
ar
X

iv
:1

20
1.

40
89

v1
 [

cs
.A

I]
 1

9
Ja

n
20

12 A Description Logic Primer∗

Markus Krötzsch, František Simančík, Ian Horrocks

Department of Computer Science, University of Oxford, UK

Abstract. This paper provides a self-contained first introduction to description log-
ics (DLs). The main concepts and features are explained withexamples before syn-
tax and semantics of the DLSROIQ are defined in detail. Additional sections
review light-weight DL languages, discuss the relationship to the Web Ontology
Language OWL and give pointers to further reading.

Introduction

Description logics (DLs) are a family of knowledge representation languages that are
widely used in ontological modelling. An important practical reason for this is that they
provide one of the main underpinnings for the Web Ontology Language OWL as stan-
dardised by the World Wide Web Consortium (W3C). However, DLs have been used in
knowledge representation long before the advent of ontological modelling in the context
of the Semantic Web, tracing back to first DL modelling languages in the mid 1980s.

As their name suggests, DLs are logics (in fact they are decidable fragments of first-
order logic), and as such they are equipped with aformal semantics: a precise specifica-
tion of the meaning of DL ontologies. This formal semantics allows humans and com-
puter systems to exchange DL ontologies without ambiguity as to their intended mean-
ing, and also makes it possible to use logical deduction toinfer additional information
from the facts stated explicitly in an ontology – an important feature that distinguishes
DLs from other modelling languages such as UML.

The capability of inferring additional knowledge increases the modelling power of
DLs but it also requires some understanding on the side of themodeller and, above all,
good tool support for computing the conclusions. The computation of inferences is called
reasoningand an important goal of DL language design has been to ensurethat reasoning
algorithms of good performance are available. This is one ofthe reasons why there is not
just a single description logic: the best balance between expressivity of the language and
complexity of reasoning depends on the intended application.

In this paper we provide a self-contained first introductionto description logics. We
start by explaining the basic way in which knowledge is modelled in DLs in Section 1
and continue with an intuitive introduction to the most important DL modelling features
in Section 2. This leads us to the rather expressive DL calledSROIQ, the syntax of
which we summarise in Section 3. In Section 4, we explain the underlying ideas of DL

∗Version 1.0 of 19 January 2012. Comments and suggestions canbe sent to Markus Krötzsch at
markus.kroetzsch@cs.ox.ac.uk. This document can freely be used and distributed under the terms of CC
By-SA-NC 3.0. Please contact the authors if you would like toreproduce this document under another license.

1

http://arxiv.org/abs/1201.4089v1
http://korrekt.org/
http://www.cs.ox.ac.uk/isg/people/frantisek.simancik/
http://www.cs.ox.ac.uk/ian.horrocks/
http://creativecommons.org/licenses/by-nc-sa/3.0/

semantics and use it to define the meaning ofSROIQ ontologies. Many DLs can be
obtained by omitting some features ofSROIQ and in Section 5 we review some of the
most important DLs obtained in this way. In particular, thisincludes various light-weight
description logics that allow for particularly efficient reasoning. In Section 6 we discuss
the relationship of DLs to the Web Ontology Language OWL. We conclude with pointers
to further reading in Section 7.

1. Basic Building Blocks of DL Ontologies

Description logics (DLs) provide means to model the relationships between entities in a
domain of interest. In DLs there are three kinds of entities:concepts, roles and individ-
ual names.1 Concepts denote sets of individuals, roles denote binary relations between
the individuals, and individual names denote single individuals in the domain. Readers
familiar with first-order logic will recognise these as unary predicates, binary predicates
and constants.

For example, an ontology modelling the domain of people and their family rela-
tionships might use concepts suchParent to denote the set of all parents andFemale to
represent the set of all female individuals, roles such asparentOf to denote the (binary)
relationship between parents and their children, and individual names such asjulia and
john to denote the individuals Julia and John.

Unlike a database, a DL ontology does not fully describe a particular situation or
“state of the world”; rather it consists of a set of statements, called axioms, each of
which must be true in the situation described. These axioms typically capture only partial
knowledge about the situation that the ontology is describing, and there may be many dif-
ferent states of the world that are consistent with the ontology. Although, from the point
of view of logic, there is no principal difference between different types of axioms, it is
customary to separate them into three groups: assertional (ABox) axioms, terminological
(TBox) axioms and relational (RBox) axioms.

1.1. Asserting Facts with ABox Axioms

ABox axioms capture knowledge about named individuals, i.e., the concepts to which
they belong and how they are related to each other. The most common ABox axioms are
concept assertionssuch as

Mother(julia), (1)

which asserts that Julia is a mother or, more precisely, thatthe individual namedjulia is
an instanceof the conceptMother.

Role assertionsdescribe relations between named individuals. The assertion

parentOf(julia, john), (2)

for example, states that Julia is a parent of John or, more precisely, that the individual
namedjulia is in the relation that is denoted byparentOf to the individual namedjohn.

1In OWL concepts and roles are respectively known as classes and properties; see Section 6.

2

The previous sentence shows that it can be rather cumbersometo explicitly point out that
the relationships expressed by an axiom are really relationships between the individuals,
sets and relations that are denoted by the respective individual names, concepts and roles.
Assuming that this subtle distinction between syntactic identifiers and semantic entities is
understood, we will thus often adopt a more sloppy and readable formulation. Section 4
below explains the underlying semantics with greater precision.

Although it is intuitively clear that Julia and John are different individuals, this fact
does not logically follow from what we have stated so far. DLsdo not make theunique
name assumption, so different names might refer to the same individual unless explicitly
stated otherwise. Theindividual inequalityassertion

julia 0 john (3)

is used to assert that Julia and John are actually different individuals. On the other hand,
an individual equalityassertion, such as

john ≈ johnny, (4)

states that two different names are known to refer to the same individual. Such situations
can arise, for example, when combining knowledge about the same domain from several
different sources, a task that is known asontology alignment.

1.2. Expressing Terminological Knowledge with TBox Axioms

TBox axioms describe relationships between concepts. For example, the fact that all
mothers are parents is expressed by theconcept inclusion

Mother ⊑ Parent, (5)

in which case we say that the conceptMother is subsumedby the conceptParent. Such
knowledge can be used to infer further facts about individuals. For example, (1) and (5)
together imply that Julia is a parent.

Concept equivalenceasserts that two concepts have the same instances, as in

Person ≡ Human. (6)

While synonyms are an obvious example of equivalent concepts, in practice one more
often uses concept equivalence to give a name to complex expressions as introduced in
Section 2.1 below. Furthermore, such additional concept expressions can be combined
with equivalence and inclusion to describe more complex situations such as the disjoint-
ness of concepts, which asserts that two concepts do not share any instances.

1.3. Modelling Relationships between Roles with RBox Axioms

RBox axioms refer to properties of roles. As for concepts, DLs supportrole inclusion
androle equivalenceaxioms. For example, the inclusion

parentOf ⊑ ancestorOf (7)

3

states thatparentOf is asubroleof ancestorOf, i.e., every pair of individuals related by
parentOf is also related byancestorOf. Thus (2) and (7) together imply that Julia is an
ancestor of John.

In role inclusion axioms,role compositioncan be used to describe roles such as
uncleOf. Intuitively, if Charles is a brother of Julia and Julia is a parent of John, then
Charles is an uncle of John. This kind of relationship between the rolesbrotherOf,
parentOf anduncleOf is captured by thecomplex role inclusionaxiom

brotherOf ◦ parentOf ⊑ uncleOf. (8)

Note that role composition can only appear on the left-hand side of complex role inclu-
sions. Furthermore, in order to retain decidability of reasoning (see the end of Section 4
for a discussion on decidability), their use is restricted by additional structural restric-
tions that specify whether or not a collection of such axiomscan be used together in one
ontology.

Nobody can be both a parent and a child of the same individual,so the two roles
parentOf andchildOf are disjoint. In DLs we can writedisjoint rolesas follows:

Disjoint(parentOf, childOf). (9)

Further RBox axioms includerole characteristicssuch as reflexivity, symmetry and
transitivity of roles. These are closely related to a numberof other DL features and we
will discuss them again in more detail in Section 2.5.

2. Constructors for Concepts and Roles

The basic types of axioms introduced in Section 1 are rather limited for accurate mod-
elling. To describe more complex situations, DLs allow new concepts and roles to be
built using a variety of different constructors. We distinguish concept and role construc-
tors depending on whether concept or role expressions are constructed. In the case of
concepts, one can further separate basic Boolean constructors, role restrictions and nom-
inals/enumerations. At the end of this section, we revisit the additional kinds of RBox
axioms that have been omitted in Section 1.3.

2.1. Boolean Concept Constructors

Boolean concept constructors provide basic Boolean operations that are closely related to
the familiar operations of intersection, union and complement of sets, or to conjunction,
disjunction and negation of logical expressions.

For example, concept inclusions allow us to state that all mothers are female and that
all mothers are parents, but what we really mean is that mothers areexactlythe female
parents. DLs support such statements by allowing us to form complex concepts such as
the intersection(also calledconjunction)

Female ⊓ Parent, (10)

4

which denotes the set of individuals that are both female andparents. A complex con-
cept can be used in axioms in exactly the same way as an atomic concept, e.g., in the
equivalenceMother ≡ Female ⊓ Parent.

Union (also calleddisjunction) is the dual of intersection. For example, the concept

Father ⊔Mother (11)

describes those individuals that are either fathers or mothers. Again, it can be used in an
axiom such asParent ≡ Father ⊔Mother, which states that a parent is either a father or
a mother (and vice versa).

Sometimes we are interested in individuals that donot belong to a certain concept,
e.g., in women who are not married. These could be described by the complex concept

Female ⊓ ¬Married, (12)

where thecomplement(also callednegation) ¬Married denotes the set of all individuals
that are not married.

It is sometimes useful to be able to make a statement about every individual, e.g., to
say that everybody is either male or female. This can be accomplished by the axiom

⊤ ⊑ Male ⊔ Female, (13)

where thetop concept⊤ is a special concept with every individual as an instance; it
can be viewed as an abbreviation forC ⊔ ¬C for an arbitrary conceptC. Note that this
modelling is rather coarse as it presupposes that every individual has a gender, which
may not be reasonable for instances of a concept such asComputer. We will see more
useful applications for⊤ later on.

To express that, for the purposes of our modelling, nobody can be both a male and
a female at the same time, we can declare the set of male and theset of female individ-
uals to be disjoint. While ontology languages like OWL provide a basic constructor for
disjointness, it is naturally captured in DLs with the axiom

Male ⊓ Female ⊑ ⊥, (14)

where thebottom concept⊥ is the dual of⊤, that is the special concept with no individ-
uals as instances; it can be seen as an abbreviation forC ⊓ ¬C for an arbitrary concept
C. The above axiom thus says that the intersection of the two concepts is empty.

2.2. Role Restrictions

So far we have seen how to use TBox and RBox axioms to express relationships between
concepts and roles, respectively. The most interesting feature of DLs, however, is their
ability to form statements that link concepts and roles together. For example, there is an
obvious relationship between the conceptParent and the roleparentOf, namely, a parent
is someone who is a parent of at least one individual. In DLs, this relationship can be
captured by the concept equivalence

Parent ≡ ∃parentOf.⊤, (15)

5

where theexistential restriction∃parentOf.⊤ is a complex concept that describes the set
of individuals that are parents of at least one individual (instance of⊤). Similarly, the
concept∃parentOf.Female describes those individuals that are parents of at least one
female individual, i.e., those that have a daughter.

To denote the set of individuals all of whose children are female, we use theuniver-
sal restriction

∀parentOf.Female. (16)

It is a common error to forget that (16) also includes those that have no children at
all. More accurately (and less naturally), the axiom can be said to describe the set of
all individuals that have “no children other than female ones,” i.e., no “no children that
are not female.” Following this wording, the concept (16) could indeed be equivalently
expressed as¬∃parentOf.¬Female. If this meaning is not intended, one can describe the
individuals who have at least one child and with all their children being female by the
concept (∃parentOf.⊤) ⊓ (∀parentOf.Female).

Existential and universal restrictions are useful in combination with the top concept
for expressingdomainandrange restrictionson roles; that is, restrictions on the kinds of
individual that can be in the domain and range of a given role.To restrict the domain of
sonOf to male individuals we can use the axiom

∃sonOf.⊤ ⊑ Male, (17)

and to restrict its range to parents we can write

⊤ ⊑ ∀sonOf.Parent. (18)

In combination with the assertionsonOf(john, julia), these axioms would then allow us to
deduce that John is male and Julia is a parent. Note how this contrasts with the meaning
of constraintsin databases, which would also allow us to state, e.g., that all sons must be
male. However, given only the fact that John is the son of Julia, such a constraint would
simply be violated (leading to an error) rather than implying that John is male. Mistaking
DL axioms for constraints is a very common source of modelling errors.

Number restrictionsallow us to restrict the number of individuals that can be reached
via a given role. For example, we can form theat-least restriction

>2childOf.Parent (19)

to describe the set of individuals that are children of at least two parents, and theat-most
restriction

62childOf.Parent (20)

for those that are children of at most two parents. The axiomPerson ⊑ >2childOf.Parent
⊓ 62childOf.Parent then states that every person is a child of exactly two parents.

Finally, local reflexivitycan be used to describe the set of individuals that are related
to themselves via a given role. For example, the set of individuals that are talking to
themselves is described by the concept

∃talksTo.Self. (21)

6

2.3. Nominals

As well as defining concepts in terms of other concepts (and roles), it may also be useful
to define a concept by simply enumerating its instances. For example, we might define
the conceptBeatle by enumerating its instances:john, paul, george, andringo. Enumer-
ations are not supported natively in DLs, but they can be simulated in DLs usingnom-
inals. A nominal is a concept that has exactly one instance. For example,{john} is the
concept whose only instance is (the individual denoted by)john. Combining nominals
with union, the enumeration in our example could be expressed as

Beatle ≡ {john} ⊔ {paul} ⊔ {george} ⊔ {ringo}. (22)

It is interesting to note that, using nominals, a concept assertionMother(julia) can be
turned into a concept inclusion{julia} ⊑ Mother and a role assertionparentOf(julia, john)
into a concept inclusion{julia} ⊑ ∃parentOf.{john}. This illustrates that the distinction
between ABox and TBox does not have a deeper logical meaning.

2.4. Role Constructors

In contrast to the variety of concept constructors, DLs provide only few constructor for
forming complex roles. In practice,inverse rolesare the most important such constructor.
Intuitively, the relationship between the rolesparentOf andchildOf is that, for example,
if Julia is a parent of John, then John is a child of Julia and vice versa. More formally,
parenfOf is the inverse ofchildOf, which in DLs can be expressed by the equivalence

parentOf ≡ childOf−, (23)

where the complex rolechildOf− denotes the inverse ofchildOf.
In analogy to the top concept, DLs also provide theuniversal role, denoted byU,

which always relates all pairs of individuals. It typicallyplays a minor role in modelling,2

but it establishes symmetry between roles and concepts w.r.t. a top element. Similarly,
anempty rolethat corresponds to the bottom concept is also available in OWL but has
rarely been introduced as a constructor in DLs; however, we can define any roleR to be
empty using the axiom⊤ ⊑ ¬∃R.⊤ (“all things do not relate to anything throughR”).
Interestingly, the universal role cannot be defined by TBox axioms using the constructors
introduced above, and in particular universal role restrictions cannot express that a role
is universal.

2.5. More RBox Axioms: Role Characteristics

In Section 1.3 we introduced three forms of RBox axioms: roleinclusions, role equiv-
alences and role disjointness. OWL provides a variety of others, namely role transi-
tivity, symmetry, asymmetry, reflexivity and irreflexivity. These are sometimes consid-
ered as basic axiom types in DLs as well, using some suggestive notation such as
Trans(ancestorOf) to express that the roleancestorOf is transitive. However, such ax-

2Although there are a few interesting things that could be expressed withU, such asconcept products[12],
tool support is rarely sufficient for using this feature in practice.

7

ioms are just syntactic sugar; all role characteristics canbe expressed using the features
of DLs that we have already introduced.

Transitivity is a special form of complex role inclusion. For example, transitivity of
ancestorOf can be captured by the axiomancestorOf ◦ ancestorOf ⊑ ancestorOf. A
role issymmetricif it is equivalent to its own inverse, e.g.,marriedTo ≡ marriedTo−, and
it is asymmetricif it is disjoint from its own inverse, as inDisjoint(parentOf, parentOf−).
If desired,global reflexivitycan be expressed by imposing local reflexivity on the top
concept as in⊤ ⊑ ∃knows.Self. A role is irreflexiveif it is never locally reflexive, as in
the case of⊤ ⊑ ¬∃marriedTo.Self.

3. The Description Logic SROIQ

In this section, we summarise the various features that havebeen introduced informally
above to provide a comprehensive definition of DL syntax. Doing so yields the descrip-
tion logic calledSROIQ, which is one of the most expressive DLs commonly consid-
ered today. It also largely agrees in expressivity with the ontology language OWL 2 DL,
though there are still some differences as explained in Section 6.

Formally, every DL ontology is based on three finite sets of signature symbols: a set
NI of individual names, a setNC of concept namesand a setNR of role names. Usually
these sets are assumed to be fixed for some application and aretherefore not mentioned
explicitly. Now the set ofSROIQ role expressionsR (over this signature) is defined by
the following grammar:

RF U | NR | NR
−

whereU is the universal role (Section 2.4). Based on this, the set ofSROIQ concept
expressionsC is defined as:

CF NC | (C⊓C) | (C⊔C) | ¬C | ⊤ | ⊥ | ∃R.C | ∀R.C | >nR.C | 6nR.C | ∃R.Self | {NI }

wheren is a non-negative integer. As usual, expressions like (C ⊓ C) represent any ex-
pression of the form (C ⊓ D) with C,D ∈ C. It is common to omit parentheses if this
cannot lead to confusion with expressions of different semantics. For example, parenthe-
ses do not matter forA ⊔ B ⊔ C whereas the expressionsA ⊓ B ⊔ C and∃R.A ⊓ B are
ambiguous.

Using the above sets of individual names, roles and concepts, theaxiomsof SROIQ
can be defined to be of the following basic forms:

ABox: C(NI) R(NI ,NI) NI ≈ NI NI 0 NI

TBox: C ⊑ C C ≡ C

RBox: R ⊑ R R ≡ R R ◦ R ⊑ R Disjoint(R,R)

with the intuitive meanings as explained in Section 1 and 2.
Roughly speaking, aSROIQ ontology (orknowledge base) is simply a set of such

axioms. To ensure the existence of reasoning algorithms that are correct and terminating,

8

however, additional syntactic restrictions must be imposed on ontologies. These restric-
tions refer not to single axioms but to the structure of the ontology as a whole, hence they
are calledstructural restrictions. The two concrete such conditions relevant forSROIQ
are based on the notions ofsimplicity and regularity. Notably, both are automatically
satisfied for ontologies that do not contain complex role inclusion axioms.

A role R in an ontologyO is callednon-simpleif some complex role inclusion axiom
(i.e., one that uses role composition◦) in O implies instances ofR; otherwise it is called
simple. To be more precise, we first define thesubrolesof a roleRas follows:

• R is a subrole of itself,
• if R′ is a subrole ofR andO contains an axiomT ⊑ R′, T ≡ R′ or R′ ≡ T, thenT

is a subrole ofR.

Now the roleR is non-simple if the ontology contains an axiomS ◦ T ⊑ R′ whereR′

is a subrole ofR. All other roles are called simple.3 Now for aSROIQ ontology it is
required that the following axioms and concepts contain simple roles only:

Restricted axioms: Disjoint(R,R)

Restricted concept expressions: ∃R.Self >nR.C 6nR.C.

The other structural restriction that is relevant forSROIQ is calledregularityand is
concerned with RBox axioms only. Roughly speaking, the restriction ensures that cyclic
dependencies between complex role inclusion axioms occur only in a limited form. For
details, please see the pointers given in Section 7. For the introductory treatment in this
paper, it suffices to note that regularity, just like simplicity, is a property of the ontology
as a whole that cannot be checked for each axiom individually. An important practical
consequence is that the union of two regular ontologies may no longer be regular. This
must be taken into account when merging ontologies in practice.

4. Description Logic Semantics

The formal meaning of DL axioms is given by their semantics. In particular, the seman-
tics specifies what the logical consequences of an ontology are. The formal semantics
is therefore the main guideline for every tool that computeslogical consequences of DL
ontologies, and a basic understanding of its working is vital to make reasonable mod-
elling choices and to comprehend the results given by software applications. Luckily, the
semantics of description logics is not difficult to understand provided that some common
misconceptions are avoided.

Intuitively speaking, an ontology describes a particular situation in a given domain
of discourse. For example, the axioms in Sections 1 and 2 describe a particular situation
in the “families and relationships” domain. However, ontologies usually cannot fully
specify the situation that they describe. On the one hand, there is no formal relationship
between the symbols we use and the objects that they represent: the individual name
julia, for example, is just a syntactic identifier with no intrinsic meaning. Indeed, the

3Whether the universal roleU is simple or not is a matter of preference that does not affect the computational
properties of the logic [13]. However, the universal role inOWL 2 is considered non-simple.

9

intended meaning of the identifiers in our ontologies has no influence on their formal
semantics: what we know about them stems only from the ontological axioms. On the
other hand, the axioms in an ontology typically do not provide complete information. For
example, (3) and (4) in Section 1.1 state that some individuals are equal and that others
are unequal, but in many other cases this information might be left unspecified.

Description logics have been designed to deal with such incomplete information.
Rather than making default assumptions in order to fully specify one particular interpre-
tation for each ontology, the DL semantics generally considers all the possible situations
(i.e., states of the world) where the axioms of an ontology would hold (we also say:
where the axioms aresatisfied). This characteristic is sometimes called theOpen World
Assumptionsince it keeps unspecified information open.4 A logical consequence of an
ontology is an axiom that holds in all interpretations that satisfy the ontology, i.e., some-
thing that is true in all conceivable states of the world thatagree with what is said in the
ontology. The more axioms an ontology contains, the more specific are the constraints
that it imposes on possible interpretations, and the fewer interpretations exist that sat-
isfy all of the axioms. Conversely, if fewer interpretations satisfy an ontology, then more
axioms hold in all of them, and more logical consequences follow from the ontology.
The previous two sentences imply that the semantics of description logics ismonotonic:
additional axioms always lead to additional consequences,or, more informally, the more
knowledge we feed into a DL system the more results it returns.

An extreme case is when an ontology is not satisfied in any interpretation. The ontol-
ogy is then calledunsatisfiableor inconsistent. In this caseeveryaxiom holds vacuously
in all of the (zero) interpretations that satisfy the ontology. Such an ontology is clearly of
no utility, and avoiding inconsistency (and checking for itin the first place) is therefore
an important task during modelling.

We have outlined above the most important ideas of DL semantics. What remains
to be done is to define what we really mean by an “interpretation” and which conditions
must hold for particular axioms to be satisfied by an interpretation. For this, we closely
follow the intuitive ideas established above: an interpretationI consists of a set∆I called
thedomainof I and an interpretation function·I that maps each atomic conceptA to a
setAI ⊆ ∆I, each atomic roleR to a binary relationRI ⊆ ∆I × ∆I, and each individual
namea to an elementaI ∈ ∆I. The interpretation of complex concepts and roles follows
from the interpretation of the basic entities. Table 1 showshow to obtain the semantics
of each compound expression from the semantics of its parts.By “RI-successor ofx” we
mean any individualy such that〈x, y〉 ∈ RI. The definition should confirm the intuitive
explanations given for each case in Section 2. For example, the semantics ofFemale ⊓
Parent is indeed the intersection of the semantics ofFemale andParent.

Since an interpretationI fixes the meaning of all entities, we can unambiguously
say for each axiom whether it holds inI or not. An axiomholds in I (we also sayI
satisfiesα and writeI |= α) if the corresponding condition in Table 2 is met. Again, these
definitions fully agree with the intuitive explanations given in Section 1. If all axioms
in an ontologyO hold in I (i.e., if I satisfiesO, written I |= O), thenI is a model
of O. Thus a model is an abstraction of a state of the world that satisfies all axioms in
the ontology. An ontology isconsistentif it has at least one model. An axiomα is a

4A Closed World Assumption“closes” the interpretation by assuming that every fact notexplicitly stated
to be true is actually false. Both terms are not formally specified and rather outline the general flavour of a
semantics than any particular definition.

10

Table 1. Syntax and semantics ofSROIQ constructors

Syntax Semantics

Individuals:

individual name a aI

Roles:

atomic role R RI

inverse role R− {〈x, y〉 | 〈y, x〉 ∈ RI}

universal role U ∆I × ∆I

Concepts:

atomic concept A AI

intersection C ⊓ D CI ∩ DI

union C ⊔ D CI ∪ DI

complement ¬C ∆I \CI

top concept ⊤ ∆I

bottom concept ⊥ ∅

existential restriction ∃R.C {x | someRI-successor ofx is in CI}

universal restriction ∀R.C {x | all RI-successors ofx are inCI}

at-least restriction >n R.C {x | at leastn RI-successors ofx are inCI}

at-most restriction 6n R.C {x | at mostn RI-successors ofx are inCI}

local reflexivity ∃R.Self {x | 〈x, x〉 ∈ RI}

nominal {a} {aI}

wherea, b ∈ NI are individual names,A ∈ NC is a concept name,C,D ∈ C are concepts,R ∈ R is a role

Table 2. Syntax and semantics ofSROIQ axioms

Syntax Semantics

ABox:

concept assertion C(a) aI ∈ CI

role assertion R(a,b) 〈aI, bI〉 ∈ RI

individual equality a ≈ b aI = bI

individual inequality a 0 b aI , bI

TBox:

concept inclusion C ⊑ D CI ⊆ DI

concept equivalence C ≡ D CI = DI

RBox:

role inclusion R⊑ S RI ⊆ SI

role equivalence R≡ S RI = SI

complex role inclusion R1 ◦ R2 ⊑ S RI1 ◦ RI2 ⊆ SI

role disjointness Disjoint(R,S) RI ∩ SI = ∅

consequenceof an ontologyO (orO entailsα writtenO |= α) if α holds in every model
of O. In particular, an inconsistent ontology entails every axiom.

A noteworthy consequence of this semantics is the meaning ofindividual names in
DL ontologies. We already remarked that DLs do not usually make the Unique Name
Assumption, and indeed our formal definition allows two individual names to be inter-
preted as the same individual (element of the domain). Possibly even more important
is the fact that the domain of an interpretation is allowed tocontain many individuals

11

that are not denoted by any individual name. A common confusion in modelling arises
from the implicit assumption that interpretations must only contain individuals that are
denoted by individual names (such individuals are also called named individuals). For
example, one could wrongly assume the ontology consisting of the axioms

parentOf(julia, john) manyChildren(julia) manyChildren ⊑ >3parentOf.⊤

to be inconsistent since it requires Julia to have at least 3 children when only one (John) is
given. However, there are many conceivable models where Julia does have three children,
even though only one of them is explicitly named. A significant number of modelling
errors can be traced back to similar misconceptions that areeasy to prevent if the general
open world assumption of DLs is kept in mind.

Another point to note is that the above specification of the semantics does not pro-
vide any hint as to how to compute the relevant entailments inpractical software tools.
There are infinitely many possible interpretations, each ofwhich may have an infinite
domain (in fact there are some ontologies that are satisfied only by interpretations with
infinite domains). Therefore it is impossible to test all interpretations to see if they model
a given ontology, and impossible to test all models of an ontology to see if they entail
a given axiom. Rather, one has to devise concrete deduction procedures and prove their
correctness with respect to the above specification. The interplay of certain expressive
features can make reasoning algorithms more complicated and in some cases it can even
be shown that no correct and terminating algorithm exists atall (i.e., that reasoning is
undecidable). For our purposes it suffices to know that entailment of axioms is decidable
for SROIQ (with the structural restrictions explained in Section 3) and that a number of
free and commercial tools are available. Such tools are typically optimised for more spe-
cific reasoning problems, such as consistency checking, theentailment of concept sub-
sumptions (subsumption checking) or of concept assertions(instance checking). Many
of these standard inferencing problems can be expressed in terms of each other, so they
can be handled by very similar reasoning algorithms.

5. Important Fragments of SROIQ

Many different description logics have been introduced in the literature. Typically, they
can be characterised by the types of constructors and axiomsthat they allow, which are
often a subset of the constructors inSROIQ. For example, the description logicALC
is the fragment ofSROIQ that allows no RBox axioms and only⊓, ⊔, ¬, ∃ and∀ as its
concept constructors. It is often considered the most basicDL. The extension ofALC
with transitive roles is traditionally denoted by the letter S. Some other letters used in
DL names hint at a particular constructor, such as inverse rolesI, nominalsO, qualified
number restrictionsQ, and role hierarchies (role inclusion axioms without composition)
H . So, for example, the DL namedALCHIQ extendsALC with role hierarchies,
inverse roles and qualified number restrictions. The letterR most commonly refers to
the presence of role inclusions, local reflexivitySelf, and the universal roleU, as well as
the additional role characteristics of transitivity, symmetry, asymmetry, role disjointness,
reflexivity, and irreflexivity. This naming scheme explainsthe nameSROIQ.

In recent years, fragments of DLs have been specifically developed in order to ob-
tain favourable computational properties. For this purpose,ALC is already too large,

12

since it only admits reasoning algorithms that run in worst-case exponential time. More
light-weight DLs can be obtained by further restricting expressivity, while at the same
time a number of additionalSROIQ features can be added without loosing the good
computational properties. The three main approaches for obtaining light-weight DLs are
EL, DLP andDL-Lite, which also correspond to language fragments OWL EL, OWL RL
and OWL QL of the Web Ontology Language.

TheEL family of description logics is characterised by allowing unlimited use of
existential quantifiers and concept intersection. The original description logicEL allows
only those features and⊤ but no unions, complements or universal quantifiers, and no
RBox axioms. Further extensions of this language are known as EL+ andEL++. The
largest such extension allows the constructors⊓, ⊤, ⊥, ∃, Self, nominals and the univer-
sal role, and it supports all types of axioms other than role symmetry, asymmetry and
irreflexivity. Interestingly, all standard reasoning tasks for this DL can still be solved in
worst-case polynomial time. One can even drop the structural restriction of regularity
that is important forSROIQ. EL-type ontologies have been used to model large but
light-weight ontologies that consist mainly of terminological data, in particular in the
life sciences. A number of reasoners are specifically optimised for handlingEL-type
ontologies, the most recent of which is the ELK reasoner for OWL EL.5

DLP is short forDescription Logic Programsand comprises various DLs that are
syntactically restricted in such a way that axioms could also be read as rules in first-order
Horn logic without function symbols. Due to this, DLP-type logics can be considered as
kinds of rule languages (hence the name OWL RL) contained in DLs. To accomplish this,
one has to allow different syntactic forms for subconcepts and superconcepts inconcept
inclusion axioms. We do not provide the details here. While DLs in general may require
us to consider domain elements that are not denoted by individual names, for DLP one
can always restrict attention to models in which all domain elements are denoted by
individual names. This is why DLP is often used to augment databases (interpreted as
sets of ABox axioms), e.g., in an implementation of OWL RL in the Oracle 11g database
management system.

DL-Lite is a family of DLs that is also used in combination with large data collec-
tions and existing databases, in particular to augment the expressivity of a query lan-
guage that retrieves such data. This approach, known as Ontology Based Data Access,
considers ontologies as a language for constructingviewsor mapping ruleson top of
existing data. The core feature of DL-Lite is that data access can be realised with stan-
dard query languages such as SQL that are not aware of the DL semantics. Ontological
information is merely used in a query preprocessing step. Like DLP, DL-Lite requires
different syntactic restrictions for subconcepts and superconcepts. We do not present the
details here.

6. Relationship to OWL

TheWeb Ontology LanguageOWL is a knowledge representation language standardised
by the World Wide Web Consortium (W3C). OWL is one of the most important appli-
cations of description logics today. In this section, we briefly outline the relationship of
the two languages. A comprehensive treatment is beyond the scope of this paper; see

5http://elk-reasoner.googlecode.com/

13

http://elk-reasoner.googlecode.com/

Section 7 for pointers to further reading. The current version of the OWL specification is
OWL 2 as standardised in 2009. This supersedes the earlier OWL 1 standard of 2004.

The main building blocks of OWL are indeed very similar to those of DLs, with
the main difference that concepts are calledclassesand roles are calledproperties. It is
therefore not surprising that description logics have had amajor influence on the devel-
opment of OWL and the expressive features that it provides. Historically, however, OWL
has also been conceived as an extension to RDF, a Web data modelling language whose
expressivity is comparable to DL ABoxes. The formal semantics of RDF is subtly differ-
ent from that of DLs, even though both lead to the same consequences in many common
cases. Extending the RDF semantics to the expressive features of OWL improves the
compatibility between the two, but it also makes reasoning undecidable. Therefore, it has
been decided to specify both styles of formal semantics for OWL: the Direct Semantics
based on DLs and theRDF-based Semantics.

In this section, we are therefore mainly interested in the Direct Semantics of OWL.
This semantics is only defined for OWL ontologies that abide by certain syntactic re-
strictions (essentially the restriction that the OWL axioms can be read asSROIQ ax-
ioms for which the structural restrictions of Section 3 are satisfied). This syntactic frag-
ment of OWL is calledOWL DL.6 Under the Direct Semantics, large parts of OWL DL
can indeed be considered as a syntactic variant ofSROIQ. For example, the axiom
Mother ≡ Female ⊓ Parent would be written as follows in OWL:

EquivalentClasses(Mother ObjectIntersectionOf(Female Parent))

where the symbolsMother, Female andParent would be identifier strings that conform
to the OWL specification.7 The above example illustrates the close relationship between
the syntax ofSROIQ and that of OWL. In many cases, it is indeed enough to translate
an operator symbol ofSROIQ into the corresponding operator name in OWL, which is
then written in prefix notation like a function. This is also why the above form of syntax
is calledFunctional-Style Syntax. The OWL standard provides a number of syntactic
forms that can be used to express OWL ontologies. The most prominent among these
is the RDF/XML serialisation since it is the only format that all conforming OWL tools
need to understand. On the other hand, it is more difficult for humans to read and we do
not present it here.

It is interesting to note that there are still a few differences between OWL DL under
the Direct Semantics andSROIQ. On a syntactic level, OWL provides a lot more oper-
ators that, though logically redundant, can be convenient as shortcuts for compound DL
axioms. For example, OWL has special constructs for specifying domain and range of
a property, even though these could equally well be expressed as in Section 2.2. These
kinds of features also include the empty (bottom) property,which can easily be defined
but is not included as a language feature in DLs.

However, OWL also includes some expressive features that wedid not include in
our treatment ofSROIQ above. Most notably, this includes support for datatypes and
datatype literals. These behave like classes and individual names but come with a fixed,

6In contrast, the OWL language without any syntactic constraints is calledOWL Full. It comprises ontologies
that can only be interpreted under the RDF-based Semantics.

7Entity names in OWL are generally based on Uniform Resource Identifiers (URIs). The details are not
relevant here.

14

pre-defined interpretation. For example, the datatype for Boolean values has exactly two
elements – true and false – in any interpretation. This can also be introduced in DLs
by so-calledconcrete domains, i.e., pre-defined interpretation domains. Both DLs and
OWL in this case strictly distinguish roles/properties that relate to “abstract” individuals
from those that relate to values from some datatype. In OWL, the constructs that relate to
datatypes include “Data” in their name while constructs that relate to abstract individu-
als include “Object.” For example, OWL distinguishesObjectIntersectionOf (used
above) fromDataIntersectionOf (the intersection of datatypes).

The only other logical feature that is missing in DLs are so-calledKeys. These are
special forms of rules that can be used for data integration.Roughly speaking, a key spec-
ifies that two named individuals are entailed to be equal if they agree on certain property
values and class memberships, similar to key constraints indatabases. For example, the
combination of nationality and registration number might be treated as a key for (i.e.,
sufficient to uniquely identify) motor vehicles.

Besides the logical features, OWL also includes a number of other aspects that are
not considered in description logics at all. For example, itincludes means of naming
an ontology and of importing ontological axioms from one ontology into another. Fur-
ther extra-logical features include a simple form ofmeta-modellingcalledpunning, non-
logical axioms todeclareidentifiers, and the possibility to addannotationsto arbitrary
axioms and entities similar to comments in a programming language.

7. Further Reading

This paper can only provide a first introduction to description logics and OWL. Further
details, especially regarding formal semantics and modelling, can be found in the exten-
sive lecture notes for the courseFoundations of Description Logics, given at theReason-
ing Web Summer School 2011[11]. For a more detailed coverage of OWL and its relation-
ship to DL, we recommend the textbookFoundations of Semantic Web Technologies[7].
This introductory text also treats the relationship of DLs to first-order logic, DL query
answering and extensions for rule-based modelling (related to keys in OWL), which we
have omitted here. An in-depth treatment of description logics and related research topics
is provided by theDescription Logic Handbook, which also covers interesting aspects
of deduction algorithms and computational complexity thatare beyond the scope of this
paper [2].

A number of research papers focus on specific topics in DLs. Closely related to
this paper is the original article onSROIQ that also provides the details on regularity
conditions that have been skipped above [8]. There are also various works that focus on
EL [1,9], DLP [5] and DL-Lite [3]. Current developments in DL research are discussed at
the annual DL Workshop (see http://dl.kr.org/ for proceedings) and at the major Semantic
Web and Artificial Intelligence conferences.

The primary resource on OWL 2 are the online documents of the specification [10]
where the OWL Primer provides a first introduction [6]. The differences of the 2009
OWL 2 standard to its predecessor are explained in [4].

Many related tools such as reasoners and ontology editors are available. The most
popular free ontology editor is Protégé,8 which can be used with a variety of OWL rea-

8http://protege.stanford.edu/

15

http://www.aifb.kit.edu/web/Incollection3026/en
http://www.semantic-web-book.org/
http://dl.kr.org/
http://protege.stanford.edu/

soners. Pointers to current OWL reasoners are best found online.9 Popular systems for
large parts of OWL 2 DL (SROIQ) include FaCT++, HermiT, Pellet and RacerPro.
Some typical light-weight systems are ELK (OWL EL), jCEL (OWL EL), Owlgress
(OWL QL), OWLIM (OWL RL and QL), Quonto (OWL QL) and Snorocket(OWL EL).
Details about these tools and related publications can be found on the respective home-
pages.

References

[1] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing theEL envelope. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors,Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), pages
364–369. Professional Book Center, 2005.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edition, 2007.

[3] Diego Calvanese, Guiseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Auto-
mated Reasoning, 39(3):385–429, 2007.

[4] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and Ulrike Sat-
tler. OWL 2: The next step for OWL.J. of Web Semantics, 6:309–322, 2008.

[5] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic programs: com-
bining logic programs with description logic. InProc. 12th Int. Conf. on World Wide Web (WWW’03),
pages 48–57. ACM, 2003.

[6] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F.Patel-Schneider, and Sebastian Rudolph, editors.
OWL 2 Web Ontology Language: Primer. W3C Recommendation, 27 October 2009. Available at
http://www.w3.org/TR/owl2-primer/.

[7] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009.

[8] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistibleSROIQ. In Patrick Doherty,
John Mylopoulos, and Christopher A. Welty, editors,Proc. 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’06), pages 57–67. AAAI Press, 2006.

[9] Markus Krötzsch. Efficient rule-based inferencing for OWL EL. In Toby Walsh, editor, Proc. 22nd Int.
Conf. on Artificial Intelligence (IJCAI’11), pages 2668–2673. AAAI Press/IJCAI, 2011.

[10] W3C OWL Working Group.OWL 2 Web Ontology Language: Document Overview. W3C Recommen-
dation, 27 October 2009. Available at http://www.w3.org/TR/owl2-overview/.

[11] Sebastian Rudolph. Foundations of description logics. In Axel Polleres, Claudia d’Amato, Marcelo
Arenas, Siegfried Handschuh, Paula Kroner, Sascha Ossowski, and Peter F. Patel-Schneider, editors,
Reasoning Web. Semantic Technologies for the Web of Data – 7th International Summer School 2011,
volume 6848 ofLNCS, pages 76–136. Springer, 2011.

[12] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. All elephants are bigger than all mice. In
Franz Baader, Carsten Lutz, and Boris Motik, editors,Proc. 21st Int. Workshop on Description Logics
(DL’08), volume 353 ofCEUR Workshop Proceedings. CEUR-WS.org, 2008.

[13] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Cheap Boolean role constructors for descrip-
tion logics. In Steffen Hölldobler, Carsten Lutz, and Heinrich Wansing, editors, Proc. 11th European
Conf. on Logics in Artificial Intelligence (JELIA’08), volume 5293 ofLNAI, pages 362–374. Springer,
2008.

9A list of reasoners can be found, e.g., at http://semanticweb.org/wiki /Category:Reasoner.

16

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-overview/
http://semanticweb.org/wiki/Category:Reasoner

