
•1

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester1

Protégé-OWL Tutorial

Session 2: Defined Classes

Nick Drummond

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester2

This session

► Issue: Primitive Classes & Polyhierarchies

►Advanced: Creating Defined Classes

►Reasoner: Classifying

►Union Classes: Covering Axioms

►Example: Creating a Vegetarian Pizza

► Issue: Open World Assumption

►Union Classes: Closure

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester3

Loading OWL files from
scratch

1. If you’ve only got an
OWL file:
Select “OWL Files” as the
Project Format, then “Build”
to select the .owl file

2. If you’ve got a valid project file*:
Select “OWL Files” as the Project Format, and then “Open Other” to find
the .pprj file (if you’ve already opened it, it will be in “Open Recent”)

3. Open C:\Protégé_3.0_beta\examples\pizzas\pizzas2_0.owl

* Ie one created on this version of Protégé - the s/w gets updated once every few
days, so don’t count on it unless you’ve created it recently– safest to build from the
.owl file if in doubt

Run Protégé.exe

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester4

Primitive Classes

►All classes in our ontology so far are Primitive
►We describe primitive pizzas
►Primitive Class = only Necessary Conditions
►They are marked as yellow in the class hierarchy

We condone
building a
disjoint tree of
primitive
classes

•2

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester5

Describing Primitive Pizza
Classes

1. Create a new pizza under NamedPizza
either choose from the menu or make it up

2. Create a new Existential (SomeValuesFrom) Restriction with the
hasTopping property and a filler from PizzaTopping (eg
HamTopping)

3. Add more Restrictions in the same way to complete the
description
each restriction is added to an intersection –

so a Pizza must have toppingA and must have toppingB etc
see MargheritaPizza for an example

4. Create another pizza that has at least one meat ingredient
remember disjoints

Start with pizzas2_0.owl

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester6

Polyhierarchies

►By the end of this tutorial we intent to create a
VegetarianPizza

►Some of our existing Pizzas should be types of
VegetarianPizza

►However, they could also be types of SpicyPizza or
CheeseLoversPizza

►We need to be able to give them multiple parents

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester7

Vegetarian Pizza attempt 1

1. Create a new pizza called
“VegetarianPizza” under Pizza
make this disjoint from its siblings as we have been doing

2. Select MargheritaPizza
you will notice that it only has a single parent, NamedPizza

3. Add VegetarianPizza as a new parent using the
conditions widget “Add Named Class” button

we have asserted that MargheritaPizza has 2 parents

Start with pizzas2_1.owl

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester8

Reasoning about our Pizzas

1. Start RACER
2. Classify your ontology

You will see an inferred hierarchy appear, which
will show any movement of classes in the
hierarchy

You will also see a results window appear at the
bottom of the screen which describes the results
of the reasoner

Start with your existing ontology

MargheritaPizza turns out to be
inconsistent – why?

Remember MeatyVegetableTopping?

•3

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester9

Attempting again

1. Remove the disjoint
between VegetarianPizza and its siblings
When prompted, choose to remove only between this class and its
siblings

2. Re-Classify your ontology
This should now be accepted by the reasoner with no inconsistencies

Close the inferred hierarchy and results

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester10

Asserted Polyhierarchies

► We believe asserting polyhierarchies is bad

let the reasoner do it!

► We lose some encapsulation of knowledge
► Difficult to maintain

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester11

Defined Classes

►Have a definition. That is at least one
Necessary and Sufficient condition

►Are marked in orange in the interface
►Classes, all of whose individuals satisfy this

definition, can be inferred to be subclasses
►Reasoners can perform this inference

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester12

Describing a MeatyPizza

1. Create a subclass of Pizza called MeatyPizza
Don’t put in the disjoints or you’ll get the same problems as before
In general, defined classes are not disjoint from siblings

2. Add a restriction to say:
“Every MeatyPizza must have at least one
meat topping”

3. Classify your ontology
What happens?

Start with your existing ontology, close the reasoner panes

•4

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester13

Defining a MeatyPizza

1. Click and drag your ∃ hasTopping MeatTopping restriction from
“Necessary” to “Necessary & Sufficient”
The MeatyPizza class now turns orange, denoting that it is now a defined class

2. Click and drag the Pizza Superclass from “Necessary” to
“Necessary & Sufficient”

Make sure when you release you are on top of the existing restriction otherwise
you will get 2 sets of conditions.

You should have a single orange icon on the right stretching across both
conditions like this…

3. Classify your ontology
What happens?

Start with your existing ontology, close the reasoner panes

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester14

Reasoner Classification

►The reasoner has been able to infer that anything
that is a Pizza that has at least one topping from
MeatTopping is a MeatyPizza

►Therefore, classes fitting
this definition are found to
be subclasses of
MeatyPizza, or are
subsumed by MeatyPizza

►The inferred hierarchy is
updated to reflect this and
moved classes are
highlighted in blue

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester15

Viewing our Hierarchy
Graphically

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester16

OWLViz Tab

View Inferred ModelView Asserted Model

Polyhierarchy
tangle

•5

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester17

How do we Define a
Vegetarian Pizza?

►Nasty

►Define in words?
► “a pizza with only vegetarian toppings”?

► “a pizza with no meat (or fish) toppings”?

► “a pizza that is not a MeatyPizza”?

►More than one way to model this

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester18

Defining a Vegetarian
Topping

1. Create a subclass of PizzaTopping
called VegetarianTopping

2. Click “Create New Expression” in the Conditions Widget
Type in or select each of the top level PizzaToppings that are
not meat or fish (ie DairyTopping, FruitTopping etc) and
between each, type the word “or”
the “or” will be translated into a union symbol

3. Press Return when finished
you have created an anonymous class described by the expression

4. Make this a defined class by moving both conditions from the
“Necessary” to the “Necessary & Sufficient” conditions

5. Classify your ontology

Start with your existing ontology

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester19

►AKA “disjunction”

►This OR That OR TheOther

► (This That TheOther)

►Set theory

►Commonly used for:
►Covering axioms (like VegetarianTopping)

►Closure

Class Constructors: Union

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester20

Covering Axioms

► Covered class – that to which the condition is added
► Covering classes – those in the union expression
► A covering axiom in the “Necessary & Sufficient” Conditions

means:
the covered class cannot contain any instances from a class
other than one of the covering classes

Gender ≡ Female Male

In this example, the class Gender is “covered”
by Male or Female
All individuals in Gender must be individuals
from Male or Female
There are no other types of Gender

Gender

Male
Female

•6

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester21

Vegetarian Pizza attempt 2

1. Select MargheritaPizza and remove
VegetarianPizza from its superclasses

2. Select VegetarianPizza and create a restriction to say that it
“only has toppings from VegetarianTopping”

3. Make this a defined class by moving all conditions from
“Necessary” to “Necessary & Sufficient”
Make sure when you release you are on top of the existing restriction otherwise
you will get 2 sets of conditions.
You should have a single orange icon on the right stretching across both
conditions

4. Classify your ontology
What happens?

Start with your existing ontology

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester22

Open World Assumption

►The reasoner does not have enough information to
classify pizzas under VegetarianPizza

►Typically several Existential restrictions on a single
property with different fillers – like primitive pizzas

►Existential should be paraphrased by “amongst
other things…”

►Must state that a description is complete

►We need closure for the given property

►This is in the form of a Universal Restriction with a
Union of the other fillers using that property

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester23

Closure

►Example: MargheritaPizza

All MargheritaPizzas must have:

at least 1 topping from MozzarellaTopping and

at least 1 topping from TomatoTopping and

only toppings from MozzarellaTopping or TomatoTopping

►The last part is paraphrased into

“no other toppings”

►The union closes the hasTopping property on
MargheritaPizza

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester24

Closing Pizza Descriptions

1. Select MargheritaPizza
2. Create a Universal Restriction on the hasTopping

property with a filler of “TomatoTopping
MozzarellaTopping”
Remember, you can type “or” to achieve this, or you can use the
expression palette

3. Close your other pizzas
Each time you need to create a filler with the union of all the classes
used on the hasTopping property (ie all the toppings used on that pizza)

4. Classify your ontology
Finally, the defined class VegetarianPizza should subsume any classes
that only have vegetarian toppings

Start with your existing ontology

•7

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester25

Other Definitions of Veggie
Pizzas

1. Create a VegetarianPizza2
2. Create a new class expression ”not MeatyPizza”

You can type “not” to achieve this, or you can use the expression palette

3. Convert this class to a defined class
Move both Pizza and NOT MeatyPizza to the necessary & sufficient
conditions

4. Classify your ontology
Finally, the defined class VegetarianPizza2 should subsume any
classes that are not MeatyPizzas

Start with your existing ontology

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester26

Other Definitions of Veggie
Pizzas

1. Create a VegetarianPizza3
2. Create a restriction to state that it has some

MeatTopping
3. Negate this by editing the class expression (double

click on it)
4. Convert this class to a defined class
5. Classify your ontology

Start with your existing ontology

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester27

Other Definitions of Veggie
Pizzas

1. Create a VegetarianPizza4
2. Create a universal restriction on the hasTopping

property with a a filler of “NOT MeatTopping”
3. Convert this class to a defined class
4. Classify your ontology
5. Note that this is an equivalent class to the previous

definition of VegetarianPizza
– “∀ hasTopping NOT meat”
– “NOT ∃ hasTopping meat”

Start with your existing ontology

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester28

Properties: Domain and
Range

1. Add a domain of Pizza to hasTopping
2. Create a class Icecream under DomainConcept
3. Create a restriction to state that Icecream has at least

one topping from CheeseTopping (yuk!)
4. Classify your ontology
5. What has happened to Icecream?
6. Make sure Icecream is disjoint to its siblings and

reclassify

Start with your existing ontology

•8

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester29

Properties: Domain and
Range

► Domain and Range are not used to restrict the interface

► They are used by the reasoner to infer additional information
about individuals

► An individual that uses a property with a domain set can be
inferred to be a member of the domain class (the same holds
for range)

► Classes that uses a property with a domain set in an
existential restriction will be inferred to be a subclass of the
domain class (or inconsistant if these classes are disjoint)
- the same does not apply to range.
This is because all individuals in this class must have at least one relationship
using this property

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester30

Properties: Functional
Properties

1. Make hasTopping functional
2. Classify your ontology – what happens?
3. Undo your change to hasTopping, but make hasBase

functional

Start with your existing ontology

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester31

Other Exercises:
Create an InterestingPizza

1. Create a class, InterestingPizza under Pizza
2. Create a minCardinality restriction for

hasTopping with a value of 3
3. Convert to a defined class
4. Classify to check that it works – you may need

to add some more pizzas

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester32

Other Exercises:
Define RealItalianPizza

• Convert RealItalianPizza to a defined class
• Add information to your pizzas to allow some

of them to classify under this one
• Classify

remember to check your disjoint if you have problems

•9

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester33

Other Exercises

►Add FishTopping to PizzaToppings, and correct
your vegetarian pizzas to use “MeatTopping OR
FishTopping”

►Create other PizzaToppings

►Create other Pizzas from the menu and check that
they classify correctly

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester34

Summary

You should now be able to:

► Use Defined Classes to allow a polyhierarchy to be computed

► Classify using a Reasoner

► Create Covering Axioms

► Close Class Descriptions to cope with Open World Reasoning

► Appreciate that there can be several ways to model a class
(some of which are exactly equivalent)

► Understand the effects of using domain and range on
properties

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester35

Your Pizza Finder

►Once you have a pizza ontology you are happy
with, you can “plug it in” to the PizzaFinder

► Instructions available on line at…

2nd Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester36

The Software

►Protégé is Free

►The OWL Plugin is Open Source

►Many plugins are available from
scripting to visualisation

►Software / resources / community at:
►http://protege.stanford.edu/

►http://www.co-ode.org/

