial, however, it has some important consequences:

1) Many web service description approaches do not make an explicit distinction
between an internal description of a web service and its external visible
description. They provide description means such as data flow diagrams and
control flow descriptions without making clear whether they should be
understood as interface descriptions for accessing a web service, or whether they
should be understood as internal descriptions of the realization of a web service.
In our framework we strictly limit ourselves to describing the external aspects of
a web service, i.e., its interface that can be accessed via a network. Therefore, a
complex web service can have a very simple description, and vice versa. In a
nutshell, we do not describe a web service but rather its interface accessible via a
network. Often, the internal complexity of a web service reflects the business
intelligence of a web service provider. Therefore, it is essential for him not to
make it publicly accessible. This is the major conceptual distinction between an
internal description of the workflow of a web service and its interface
description.“The clear separation between private and public processes is key to
provide the necessary isolation and abstraction between enterprise internal
processes and processes across enterprises.” [Bussler, 2001a]

2) The dichotomy of elementary and complex web services is too simplistic. As we
talk about the complexity of the description of a web service we naturally provide
a scale of complexity. That is, we start with some description elements and
gradually upscale the complexity of available description elements by adding
additional means to describe various aspects of a web service.

In the following we will elaborate on the various elements a web service may use to
have a description with a certain level of complexity. We start with the question: what is
a web service? It is a tool that helps to achieve a certain goal and it is accessible via the
web. This already provides some of the elements required to describe a web service. In

10

any case we describe them as black boxes, i.e., we do not want to model the internal
aspects of how such a service is achieved.

3.3.1 Black Box Descriptions

First, a web service has a name, i.e., a unique identifier to refer to it. This requirement is
elementary.

Second, a web service fulfills a certain purpose, i.e., it should have a goal reference .
This is the goal a service can achieve.

Third, like goals, web service descriptions contain pre-conditions and post-conditions
as introduced for goal descriptions. The pre-condition is the condition that has to be true
for the input in order for the web service to be able to successfully execute it. The post-
condition is the condition that holds once the complex service has been executed
successfully, i.e., it defines constraints on its output. These conditions of a web service
can be linked either directly or indirectly with a mediator to goal conditions. This
flexibility of the WSMF architecture has two main advantages. First, a goal and a web
service can use different terminology, i.e., a certain goal provides a certain
terminological view on the input and output of a web service. Second, a web service can
strengthen a pre-condition or weaken a post-condition of a goal.9 Our goal may be to
find the nearest restaurant to our current location. A restricted service to achieve this
goal may ask for our location according to a certain standard for representing
geographical information and may only provide the restaurants that are registered on it
or that pay marketing fees to it. In these cases, the service is not perfect according to an
abstract goal description but may still fulfill our current needs or may just be the best we
can find (or want to pay for) at the moment. The opposite cases where a web service
weakens a pre-condition or strengthen a post-condition do not require explicit mediation
because in these cases, each result of the web service fulfills the goal descriptions.

Fourth, a web service description describes the structure of its input data and output
data. The elements through which data are passed to complex services are input ports .
Input ports behave like formal parameters in that data values are passed to them as
actual parameters at runtime. However, in contrast to formal parameters, data can be
passed to input ports from the requester concurrently with the complex service
execution. This allows the passing of data whenever the complex service needs them (if
at all). Analogous to input data passed through input ports, output data can be returned
by a web service through output ports . This allows a service to return data concurrently
with the complex service execution. This permits, for example, making results available
to the requester as soon as possible without waiting for the complex service to be
finished first.

Fifth, error data can be returned from the complex service through error ports at any
time to indicate problems or error states. Several error ports can be defined in order to
return error data at different points in the execution (compare [Florescu & Grünhagen,
to appear]).

9. Cf. [Fensel & Benjamins, 1998].

11

3.3.2 Gray Box Descriptions

These description elements still considered a web service as a black box. In many cases,
we may want to have a more complex description of the interface of a web service.

• Failure . If a failure occurs within one of the invoked elements of a services, then
the service is in a failure state. If the service cannot recover from the failure itself,
it has to make the failure state known to the service requester for it to try to deal
with the failure. It is very important for the requester to know exactly which of the
invoked elements of a services succeeded and which failed in order to be able to
deal with the failure state. If the decomposition can not be known, then the
requester would have no way of finding out. For example, if a service “book_trip”
books a hotel, a car and a return flight then all the three bookings need to succeed
for the “book_trip” service to be successful. If it fails, it is important to know
which bookings took place and which did not in order for the service requester to
cancel the successfully booked parts.

• Concurrent execution . Since a web service may call several other web services, it
might take some time before it finishes. A requester might choose to execute some
local logic concurrently with the service to optimize resources or overall execution
time. A synchronous invocation model does therefore not work in this case. For
example, if “book_trip” uses an auction to get the best flights available it might
take 24 hours to complete. It is important to know that this web service takes that
long.

• Concurrent data input and output. A web service may invoke other services
over time. Each time a service is invoked, input data have to be given to it and
output data have to be taken from it. It might be that input data for a service are not
known at the time the web service is invoked. This means that it must be possible
to give input data to a web service while it is already executing for the web service
to pass it on to the services it has to invoke. For example, if the hotel requested in
“book_trip” is not available the “book_trip” service might want to return a list of
alternative hotels to the requester for the requester to make another choice.

• Dynamic service binding. A web service calls other services. This means that
when the web service is implemented a choice has to be made about which service
to call. The requester of this service executing the service has no possibility to
change the services called and to replace them with the requester’s preferences. For
example, “book_trip” might try to book trips directly from the airlines instead of
from an independent travel service. The service requester might want to change
this and use a last-minute flight selling service instead.

In consequence, we provide additional description elements to characterize a web
service in terms of what it is expecting and what it is providing in return.

Sixth, a web service in turn may invoke other web services to provide its service. For
each invoked web service a proxy called invoked web service proxy has to be declared.
A proxy may either consist simply of a goal definition or of a name, pre-conditions,
post-conditions, input ports, output ports as well as error ports and a binding to
determine a concrete web service at runtime. The proxy is used later on by the complex
sequencing rules defining which service is invoked at which point in the overall

12

complex service. The proxy allows referral to a service without knowing at define time
which concrete service is bound. For example, in the “book_trip” complex service there
is a proxy called “book_flight” with an input port for origin and destination and an
output port that returns the flight itinerary. The “book_trip” web service books the
flights first, then the hotel and then the car. “Book_flight” is therefore executed first.
However, at definition time it is not decided yet, which concrete service is used. For
example, it is not defined if airlines are contacted directly or a travel service or a last-
minute flight selling service. This binding happens at runtime based on binding rules
defined in the proxy. The binding can be fixed to precisely one service, it can be defined
as a lookup in e.g. UDDI or it can be dependent on input data coming from an input
port. The last case means that the requester has full control over which service to select
at runtime because it can specify the binding criteria through input ports. The only
condition is that the data required to execute the complex service can be provided by the
service bound at runtime.

Seventh, a web service exposes input ports and output ports. Each invoked web service
proxy also exposes input ports and output ports. For each input port of a web service a
decision has to be made to which input ports of the invoked web service proxies the data
values have to be forwarded. This might be to none, one or several input ports of
invoked web service proxies. Each connection between a complex service’s input port
and an invoked web service proxy’s input port is a data flow. Data flows have to be
defined also for invoked web service proxies’ output ports and the output ports of the
complex web service. Furthermore, output ports of invoked web service proxies might
be connected to input ports of other invoked web service proxies. This is the way to
have results of one invoked web service become the input of one or several subsequent
invoked web services.

• Data flow can be conditional from one input port of the web service to two or more
different input ports of invoked web services proxies. The condition contains a
Boolean expression that binds to the data values in the input port. Depending on
the result of the expression, the subsequent data flow is executed at runtime. This
allows data flow conditionally to different invoked services. For example, if a first
class flight ticket is requested then this might require a travel web service that deals
with first class flight tickets.

• Another construct is a “split”, e.g. from one web service input port the values are
forwarded to several subsequent input ports at the same time. In this case several
invoked web services require the same input data. The split can be “By value” and
“by reference”. “By value” means that the data in the subsequent input ports are
copies of each other. “by reference” means that the data in the input ports are
replicas of each other (i.e., a single image). The latter one is often implemented by
several references pointing to the same data values.

• Input data on either end of a data flow might not match. In this case a typecast is
necessary to make sure that the data passed between ports match according to their
type. A data flow can contain a typecast that is used at runtime to make sure that
“flown” data are transformed en-route. Through this mechanism binding of
different data types is possible.

• While a “split” is easy to achieve, a “join” is more difficult since several data

13

values have to be merged into one. For this case the notion of a “step” is
introduced. A step is defined like an invoked web service proxy. However, its
implementation does not invoke a web service at runtime. Instead, execution logic
is executed that is implemented, e. g. with Java. This logic can take the input data
of the step input ports and return data to the step’s output ports. A step allows
implementation of a join function that takes several data values and joins them
correctly. Through such a step joining data flows can be achieved. Of course, if a
web service for joining data exists, an invoked web service proxy can be used for
joining data values, so a step is not necessary in this case.

Eighth, data flow implicitly determines the execution sequence of invoked web service
proxies as well as the steps within one complex service implementation. However, not
all necessary execution sequences can be handled by data flow. For example, if data
flow allows two invoked web services to be executed in parallel and they should be
executed in sequence, data flow is not capable of expressing this directly. The only way
would be to have an artificial data flow between the two invoked web services. While
this is possible, it is not good modeling practice at all. Instead, a control flow sequence
should be introduced between the two invoked web services that defines the correct
execution sequence. In this case no artificial data has to flow at all. Other control flow
constructs in addition to sequence are conditional branching, for-loops, while-loops as
well as parallel execution. All these constructs are available to define the appropriate
execution sequence of invoked web services and steps.

Control flow and data flow both implement the external accessible par of the business
logic of a web services. With both sets of modeling constructs it can be made sure that
the web service execution achieves the desired outcome.

Ninth, web services may require exception handling. Invoked web services can fail and
return an error or exception code. In this case, depending on the error code, exception
handling must take place in order to deal with the error situation. The web service
execution is in an error state since an invoked web service was not able to execute
correctly as planned by the complex service. The invoked web service proxy contains an
exception handling section that detects at runtime if an invoked service returns an error
code. If this is the case, it is possible to specify a retry. If a retry is specified, then the
failed invoked web service is invoked again with the expectation that it works in the
case of a retry. If it returns successfully, the execution of the web service continues.
Otherwise the error code is returned to an error port of the invoked web service. From
there it can be picked up by compensation logic (discussed next).

Tenth, after an invoked web service finally fails, the invoking web service is in an error
state. One possibility is that it notifies the service requester about the error state by
returning the error code to the requester through an error port. In this case the requester
has to deal with the error state and react to it. For example, if a hotel booking failed, the
requester has to find out how to find an alternative hotel. If this does not succeed, the
requester has to cancel the flights that are already booked. Alternatively, the complex
service itself can implement a strategy of compensation for a failed invoked web
service. Upon failure of an invoked service the service can define a compensation
strategy for the failure. A compensation construct permits definition of what happens
after an invoked web service finally fails. Fundamentally, the compensation construct

14

represents another web service, the compensation. In the compensation invoked web
service proxies can be used to invoke web services as well as steps. For example, if the
hotel booking fails, the corresponding compensation can search for alternative hotels
within a radius of 5 miles of the original hotel. In order to do the search, a hotel search
service is invoked. Once hotels are found, attempts are made to reserve a room at each
of them until one attempt succeeds or all attempts fail. If one attempt succeeds then the
complex service continues as planned with booking a car. However, if all attempts fail,
the flight reservation is canceled. After the cancellation succeeds the web service
returns to the requester with an error code indicating that no hotel can be found. All side
effects (like in this case the flights) are cleaned up. Of course, compensation can be very
sophisticated. For example, if no attempt succeeds in booking an alternative hotel, the
return to the requester could be a question whether the flight should be kept or canceled.

3.3.3 Communication-oriented Description Elements

In any communication people have to exchange signals at three different levels:

• One has to indicate that one hears a message.10

• One has to indicate that one understand a message.11

• One has to indicate agreement about the content of a message. 12

[Chappell et al., 2001] distinguish two kinds of message confirmation: “At the message
service level, guaranteed delivery means the recipient messaging service has received
the message” but at the business level, this is not enough: the receiving party is required
to guarantee that the message has been archived and has passed some basic integrity
checks to ensure that no matter what happens, it will be able to process them.” ebXML
introduces business signals to express the second type of acknowledgement. The
WSMF reflects these different levels of acknowledgement. At the business layer an
acknowledgement reflects a possible legally binding step that agrees on a certain
content of a message. We already discussed this layer during the last section. It remains
to define the message understanding layer and the message exchange layer.

Eleventh, web services need descriptions related to the acknowledgement of message
understanding. An acknowledgement at this layer indicates that a receiver was able to
correctly parse a message and achieved it properly. It indicates that a receiver has been
able to process and understand the message but it does not already imply that he agrees
with its content, i.e., it does not imply any legal binding which is attached to the
business layer as discussed earlier, only.

Twelfth, web services need descriptions related to the message exchange protocol.
Messages from a web service requester to a web service provider and vice versa are sent
over networks like the Internet. Networks can be reliable as well as unreliable. Reliable
networks guarantee that a sent message will be delivered. Unreliable networks don’t
guarantee this. Web services assume that the transmission of messages takes place only
once. In the case of reliable networks, transmitting a message only once can be achieved

10. If not, the sender should speak harder.
11. If not, the sender should try a different language.
12. If not, the sender has to make a different proposal or needs to look for a different partner.

15

through duplicate detection. Since the network guarantees that messages are delivered,
only duplicates have to be detected and removed in order to achieve exactly once
semantics. In order to achieve exactly once semantics over an unreliable network more
work has to be done. First, guaranteed delivery has to be achieved. This is done by
message retries and time-outs in conjunction with retry upper limits. If a message is sent
and no acknowledgment is received in a given time-out period, the message is assumed
to be lost. A resend of the message happens and the time-out starts again. In case the
acknowledgment is again not received in the given time-out a resend of the message
happens. In order to not get into an endless loop, an upper limit restricts the number of
resends. If the upper limit is reached, the message transmission failed. If duplicate
detection is implemented on top of this, exactly once message delivery is guaranteed.
The implementation of exactly once message delivery is called the message exchange
protocol. This protocol is a separate layer by itself and provides an exactly once
semantic to web services. It deals with the different types of networks and their
properties and provides a nice abstraction.

3.3.4 Further Aspects

Thirteen, there are important non functional properties that characterize a web service.
Examples are the geographical reach of a service (e.g., a web-based flower shop), the
price related to using a service, or the average/maximum time it may take it to produce
its output.

3.4 Mediator
Adapters are of general importance for component-based software development.
[Gamma et al., 1995] introduces an adapter pattern in his textbook on design patterns
for object-oriented system development. Such adapters enable reusable descriptions of
objects and make it possible to combine objects that differ in their syntactical input and
output descriptions. [Fensel & Groenboom, 1997] and [Fensel & Groenboom, 1999]
introduced the concept of an adapter in architectural descriptions of knowledge-based
systems to (1) decouple different elements of this model, (2) encapsulate these different
elements and (3) explicitly model their interactions. Work on software architectures
describes systems in terms of components and connectors that establish the proper
relationships between the former (cf. [Garlan & Perry, 1995], [Shaw & Garlan, 1996]).
Here, the focus is to mediate between different interaction styles of components (which
we call the business logic of a web service).13 Finally, work on heterogeneous and
distributed information systems developed the concepts of wrappers and a mediator.
Instead of assuming a global data schema, heterogeneous information and knowledge
systems have a mediator [Wiederhold, 1992]that translates user queries into sub-queries
on the different information sources and integrates the sub-answers.

For an open and flexible environment such as web-based computing, adapters are an
essential means to cope with the inherent heterogeneity. This heterogeneity can wear
many clothes:

• Mediation of data structures. A web service may provide an input for a second
one, however, not in the format it is expecting.

13. (cf. [Yellin & Strom, 1997]).

16

• Mediation of business logics. Two web services provide complementary
functionality and could be linked together in principle (one is a shopping agent and
one is a provider of the searched goods), however, their interaction patterns do not
fit.

• Mediation of message exchange protocols. SOAP over http is unreliable requiring
trading partners to implement transport level acknowledgments as well as time-out,
retry, upper resend limits as well as duplicate detection in order to guarantee
exactly once semantics. Web services may differ in the way they achieve such a
reliability layer.

• Mediation of dynamic service invocation. A web service may invoke other web
services to provide its functionality. This can be done in a hard-wired manner,
however, it can also be done more flexibly by just referring to certain (sub-)goals.
During execution other services can be invoked dynamically.

Mediation of these different aspects can be done with different underlying process
models. We will start by discussing these different process models and will then look at
each aspect in more detail.

3.4.1 Process models for mediation

Let's assume a service provider P that provides service ws1 and a requester R that
requests ws1. In this case there are two approaches.

Client/server approach. In this case P provides service ws1. Whoever wants to request
ws1 has to deal with the data structures (message format), business logic, and message
exchange protocol defined by P. In this case the mediation takes place within the control
of R and only by R. In this case P executes its public process the way it is defined by P
and R has to “deal” with it, i.e. has to mediate in such a way that its expected behavior is
achieved after mediation.

Example. A huge corporation R that requests from its suppliers that they comply
if they want to do business. In this case the huge corporation is unwilling to
change.

Example. P sends a purchase order in several messages, each line item is a
separate message. However, R expects a complete purchase order. In this case R
has to build some mediation that collects all individual line items for that one
purchase order and once all line items are received (interesting problem in itself)
it can put them into one purchase order. Then R 's original expectations are
fulfilled and the mediation is successful.

Peer-to-peer approach14 . P and R agree on two matching public processes. In this case
both, R and P have to mediate to their original public process from the newly agreed

14. Our definition of P2P is like this: if a sender wants to send data to a recipient, the sender
opens a direct connection to the recipient. With direct connection we mean not necessarily on the
transport level (i.e. hops are ok), but no third party in between gets to see the data (either as
forwarder or as blackboard, etc.). Napster in that sense is not P2P since there is a shared place
where the peers go to. For example, in the EDI world, an enterprise could send a purchase order to
another enterprise without any interpreting third party in between. The VAN they used was a store
and forward device, i.e. not interpreting. Similarly with RosettaNet. Both parties open a direct http
connection and send each other the RosettaNet messages. There is no third party in-between.

17

one. In this case requester R has a choice of approach. If P provides data structures etc.
that R “likes”, R just takes the data structures and does the mediation. If R does not like
the data structures, R and P can agree on a format that is different from what P already
provides. In this case P has to do some of the mediation from its original data structures
into the newly agreed one. R also has to mediate from the newly agreed one to the one R
really needs. Of course, if the newly agreed upon data structure is exactly what R needs,
only P has to do mediation.

Example. Two trading partner may agree on RosettaNet as their exchange data
structure. In this case both trading partners have to transform RosettaNet to
whatever internal data structures they have.

Example. P and R agree on using PIP 3A4 of RosettaNet. 3A4 is the PO - POA
exchange. R has to internally mediate to its “half” of 3A4 and P has to mediate to
its half. In the best case there is no real mediation. This is when P and/or R have
their private process match exactly the public process.

The first case requires only one transformation per message exchanged. This
transformation has to take place at R or an intermediary between P and R. The latter
case might require up to two transformations, one at P and one at R. However, it might
require none if both, R and P have RosettaNet as their internal data structure too (too
good to be true). If there is an intermediary in the latter case it could handle the situation
with one transformation. But that would violate the P2P approach.

Mediation enabled Peer-to-Peer approach. Such a P2P scenario as described above
may not scale because it would require a trading partner to implement hundreds of
formats to be fully P2P enabled. Therefore, this scenario may only work with an
intermediate mediation service that makes differences in data formats transparent to the
agents. Then they can fully enjoy P2P EC. Therefore, such a mediation does not violate
but rather enables P2P. This is like the fact that both only need an Internet provider to be
able to start their P2P relation. Only the service we are talking about is at a higher
conceptual level.

Real P2P communication implies that any transformation is done at either end, the
sender and/or the receiver. This requires the sender/receiver to maintain 100s of
transformations. It is further true that this only scales if the transformations are
maintained. Otherwise the parties could not talk. Solving this problem by mediated P2P
communication also has its own problems:

• The third party needs to maintain all the required transformations.

• All the trading partners of a trading partner need to be connected to the same third
party the trading partner chooses. If one trading partner chooses another third
party, there is a connectivity problem (like in the case of VANs): the third parties
have to communicate between each other in order to connect the two trading
partners.

• In order to make the transformations, the third party needs to get clear text access
to the messages. This requires an elaborate security schema. Traditional signing
and encryption does not work for the end-to-end case any more. Both trading
partners have to trust the third party.

• Trading partner-specific transformation data like domain value maps and cross-

18

referenced tables have to be maintained by the third party. A trading partner must
be able to modify these at any time.

• No dynamic transformations requiring access to other data sources of a trading
partner may be present. Otherwise the third party needs to get access to the trading
partner’s data.

• Any trading partner-specific modifications of documents cause specific
transformations for the third party.

In summary, conceptually the third party approach scales until we get into trading
partner-specific modifications of documents as well as transformations, and as well as
several connected third parties. In real life this means that if Sun and Cisco want to
communicate, they have to go through a third party that is an independent organization
(company). That company must have a solid long-term business model since without it
communication would break down. In order for Sun or Cisco to trust the third party, it
needs to show not only long-term viability, but also trustworthiness as well as
responsiveness to companies’ special requirements.

We left out the possibility that R is the “stronger” trading partner, able to force P to
mediate. However, this is a real possibility and we need to provide for that.

3.4.2 Mediation of data structures

Support for integrating various XML-based standards for e-commerce integration is
adopted by several B2B integration frameworks, for example, Microsoft® BizTalk™
Server15. However, as shown in [Omelayenko & Fensel, 2001(a)] such a flat and direct
approach does not scale because of its flatness and directness.

[Omelayenko & Fensel, 2001(a)] illustrates that even simple integration tasks such as
the mapping of an address description in XML standards such as cXML and xCBL
leads to complex XSL-T rules. Such rules are difficult to program, their reuse is limited,
and maintenance effort is high. In consequence, such an integration approach is costly
and does not scale. The difficulties of this direct mapping approach is caused by the fact
that it interweaves conceptually different aspects of the alignment process.

• Extracting information from a certain syntax. The source XML dialect defines
a certain syntactical representation of a piece of information (address). Therefore,
an XSL-T rule is concerned with extracting the actual information from a certain
syntax.

• Mapping different conceptual representation of information. An XML
standard may use different concepts, different structuring of concepts, different
value types, and different natural language descriptions to model a certain piece of
information. An XSL-T rule may be used to merge different structures at a
conceptual level.16

• Representing information in a certain syntax. The target XML dialect defines a
certain syntactical representation of a piece of information (address). Therefore, an

15. http://www.microsoft.com/biztalk/default.asp
16. Giving a simple example: one standard may take a street address as street name and house
number, whereas another standard may distinguish both.

19

XSL-T rule is concerned with exporting the actual information in a certain syntax.

Therefore, we describe in [Omelayenko & Fensel, 2001(b)] a layered integration
architecture that uses an intermediate data model to represent the actual information and
three sub-steps in actually aligning information from different standards. Based on this
approach, we are able to break up complex XSL-T rules into a concatenation of three
simple and reusable rules that can be gained by simply instantiating given rule patterns.
This is an essential first step into a scalable integration framework for heterogeneous
data formats.

A second step is required to deal with the number of mappings. The number of different
XML “standards” is large and still growing. Directly providing mappings for n
standards requires n2 mappings. This does not scale when n increases. The only viable
approach to dealing with this problem is to define an intermediate conceptualization
from which is mapped in and out (cf. [Omelayenko & Fensel, 2001(b)]). Then n
mappings are enough to mediate n standards. This intermediate conceptualization (i.e.,
an Ontology) cannot be just a simple document collection as defined by many XML
documents. IT requires a well-defined and principled organization of the domain of
concern to keep this conceptualization maintainable and easy to align with external
document formats.

In general, many concepts and techniques developed in Intelligent Information
Integration17 (III, cf. [Wache & Fensel, 2000], [Fensel et al., 2001a]) and related areas
can significantly help to overcome these problems. However, most of them require
adaptation to the specific needs of web service integration.

3.4.3 Mediation of business and message understanding logics

On the business logic level messages with business content are processed like purchase

orders and invoices. It might be that two trading partners have implemented their
version of a public process, each for its role (like buyer and seller). However, the two
public processes might mismatch.

For example, a buyer decides to send all line items of a purchase order (PO)
individually. In addition, the buyer expects a separate purchase order agreement (POA)
for each line item. The reason for a buyer to define its public buying process like this
might have been that it is simpler for its internal processing to have every line item
separately processed and acknowledged.

Independently, a seller might have implemented its public process in such a way that for
each purchase order coming in a purchase order acknowledgment is sent back. No
individual line items are accepted, only complete purchase orders. The motivation
behind this approach might have been that the seller does not want to coordinate
different but related messages in its environment.

Business logic mediation has to compensate for the mismatches in public processes.
Two types of mismatches can be found: data mismatches and process sequencing
mismatches. The different cases for data mismatches are as follows.

• Data-complete match. In this case the messages sent by the requester and expected

17. http://www.tzi.de/grp/i3/, http://www.aifb.uni-karlsruhe.de/WBS/dfe/iii99.html

20

by the provider match each other precisely. The only task the mediation would
have to do (if at all) is to transform them into each other. This is the trivial case
where the mediator has almost no work to do.

• Data-complete mismatch. Data complete mismatch means that mismatches can be
resolved through re-factoring the messages. All data are available in the given
messages, they just need to be restructured and re-formatted.
The example given above is a case of this nature. In this example it is possible for
the mediation to collect all line items from the buyer and compose a complete
purchase order from it. Once the complete purchase order is available, it is given to
the seller. Analogously, once the seller publishes the purchase order
acknowledgment, it is split up in to individual purchase order acknowledgements
for the buyer. In this case the messages could be restructured into each other so that
both, seller and buyer send and receive the messages as originally defined in their
public processes.

• Data-over-complete mismatch. A data-over-complete mismatch occurs when a
requester sends more data than the provider requires. However, the superfluous
data cannot be dropped by the mediation since return messages to the requester
might require precisely these data. In this case the mediation must store the
superfluous data in order to have it available for the return messages to be
completed.

• Data-incomplete mismatch. This case happens when a requester does not send
enough data to the provider. This means that messages to the provider would be
missing data and will cause a failure in the provider. The mediation has to get back
to the requester to request more data. This is possible if the requester has another
public process available for this purpose. Alternatively, the requester can change
the public process in order to provide more data. Once the missing data is available
the mediator can complete the message and send it to the provider. Conversely, the
provider could return either too much or too few data to the requester. In the former
case the mediator has to decide if the superfluous data can be dropped or if it has to
be kept around. In the latter case the mediator has to ask the provider for additional
(the missing) data so that the requester’s need can be satisfied.

Secondly, the business logic mediation has to solve process sequence mismatches .
Fundamentally, each public process defines in which order messages are sent by it and
messages are required by it. The following cases can be distinguished.

• Precise match . Each of the public processes involved sends the messages in
exactly the order the other public process requests it. In this case the mediator does
not have to compensate for sequence mismatches at all since no mismatch exists.

• Unresolvable message mismatch. In the case of an unresolvable mismatch a
provider expects a message that is not sent by a requester. This means that a
necessary message is missing. If the mediator cannot provide any mediation logic
generating a meaningful message, an unresolvable mismatch exists.

• Resolvable message mismatch. In the above example, the buyer sends all line items
individually. After all have been collected, they can be forwarded by the mediation
to the provider as one purchase order. This means that the requester sent all the

21

data required by the provider. In this example the match worked out fine.

Another example of a resolvable message mismatch is the following. A requester sends
a purchase order and expects back a purchase order acknowledgment. A provider,
however, receives a purchase order, but does not send back an explicit purchase order
acknowledgment. A mediator can in this case generate a “dummy” purchase order
acknowledgment for the requester once the provider accepts the purchase order. The
mediator compensates by generating a message.

• Unresolvable sequence mismatch. An example that cannot be mediated is when a
requester requests a flight, a hotel and a car (in this order) whereby a provider
expects to book a car first, then a hotel and finally a flight. These two sequences are
mismatched and the mediation cannot mediate between these two public processes
since it cannot change the order of how the requester or the provider expect the
messages.

• Resolvable sequence mismatch. A resolvable mismatch exists when the provider
can take flight, hotel and car booking requests in any order. In this case the
mediator forwards the messages in the order in which they are sent by the
requester.

The mediator has to be able to mediate data mismatches and process sequence
mismatches concurrently. Both have to be successfully mediated for the overall
mediation to succeed. The location of the mediation can be in three places. Either at one
of the trading partners or at an intermediary (see Section 3.4.1). Figure 1 gives an
example for such a mediation service where a mediator generates proxy

Fig. 1 Mediation of different interaction styles.

22

acknowledgements to enable communication between two trading partners that follow
different protocols for their business interaction.

3.4.4 Mediation of exchange protocols

It is important for us to distinguish the mediation message exchange protocols and the
business logic. Web services are based on SOAP over http. There might be encryption
on the channel (http) and/or encryption of the SOAP message itself. Signing might
happen, too. Since http is synchronous, both, receiver and provider have to agree on
how to encrypt and how to sign. However, SOAP over http is unreliable. This means
that trading partners have to implement transport level acknowledgments as well as
time-out, retry, upper resend limits as well as duplicate detection in order to guarantee
exactly once semantics. These are the exchange protocols. We need to mediate the
exchange protocol if a receiver expects specific behavior a provider does not provide.
For example, a provider P might send an explicit failure notification message that
indicates that P thinks the exchange failed. However, a receiver R might not have
encountered such a behavior before and now needs to mediate. That is, R needs to deal
with the explicit failure notification message. This mediation is different from the
earlier discussed level that deals with “real” business messages like purchase orders and
invoices. The processing of these is the business logic. The exchange logic is the low
level means to enable the business logic.

We already mentioned earlier that the different business data structures (purchase order,
purchase order acknowledgement) have to be mediated. This is interwoven with the
business logic. However, on the message exchange protocol level mediation of its
specific data structures again might be necessary too (like acknowledgments).

Finally, even though we have a layering of exchange protocol (with its specific
messages like acknowledgments and failure notifications) and business logic (with its
specific messages like purchase orders and purchase order acknowledgements as
business data), on the wire all messages are alike, i.e. the wire itself is not layered.

3.4.5 Scenarios for Service Composition

Let's assume the following:

1) There is a service provider P and a service requester R .

2) P provides web services ws1, ws2 and ws3 .

3) R wants to have a combined logic of ws1, ws2 and ws3 (we use “combined logic”
to not use “complex web service” at this point).

There are the following possibilities to define complex web services (and they are not
exclusive at all).

The simple case: provider-based composition

P itself combines ws1, ws2 and ws3 into a new web service ws4. ws4 is therefore a
complex service (since composed of other services). However, R does not necessarily
know this since for R ws4 is available as a simple web service. The composition is
invisible to R.

There is a problem in case R wants or needs to know the status of ws4 during execution,

23

e.g. ws4 breaks. The question is, which of the composed services has been executed.
Also, ws4 requires that all input data are available when ws4 is started.18 For such cases
where R does not need to know the execution status and can supply all input data, this
approach is fine.

The intermediate case: client-based composition

P does not combine ws1, ws2 and ws3 at all. Instead R combines them by virtue of
calling them in a specific order. In this case R builds a new web service ws4 out of ws1 ,
ws2 and ws3 . This means that P does not know at all that R does that. For P it looks like
it's provided services are called independently. R has to “magically” find out if there are
specific constraints invoking ws1, ws2 and ws3. For example, it might be that ws1 has to
be called first, before ws2 and ws3 are called.

A special case is that R does not even define ws4 at all, it just calls ws1, ws2 and ws3 in a
specific order.

The advanced case: declarative specification of web service composition

P does not combine the services ws1, ws2 and ws3. However, it defines the possible
invocation sequences of the three services through constraints. Thus, the set of
constraints could be viewed as a composed web service ws4. This means that R gets told
what the valid invocation sequences are. This distinguishes this case from the
intermediate case. R has to make sure that it complies with the constraints when
invoking the services.

Summary

From our viewpoint, all three scenarios are valid possibilities. The most advanced
proposal is the last one since this means that P gives information about how to use the
services and R can make sure that the constraints are followed without being forced to
adopt a specific implementation of the invocation sequence (like a ws4). R can model
the composition in many ways as long as the constraints are fulfilled. In the following
we will sketch all three scenarios which we call simple, intermediate, and advanced
complex web services. Blowing up these scenarios defines a natural link to work that is
done in the multi-agent system area (cf. [Giampapa et al., 2001]).

4 Related Work

There exists much related work, mainly performed in the area of web services and B2B
standards and the workflow area.

4.1 Web Services and B2B Standards
Web services and e-commerce are rapidly growing areas. A detailed comparison with
all related initiatives is far beyond our scope. After enumerating the most relevant

18. However if the book is not available but there is a secondhand copy, it asks me if this is
alright. Thus the breakpoint is the question. If ws4 is composed out of ws1-3 it does not need all the
data when it is started, only at the time when it is needed. (thus the provider does the same as the
client before).

24

initiatives we will explain why there is still a need for WSMF. Discussions of some of
the approaches can be found in [Dogac & Cingil, 2001], who compare the following
frameworks for B2B E-commerce: the eCo framework, RosettaNet, BizTalk, cXML,
and MESCHAIN, and [Weikum, 2001] collect a number of papers on infrastructure for
advanced E-services. The latter states quite clearly that in addition to extremely high
scalability, responsiveness, and availability of the data management engine, e-service
platforms need to address interoperability, customizability, messaging, process
management, and web application programming and management issues.

[WSAP, 2000] proposes the creation of a Web Services Activity of the W3C whose
goal is to ensure development of a Web services architecture based on XML, fitting into
the Web architecture. This is still an ongoing initiative closely related to WSDL. As
mentioned earlier, WSDL ([Christensen et al., 2001]) is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information, however, it lacks many
important features to make it a fully-fledged framework for effective B2B integration.

The Web Services Conversation Language (WSCL) provides a way to model the public
processes of a service, thus enabling network services to participate in rich interactions
([Banerji et al., 2001], [Beringer et al., 2001]). Together, UDDI, WSDL, and WSCL
enable developers to implement web services capable of spontaneously engaging in
dynamic and complex inter-enterprise interactions. WSCL has been developed as a
complement to WSDL. Whereas the latter specifies how to send messages to a service,
it does not state the order in which such messages are allowed to be sent. This issue is
addressed in WSCL, which defines legal sequences of document exchange between web
services. Similarly, the WS-Inspection specification provides an XML format for
assisting in the inspection of a site for available services and a set of rules for how
inspection related information should be made available for consumption (cf. [Ballinger
et al., 2001]).

Automation of business processes based on web services requires a notation for the
specification of message exchange behavior among participating web services.
XLANG [Thatte, 2001] is proposed to serve as the basis for automated protocol engines
that can track the state of process instances and help enforce protocol correctness in
message flows.

The Web Services Flow Language (WSFL) [Leymann, 2001] is an XML language for
the description of Web Services compositions. WSFL considers two types of Web
Services compositions: the first type specifies the appropriate usage pattern of a
collection of Web Services, in such a way that the resulting composition describes how
to achieve a particular business goal; typically, the result is a description of a business
process. The second type specifies the interaction pattern of a collection of Web
Services; in this case, the result is a description of the overall partner interactions.
WSFL is very close in spirit to WSMF, however lacks some of the important modeling
features of the latter. Examples are the difference between private and publically visible
business logic as well as the use of ontologies to keep descriptions reusable. Still, a
WSMF-conforming language could be defined as an extension of WSFL.

The Business Process Modeling Language (BPML) [Arkin, 2001] is a meta-language
for the modeling of business processes. BPML provides an abstracted execution model

25

for collaborative and transactional business processes based on the concept of a
transactional finite-state machine.

ebXML, sponsored by UN/CEFACT and OASIS, is a modular suite of specifications
that enables enterprises of any size and in any geographical location to conduct business
over the Internet (cf. [Waldt & Drummond]). Using ebXML, companies now have a
standard method of exchanging business messages, conducting trading relationships,
communicating data in common terms and defining and registering business processes.

The Process Specification Language (PSL) is an interchange format designed to help
exchange process information automatically among a wide variety of manufacturing
applications such as process modeling, process planning, scheduling, simulation,
workflow, project management, and business process re-engineering tools ([Schlenoff
et al., 2000]). Tools can interoperate by translating between their native format and
PSL. Thus, any system is able to automatically exchange process information with any
other system via PSL. PSL can be used to define formal semantics for process
specification in WSMF.

[Bussler, 2001c] provides an excellent survey of many of the B2B protocol standards
and develops a conceptual framework for comparing the various kinds of services they
provide and fail to provide. It also illustrates the need for the WSMF we propose.
Notice, that none of the mentioned approaches and the approaches discussed in
[Bussler, 2001c] provide de-coupling of business logics, message exchange protocols,
or document structures (accompanied by adequate information hiding) complemented
by scalable collaboration as WFML does.

4.2 Workflow Approaches to E-commerce
Workflow is the computerized automation of a business process. A business process is a
set of linked activities, which collectively realize a business objective. One of the myths
of inter-enterprise process execution is that workflow management systems (WFMs)
deployed in enterprises can achieve the collaboration between enterprises across
networks. The reality is that important modeling primitives are missing in WFMs
required to achieve inter-enterprise process collaboration (see [Bussler, 2001a]). As
[Bussler, 2001b] illustrates, naive workflow alignment would lead to an unmanageable
number of workflow alternatives.19 Conventional approaches lack three very important
features: flexible de-coupling mechanisms for different work flows; scalable
mechanisms to interweave different work flows; and the distinction between business
logic and message exchange protocol. In this section, we will discuss some proposals to
overcome these shortcomings and show how they relate to our proposed solution in the
WSMF.

Workflow Management Systems are often used in the context of B2B integration as a
base technology to implement B2B integration processes. [Bussler, 2001b] defines the
notion of distributed inter-organizational workflows, private and public processes.
Based on this definition, the appropriate use of WFMSs is shown in the context of an
overall B2B integration solution. The need for workflow class inheritance concepts

19. Very similar to a naive approach to document alignment without proper abstraction steps and
a lacking ontology as described in [Omelayenko & Fensel, 2001(a)].

26

becomes clear once a large set of similar workflow classes have to be managed across a
large company. To foster the development of workflow class inheritance, [Bussler,
1999] discusses a set of examples that show the benefit of workflow class inheritance.
Dynamic sub-workflow binding is discussed to avoid the combinatorial explosion in the
number of workflow definitions in specific situations. Important modeling primitives
which are missing in WFMSs require the achievement of an inter-enterprise process
collaboration. WFMSs were not designed to deal with executing message protocols
across networks. In contrast, B2B protocols address all the required functionality to
exchange messages reliably between enterprises across networks and are not concerned
about enterprise internal processes. Workflow technology does not have the concepts of
dynamic binding of public and private processes. [Bussler, 2001a] introduces an
approach to bind public and private processes implemented as B2B protocols and
workflow types as well as showing an approach to inter-enterprise collaboration
management. All these concerns were applied in the WSMF to provide a proper
abstraction mechanism for linking together heterogeneous workflows in a scalable
manner. Similar proposals have been made by [van der Aalst & Weske, 2001], who
describe the Public-To-Private (P2P) approach to inter-organizational workflows, which
is based on a notion of inheritance, and [Chiu et al., 2000] and [Kafeza et al., 2001]
introduce a novel concept of workflow views as a fundamental support for E-service
workflow interoperability and for controlled visibility by external parties.

[Georgakopoulos et al., 2000] describe a workflow-based framework for e-service
integration. It is based on the extension of workflow management systems with the
notion of service activities (workflow steps). A workflow step (service activity) can
invoke a service in order to obtain a specific result as computed by the service. The
notion of a service wrapper process is introduced in order to provide abstraction for
different services that implement the same goal (similar to the concept of mediation in
WSMF). However, the approach follows the invocation paradigm in terms of a remote
RPC. The important concept of P2P interaction is not accounted for at all. A workflow
is therefore in control of the service invocation without the service being able to
asynchronously send back messages to the workflow. The distinction of public and
private processes is not followed making mediation impossible to define and to execute.

[Chen & Hsu, 2000] and [Chen et al., 2001] introduce inter-enterprise collaborative
business process management. The basic idea is to design a “virtual” cooperative
process across enterprises. Once the design is accomplished, the workflow is “split” into
individual pieces that are executed by the local process managers of the enterprises
involved. Each enterprise executes its portion of the “virtual” cooperative process.
Through this approach, all pieces are executed autonomously in the enterprises and true
P2P behavior is achieved. However, the approach does not distinguish between private
and public processes and a binding between those. Instead, each enterprise can add sub-
workflows to its local piece of the overall “virtual” cooperative process. Furthermore,
mediation is not considered an issue at all. Neither data nor process mediation are
recognized as important issues.

27

5 Semantic Web Enabled Web Services

The easy information access based on the success of the web has made it increasingly
difficult to find, present, and maintain the information required by a wide variety of
users. In response to this problem, many new research initiatives and commercial
enterprises have been set up to enrich available information with machine-
understandable semantics. This semantic web ([Berneers-Lee et al., 2001], [Fensel &
Musen, 2001], and [Fensel et al., 2002]) will provide intelligent access to
heterogeneous, distributed information, enabling software products to mediate between
user needs and the information sources available. Web Services deal with the
orthogonal limitation of the current web. Currently, the web is mainly a collection of
information but does not yet provide support in processing this information, i.e., in
using the computer as a computational device. Web services can be accessed and
executed via the web. However, all these service descriptions are based on semi-formal
natural language descriptions. Therefore, the human programmer needs be kept in the
loop and the scalability as well as economy of web services are limited. Bringing them
to their full potential requires their combination with semantic web technology. It will
provide mechanization in service identification, configuration, comparison, and
combination. Semantic Web enabled Web Services have the potential to change our
life to a much higher degree than the current web already has done (see Figure 2).
[Bussler, 2001a] identifies the following elements necessary to enable efficient inter-
enterprise execution: Public process description and advertisement; discovery of
services; selection of services; composition of services; and delivery, monitoring and
contract negotiation.

Without mechanization of these processes, Internet-based e-commerce will not be able
to provide its full potential in economic extensions of trading relationships. Initial
attempts have already been made to apply semantic web technology to web services.20

[Trastour et al., 2001] examine the problem of matchmaking, highlighting the features

20. [Lemahieu, 2001] provides an excellent introduction to these issues.

Fig. 2 Semantic web enabled Web Services.

WWW
URI, HTML, HTTPStatic

Semantic Web
RDF, RDF(S)

Web Services
UDDI, WSDL, SOAPDynamic

Intelligent Web
Services

Time line

28

that a matchmaking service should exhibit and deriving the requirements on metadata
for description of services from a matchmaking point of view. [Hendler, 2001] provides
a look at some potential applications of web semantics and considers some challenges
the research community should be attacking. In particular, he takes a look at how
information agents and ontologies can together provide breakthrough technologies for
web applications. As part of the DARPA Agent Markup Language program, an
ontology of services has been developed, called DAML-S [Ankolenkar et al., 2001],
that should make it possible to discover, invoke, compose, and monitor Web resources
offering particular services and having particular properties. [Ankolenkar et al., 2001]
describe the overall structure of the ontology, the service profile for advertising
services, and the process model for the detailed description of the operation of services.
The ontology developed in DAML-S is very interesting when trying to define a mark-up
language based on WSMF. However, because DAML-S lacks important modeling
primitives of WSMF (i.e., it is not aware of the difference between private and public
processes, between business logic and message exchange protocols, nor has it any
notion of a mediation service) this can only be achieved by significantly extending and
reorganizing DAML-S.

6 Conclusions

In this paper, we propose a modeling framework called Web Service Modeling
Framework (WSMF). Its main elements are: ontologies, goal descriptions, elementary
and complex web services, and mediators. The aim of WSMF is to enable fully flexible
and scalable e-commerce based on web services. We achieve this goal with an
architecture that is based on two complementary principles:

• Strong de-coupling of the various components that realize an e-commerce
application.

• Strong mediation service enabling anybody to speak with everybody in a scalable
manner.

In the paper we do not define a concrete syntax or the semantics for WSMF . This could
be achieved in the following way. First, the WSMF language could be defined as an
extension of WSFL, which is a language close in spirit to our framework. Also, we do
not define a concrete web-based syntax for WSMF, i.e., we do not define any web-
based mark up language. Here one could take DAML-S as a starting point and extend it
with the necessary modeling features that are missing there. Finally, an approach such
as PSL could be used to define formal semantics for the WSMF. All three exercises
look rather straightforward in principle, but may require serious adaptation in detail.
Finally, [Florescu & Grünhagen, to appear] provide an interesting proposal for a
programming language for web services.

[Fensel et al., to appear] defines UPML, a conceptual model for describing problem-
solving methods. As problem-solving methods and web services share many feature, we
could reuse much of our experience for the development of WSMF. UPML uses a
special class of adapters (so-called refiners) to express the hierarchal refinement of
specification components. For example, refiners are used to refine a generic local search

29

into hill climbing, or a configurational design task into a parametric design task (cf.
[Fensel, 2000]). Similar refinement concepts need to be developed to structure large
volumes of web service descriptions: buying a plane or a train ticket are sub-classes of
buying a travelling ticket. Refiners help to structure the space of descriptions preventing
redundancy and inconsistency. Therefore, we expect that future versions of WSMF will
incorporate an equivalent modeling construct. This concept is also interesting because it
provides a link to invasive programming [Aksit & Bergmans, 2001] which may help to
develop web services based e-commerce solutions applying concepts of modern
software engineering.

Acknowledgement: This work was partially funded under the European IST
project Ibrow.

References

[van der Aalst & Weske, 2001]
W.M.P. van der Aalst and M. Weske: In K.R. Dittrich, A. Geppert, and M.C. Norrie (eds.),
Proceedings of the 13th International Conference on Advanced Information Systems
Engineering (CAiSE'01), Lecture Notes in Computer Science LNCS 2068, pages 140-156.
Springer-Verlag, Berlin, 2001.

[Allen & Garlan, 1997]
R. Allen and D. Garlan: A Formal Basis for Architectural Connection, ACM Transactions on
Software Engineering and Methodology, 6(3):213—249, July 1997.

[Ankolenkar et al., 2001]
A. Ankolenkar, M. Burstein, T. Cao Son, J. Hobbs, O. Lassila, D. Martin, D. McDermott, S.
McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng: DAML-S: Semantic
Markup For Web Services, http://www.daml.org/services/daml-s/2001/10/daml-s.html.

[Arkin, 2001]
A. Arkin: Business Process Modeling Language (BPML), Working Draft 0.4, 2001. http://
www.bpmi.org/.

[Aksit & Bergmans, 2001]
M. Aksit and L. Bergmans: Guidelines For Identifying Obstacles When Composing
Distributed Systems From Components, Software Architectures and Component Technology:
The State of the Art in Research and Practice, Kluwer, 2001.

[Ballinger et al., 2001]
K. Ballinger, P. Brittenham, A. Malhotra, W. A. Nagy, and S. Pharies: Web Services
Inspection Language (WS-Inspection) 1.0. http://www-106.ibm.com/developerworks/
webservices/library/ws-wsilspec.html, 2001.

[Banerji et al., 2001]
A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp, H. Kuno, M.
Lemon, G. Pogossiants, S. Sharma, S. Williams: Web Services Conversation Language
(WSCL), HP, 2001.

[Berneers-Lee et al., 2001]
T. Berners-Lee, J. Handler, and O. Lassila: The Semantic Web, Scientific American, May
2001.

[Beringer et al., 2001]
D. Beringer, H. Kuno, and M. Lemon: Using WSCL in a UDDI Registry 1.02, UDDI Working

30

Draft Technical Note Document, May 5, 2001. http://www.uddi.org/pubs/
wscl_TN_forUDDI_5_16_011.doc.

[Bussler, 1999]
C. Bussler: Workflow Class Inheritance and Dynamic Workflow Class Binding. In
Proceedings of the Workshop Software Architectures for Business Process Management at the
11th Conference on Advanced Information Systems Engineering CAiSE´99, Heidelberg,
Germany, June 1999.

[Bussler, 2001a]
C. Bussler: The Role of B2B Protocols in Inter-enterprise Process Execution. In Proceedings
of Workshop on Technologies for E-Services (TES 2001) (in cooperation with VLDB2001).
Rome, Italy, September 2001.

[Bussler, 2001b]
C. Bussler: The Role of Workflow Management Systems in B2B Integration. In Proceedings
of the Fourth International Conference on Electronic Commerce Research (ICECR-4), Dallas,
TX, USA, November 2001.

[Bussler, 2001c]
C. Bussler: B2B Protocol Standards and their Role in Semantic B2B Integration Engines, IEEE
Data Engineering, 24(1), 2001.

[Casati & Shan, 2001]
F. Casati and M.-C. Shan: Dynamic and Adaptive Composition of E-services, Information
System, 26, 2001.

[Chappell et al., 2001]
D. A. Chappell, V. Chopra, J.-J. Dubray, C. Evans, B. Harvey, T. McGrath, D. Nickull, M.
Noordzij, B. Peat, P. van der Eijk, J. Vegt: Professional ebXML Foundations, Wrox Press Ltd.,
Birmingham, 2001

[Chen & Hsu, 2000]
Q. Chen and M. Hsu: Inter-Enterprise Collaborative Business Process Management. Technical
Report HPL-2000-107, HP Laboratories Palo Alto, August 2000.

[Chen et al., 2001]
Q. Chen, M. Hsu, U. Dayal: Peer-to-Peer Collaborative Internet Business Servers. Technical
Report HPL-2001-14, HP Laboratories Palo Alto, January 2001

[Chiu et al., 2000]
D.K.W. Chiu, K. Karlapalem, and Q. Li. Views for Inter-Organization Workflow in an E-
Commerce Environment. In Proceedings of the 9th IFIP 2.6 Working Conference on Database
Semantics (DS-9), Hong Kong, April 2001, pp 151-167.

[Christensen et al., 2001]
E. Christensen, F. Curbera, G. Meredith, S. Weerawarana: Web Services Description
Language (WSDL) 1.1,15 March 2001. http://www.w3.org/TR/wsdl.

[Clements, 1996]
P. C. Clements: A Survey of Architecture Description Languages. In Proceedings of the 8th
International Workshop on Software Specification and Design, Dagstuhl, Germany, March
1996.

[Dogac & Cingil, 2001]
A. Dogac and I. Cingil: A Survey and Comparison of Business-to-Business E-Commerce
Frameworks, SIGecom Exchanges, Newsletter of the ACM Special Interest Group on E-
commerce, 2(2), Spring 2001.

[Fensel, 2000]
D. Fensel: Problem-Solving Methods: Understanding, Development, Description, and Reuse,
Lecture Notes on Artificial Intelligence, no 1791, Springer-Verlag, Berlin, 2000.

31

[Fensel, 2001]
D. Fensel: Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce ,
Springer-Verlag, Berlin, 2001.

[Fensel & Benjamins, 1998]
D. Fensel and V. R. Benjamins: The Role of Assumptions in Knowledge Engineering,
International Journal of Intelligent Systems (IJIS), 13(8):715-748, 1998.

[Fensel et al., 2001a]
D. Fensel, F. Baader, M.-C. Rousset and H. Wache: Special issue of the Journal Data and
Knowledge Engineering (DKE) on Intelligent Information Integration, 36(3) 2001.

[Fensel et al., 2002]
D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster (eds.), Semantic Web Technology, MIT
Press, Boston, to appear 2002.

[Fensel et al., to appear]
D. Fensel, E. Motta, F. van Harmelen, V. R. Benjamins, M. Crubezy, S. Decker, M. Gaspari,
R. Groenboom, W. Grosso, M. Musen, E. Plaza, G. Schreiber, R. Studer, and B. Wielinga: The
Unified Problem-solving Method Development Language UPML, to appear in Knowledge and
Information Systems (KAIS): An International Journal.

[Fensel & Groenboom, 1997]
D. Fensel and R. Groenboom: Specifying Knowledge-Based Systems with Reusable
Components. In Proceedings of the 9th International Conference on Software Engineering &
Knowledge Engineering (SEKE-97), Madrid, Spain, June 18-20, 1997.

[Fensel & Groenboom, 1999]
D. Fensel and R. Groenboom: A Software Architecture for Knowledge-Based Systems, The
Knowledge Engineering Review (KER), 14(3), 1999.

[Fensel & Musen, 2001]
D. Fensel and M. Musen: Special Issue on Semantic Web Technology, IEEE Intelligent
Systems (IEEE IS), 16(2), 2001.

[Florescu & Grünhagen, to appear]
D. Florescu and A. Grünhagen: An XML Programming Language for Web Service
Specification and Composition, to appear.

[Gamma et al., 1995]
E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns, Addison-Wesley Pub.,
1995.

[Garlan & Perry, 1995]
D. Garlan and D. Perry (eds.): Special Issue on Software Architecture, IEEE Transactions on
Software Engineering, April 1995.

[Georgakopoulos et al., 2000]
D. Georgakopoulos, A. Cichocki, H. Schuster, D. Baker: Process-based E-Service Integration.
In Proceedings of the Workshop on Technologies for E-Services (TES 2000) , Cairo, Egypt,
September 2000

[Giampapa et al., 2001]
J.A. Giampapa, O. Juarez-Espinosa, and K. Sycara: Configuration Management for Multi-
Agent Systems. In Proceedings of the 5th International Conference on Autonomous Agents
(Agents 2001), USA, June, 2001.

[Hendler, 2001]
J. Hendler: Agents and the semantic web, IEEE Intelligent Systems (IEEE IS), 16(2), 2001.

[Hofmeister et al., 1999]
C. Hofmeister, R. L. Nord, and D: Soni: Describing Software Architectures with UML. In P.
Donohoe (eds.), Software Architecture, Kluwer Academic Publ., 1999.

32

[Kafeza et al., 2001]
E. Kafeza, D.K.W. Chiu, and I. Kafeza: View-based Contracts in an E-service Cross-
Organizational Workflow Environment. In Proceedings of the Workshop on Technologies for
E-Services (TES 2001), in cooperation with VLDB-2001, Rome, Italy, September 14-15, 2001.

[Lemahieu, 2001]
W. Lemahieu: Web Service description, advertising and discovery: WSDL and Beyond, 2001.
In J. Vandenbulcke and M. Snoeck (eds.), New Directions in Software Engineering, Leuven
University Press, 2001.

[Leymann, 2001]
F. Leymann: Web Service Flow Language (WSFL 1.0), May 2001. http:// www-4.ibm.com/
software/solutions/webservices/pdf/WSFL.pdf.

[Mevidovic & Rosenblum, 1999]
N. Mevidovic and D. S. Rosenblum: Accessing the Suitability of a Standard Design Method
for Modeling Software Architectures. In P. Donohoe (eds.), Software Architecture, Kluwer
Academic Publ., 1999.

[Omelayenko & Fensel, 2001(a)]
B. Omelayenko and D. Fensel: An Analysis of Integration Problems of XML-Based
Catalogues for B2B E-commerce. In Proceedings of the 9th IFIP 2.6 Working Conference on
Database (DS-9), Semantic Issues in e-commerce Systems, Hong Kong, April 2001.

[Omelayenko & Fensel, 2001(b)]
B. Omelayenko and D. Fensel: A Two-Layered Integration Approach for Product Information
in B2B E-commerce. In Proceedings of the Second International Conference on Electronic
Commerce and Web Technologies (EC-WEB 2001), Munich, Germany, September 2001.

[Omelayenko & Fensel:, submitted]
B. Omelayenko and D. Fensel: Scalable Document Integration for B2B Electronic Commerce,
submitted.

[Penix et al., 1997]
J. Penix, P. Alexander, and K. Havelund: Declarative Specification of Software Architectures.
In Proceedings of the 12th IEEE International Conference on Automated Software
Engineering (ASEC-97), Incline Village, Nevada, November 3-5, 1997.

[Shaw & Garlan, 1996]
M. Shaw and D. Garlan: Software Architectures. Perspectives on an Emerging Discipline,
Prentice-Hall, 1996.

[Schlenoff et al., 2000]
C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell, J. Lee: The Process Specification
Language (PSL): Overview and Version 1.0 Specification, NISTIR 6459, National Institute of
Standards and Technology, Gaithersburg, MD (2000). http://www.mel.nist.gov/psl/.

[Thatte, 2001]
S. Thatte: XLANG: Web Services for Business Process Design, Microsoft Corporation, 2001.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm.

[Trastour et al., 2001]
D. Trastour, C. Bartolini, and J. Gonzalez-Castillo: A Semantic Web Approach to Service
Description for Matchmaking of Services. In Proceedings of the Semantic Web Working
Symposium, Stanford, CA, USA, July 30 - August 1, 2001.

[Wache & Fensel, 2000]
H. Wache and D. Fensel: Special issue of the International Journal of Cooperative
Information Systems on Intelligent Information Integration, 9(4), 2000.

[Waldt & Drummond]
D. Waldt and R. Drummond: EBXML: The Global Standard for Electronic Business, http://

33

www.ebxml.org/presentations/global_standard.htm.
[Weikum, 2001]

G. Weikum (ed.), Special Issue on Infrastructure for Advanced E-services, IEEE Data
Engineering, 24(1), 2001.

[Wiederhold, 1992]
G Wiederhold: Mediators in the Architecture of Future Information Systems, IEEE Computer ,
25(3):3849, 1992.

[WSAP, 2000]
Web Service Activity Proposal, 2000. http://www.w3.org/2001/10/ws-activity.html.

[Yellin & Strom, 1997]
D. M. Yellin and R. E. Strom: Protocol Specifications and Component Adapters, ACM
Transactions on Programming Languages and Systems, 19(2):292—333, 1997.

[Zaremski & Wing, 1997]
A. M. Zaremski and J. M. Wing: Specification Matching of Software Components, ACM
Transactions on Software Engineering and Methodology, 6(4):335—369, 1997.

