Chapter 4
OWL

Based on slides from Grigoris Antoniou and Frank van Harmelen

Outline

1. A bit of history

o a0 &~ W DN

Basic ldeas of OWL
The OWL Language
Examples

The OWL Namespace
OWL 2

The OWL Family Tree

Logic Programming

SHOE

DAML

RDF/RDF(S) v DAML-ONT
Joint EU/US Committee
‘ DAML+OIL
Frames A OIL
/ OntoKnowledge+Others

Description
Logic

A Brief History of OWL: SHOE

e Simple HTML Ontology Extensions

e Sean Luke, Lee Spector, and David Rager, 1996

SHOE allows World-Wide Web authors to annotate their
pages with ontology-based knowledge about page
contents. We present examples showing how the use of
SHOE can support a new generation of knowledge-
based search and knowledge discovery tools that

operate on the World-Wide Web.

e Supported adding “semantic” tags defined in an
ontology plus prolog-like rules to web pages.

A Brief History of OWL: SHOE

<META HTTP-EQUIV="Instance-Key" CONTENT="http://
www.cs.umd.edu/~george"> <USE-ONTOLOGY "our-ontology"
VERSION="1.0" PREFIX="our" URL="http://ont.org/our-ont.htm|">

<CATEGORY "our.Person">

<RELATION "our.firstName" TO="George">

<RELATION "our.lastName" TO="Cook">

<RELATION "our.marriedTo" TO="http://www.cs.umd.edu/~helena">
<RELATION "our.employee" FROM="http://www.cs.umd.edu">

A Brief History of OWL: OIL

e Developed by group of (largely) European
researchers (several from EU OntoKnowledge
project)

e Based on frame-based language

e Strong emphasis on formal rigour

e Semantics in terms of Description Logics

e RDFS based syntax

A Brief History of OWL: DAML-ONT

e Developed by DARPA DAML Program

— Largely US based researchers

e Extended RDFS with constructors from OO and
frame-based languages

e Rather weak semantic specification
- Problems with machine interpretation
- Problems with human interpretation

A Brief History of OWL: DAML+OIL

e Merging of DAML-ONT and OIL
e Basically a DL with an RDFS-based syntax

e Development was carried out by “Joint EU/US
Committee on Agent Markup Languages”

e Extends ("DL subset” of) RDF

e Submitted to W3C as basis for standardisation
- Web-Ontology (WebOnt)

Working Group formed j@:ﬂ

A Brief History of OWL: OWL

e \W3C Recommendation (February 2004)

e Based largely on the March 2001 DAML+OIL
specification

e Well defined RDF/XML serializations

e Formal semantics

— First Order
- Relationship with RDF

e Comprehensive test cases for
tools/implementations
e Growing industrial take up.

OWL 2

e |Is an extension of OWL

- Addresses deficiencies identified by users and
developers (at OWLED workshop)

e Is based on more expressive DL: SROIQ
- OWL is based on SHOIN

e W3C working group chartered

— http://www.w3.0rq/2007/OWL/wiki/
OWL Working Group

- Became a W3C recommendation October
2009

e Supported by popular OWL tools
- Protege, TopBraid, FaCT++, Pellet

1

2
3
4
S
6

Outline

. A bit of history

. Basic ldeas of OWL

. The OWL Language

. Examples

. The OWL Namespace
. OWL 2

Requirements for Ontology Languages

e Ontology languages allow users to write
explicit, formal conceptualizations of domain
models

e The main requirements are:
— a well-defined syntax
— efficient reasoning support
- a formal semantics
- sufficient expressive power
— convenience of expression

Expressive Power vs Efficient Reasoning

e There is always a tradeoff between expressive
power and efficient reasoning support

e The richer the language is, the more inefficient
the reasoning support becomes

e Sometimes it crosses the noncomputability
border

e \We need a compromise:

- A language supported by reasonably efficient
reasoners

—- A language that can express large classes of
ontologies and knowledge.

Kinds of Reasoning about Knowledge

Class membership

- If xis an instance of a class C, and C is a subclass of D, then we
can infer that x is an instance of D

Equivalence of classes

— If class A is equivalent to class B, and class B is equivalent to
class C, then A is equivalent to C, too

Consistency
- Xinstance of classes A and B, but A and B are disjoint
- This is an indication of an error in the ontology

Classification

— Certain property-value pairs are a sufficient condition for
membership in a class A; if an individual x satisfies such
conditions, we can conclude that x must be an instance of A

Uses for Reasoning

e Reasoning support is important for

- checking the consistency of the ontology and the
knowledge

— checking for unintended relationships between classes
- automatically classifying instances in classes
e Checks like these are valuable for

- designing large ontologies, where multiple authors are
iInvolved

— integrating and sharing ontologies from various
sources

Reasoning Support for OWL

e Semantics is a prerequisite for reasoning support

e Formal semantics and reasoning support are
usually provided by

- mapping an ontology language to a known logical
formalism

- using automated reasoners that already exist for those
formalisms
e OWL is (partially) mapped on a description logic,
and makes use of reasoners such as FaCT,
RACER and Pellet

e Description logics are a subset of predicate logic
for which efficient reasoning support is possible

RDFS’s Expressive Power Limitations

e Local scope of properties

- rdfs:range defines the range of a property
(e.g. eats) for all classes

- In RDF Schema we cannot declare range
restrictions that apply to some classes only

- E.g. we cannot say that cows eat only plants,
while other animals may eat meat, too

RDFS’s Expressive Power Limitations

e Disjointness of classes

- Sometimes we wish to say that classes are
disjoint (e.g. male and female)

e Boolean combinations of classes

- Sometimes we wish to build new classes by
combining other classes using union,

Intersection, and complement

- E.g. person is the disjoint union of the classes
male and female

RDFS’s Expressive Power Limitations

e Cardinality restrictions

- E.g. a person has exactly two parents, a
course is taught by at least one lecturer

e Special characteristics of properties
- Transitive property (like “greater than”)
— Unique property (like “is mother of”)

— A property is the inverse of another property
(like “eats” and “is eaten by")

Combining OWL with RDF Schema

e |deally, OWL would extend RDF Schema

- Consistent with the layered architecture of the
Semantic Web

e But simply extending RDF Schema would
work against obtaining expressive power
and efficient reasoning

-~ Combining RDF Schema with logic leads to
uncontrollable computational properties

Three Species of OWL

e W3C’sWeb Ontology Working Group
defined OWL as three different
sublanguages:

- OWL Full
- OWL DL
- OWL Lite

e Each sublanguage geared toward fulfilling
different aspects of requirements

OWL Full

e It uses all the OWL languages primitives

e |t allows the combination of these
primitives in arbitrary ways with RDF and
RDF Schema

e OWL Full is fully upward-compatible with
RDF, both syntactically and semantically

e OWL Full is so powerful that it's
undecidable

- No complete (or efficient) reasoning support

Soundness and completeness

e A sound reasoner only makes conclusions that
logically follow from the input, i.e., all of it's
conclusions are correct
- We almost always require our reasoners to be sound

e A complete reasoner can make all of the
conclusions that logically follow from the input

- We can not guarantee complete reasoners for full FOL
and many subsets

OWL DL

e OWL DL (Description Logic) is a sublanguage of
OWL Full that restricts application of the
constructors from OWL and RDF

- Application of OWL’s constructors’ to each other is
disallowed

- Therefore it corresponds to a well studied description
logic
e OWL DL permits efficient reasoning support

e But we lose full compatibility with RDF:

— Not every RDF document is a legal OWL DL
document.

—- Every legal OWL DL document is a legal RDF
document.

OWL Lite

e An even further restriction limits OWL DL to a
subset of the language constructors

- E.g., OWL Lite excludes enumerated classes,
disjointness statements, and arbitrary cardinality.

e The advantage of this is a language that is
easier to
- grasp, for users
— implement, for tool builders

e The disadvantage is restricted expressivity

Upward Compatibility for OWL Species

e Every legal OWL Lite ontology is a legal OWL
DL ontology

e Every legal OWL DL ontology is a legal OWL
Full ontology

e Every valid OWL Lite conclusion is a valid OWL
DL conclusion

e Every valid OWL DL conclusion is a valid OWL
Full conclusion

OWL Compatibility with RDF Schema

rdf:Property

owl:ObjectProperty owl:DatatypeProperty

e All varieties of OWL
use RDF for their
syntax

e Instances are declared

as in RDF, using RDF
descriptions

e and typing information
OWL constructors are
specialisations of their

RDF counterparts

OWL Compatibility with RDF Schema

e Semantic Web design aims at downward
compatibility with corresponding reuse of
software across the various layers

e The advantage of full downward
compatibility for OWL is only achieved for
OWL Full, at the cost of computational
intractability

1

2
3
4
S
6

Outline

. A bit of history

. Basic ldeas of OWL

. The OWL Language

. Examples

. The OWL Namespace
. Future Extensions

OWL Syntactic Varieties

OWL builds on RDF and uses RDF’'s XML-
based syntax

Other syntactic forms for OWL have also been
defined:

-~ An alternative, more readable XML-based
syntax

— An abstract syntax, that is much more
compact and readable than the XML
languages

— A graphic syntax based on the conventions of
UML

OWL XML/RDF Syntax: Header

<rdf:RDF
xmins:owl ="http://www.w3.0rg/2002/07/owl#"
xmins:rdf ="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmins:xsd ="http://www.w3.0rg/2001/ XLMSchema#">

e OWL documents are RDF documents
e and start with a typical declaration of namespaces

e The W3C recommendation for owl has the namespace
http://www.w3.0rg/2002/07/owl#"

owl:Ontology

<owl:Ontology rdf:about="">
<rdfs:comment>Example OWL ontology</rdfs:comment>
<owl:priorVersion rdf.resource="http://www.-
mydomain.org/uni-ns-old"/>

<owl:imports rdf:resource="http://www.-mydomain.org/-
persons"/>

<rdfs:label>University Ontology</rdfs:label>
</owl:Ontology>

e owl:imports, a transitive property, indicates that the
document commits to all of the terms as defined in its target

e owl:priorVersion points to an earlier version of this
document

OWL Classes

<owl:Class rdf:about="#associateProfessor">

<owl.disjointWith rdf.resource="#professor"/>

<owl:disjointWith
rdf:resource="#assistantProfessor"/>

</owl:Class>

eClasses are defined using owl:Class
— owl:Class is a subclass of rdfs:Class

eOwl:Class is disjoint with datatypes (aka literals)

eDisjointness is defined using owl:disjointWith
— Two disjoint classes are can share no instances

Separate Objects & Datatypes?

e Philosophical reasons:
— Datatypes structured by built-in predicates
- Not appropriate to form new datatypes using ontology
language
e Practical reasons:
- Note: Java does this, distinguishing classes from primitive datatypes
- Ontology language remains simple and compact
- Semantic integrity of ontology language not compromised
— Implementability not compromised — can use hybrid reasoner
eOnly need sound and complete decision procedure for:
d.A...Ad 6 wheredis a (possibly negated) datatype

OWL Classes

<owl:Class rdf:ID="faculty">
<owl:equivalentClass rdf:resource="#academicStaffMember"/>
</owl:Class>

eowl:equivalentClass defines equivalence of
classes

eowl:Thing is the most general class, which contains
everything

— i.e., every owl class is rdfs:subClassOf owl:Thing
eowl:Nothing is the empty class

— i.e., owl:NoThing is rdf:subClassOf every owl class

OWL Properties

e In OWL there are two kinds of properties

e Object properties relate objects to other objects
- owl:DatatypeProperty
- E.g. is-TaughtBy, supervises

e Data type properties relate objects to datatype
values

— owl:ObjectProperty
- E.g. phone, title, age, etc.

e [hese were made separate to make it easier to
create sound and complete reaonsers

Datatype Properties

e OWL uses XML Schema data types, exploiting the
layered architecture of the Semantic Web

<owl:DatatypeProperty rdf:ID="age">
<rdfs:range rdf:resource= "http://www.w3.org/
2001/ XLMSchema#nonNegativelnteger"/>

<rdfs:domain rdf:resource="foaf:Person">
</owl:DatatypeProperty>

OWL Object Properties

e Typically user-defined data types

<owl:ObjectProperty rdf:ID="isTaughtBy">
<rdfs:domain rdf:resource="#course"/>

<rdfs:range rdf.resource=
"#academicStaffMember"/>

<rdfs:subPropertyOf rdf.:resource="#involves"/>
</owl:ObjectProperty>

Inverse Properties

<owl:ObjectProperty rdf:ID="teaches">
<rdfs:range rdf.resource="#course"/>
<rdfs:domain rdf:resource= "#academicStaffMember"/>
<owl:inverseOf rdf.resource="#isTaughtBy"/>
</owl:ObjectProperty>

A partial list of axioms:

owl:inverseOf rdfs:domain owl:ObjectProperty;
rdfs:range owl:ObjectProperty;
a owl:SymmetricProperty.

{?P @has owl:inverseOf ?Q. ?S ?P ?0} => {?0 ?Q ?S}.
{?P owl:iinverseOf ?Q. ?P @has rdfs:domain ?C} => {?Q rdfs:range ?C}.
{?A owl:inverseOf ?C. ?B owl:inverseOf ?C} => {?A rdfs:subPropertyOf ?B}.

Equivalent Properties

<owl:equivalentProperty
<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty rdf.-resource="#teaches"/>
</owl:ObjectProperty>

e Two properties have the same property extension

e AXioms

{?A rdfs:subPropertyOf ?B. ?B rdfs:subPropertyOf ?A}
<=> {?A owl.equivalentProperty ?B}.

Property Restrictions

e In OWL we can declare that the class C satisfies
certain conditions

— All instances of C satisfy the conditions
e This is equivalent to saying that C is subclass of a

class C', where C collects all objects that satisfy
the conditions

- C' can remain anonymous
e Example:

- People whose sex is male and have at least one child
whose sex is female and whose age is six

— Things with exactly two arms and two legs

Property Restrictions

e [he owl:Restriction element describes such a
class

e This element contains an owl:onProperty element
and one or more restriction declarations

e One type defines cardinality restrictions (at least
one, at most 3,...)

e The other type defines restrictions on the kinds of
values the property may take
- owl:allValuesFrom specifies universal quantification
- owl:hasValue specifies a specific value

- owl:someValuesFrom specifies existential
guantification

owl:allValuesFrom

e Describe a class where all of the values of a property match
some requirement

e E.g., Math courses taught by professors.

<!-- First year courses that are taught by professors -->
<owl:Class rdf:about="#firstYearCourse">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#isTaughtBy"/>
<owl:allValuesFrom rdf:resource="#Professor"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Offspring of people are people

</- The offspring of a Person is a Person -->
<rdf:Description rdf:about="foaf:Person">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="bio:offspring"/>
<owl:allValuesFrom rdf:resource="foaf:Person"/>
</owl:Restriction>
</rdfs:subClassOf>
</rdf:Description>

Literally: Person is a sub-class of things all of whose offspring
are necessatrily of type Person

{?X a foaf:Person. ?X bio:offspring 70} => {?0 a Person}

Offspring of people are people

<rdf:RDF
xmins:="http.//www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdfs="http.//www.w3.0rg/2000/01/rdf-schema#"
xmins:owl="htto://www.w3.0rg/2002/07/owi#"
xmins:foaf="http://xmins.com/foaf/0.1/"
xmins:bio="http.//example.com/bio/" >
<Description about="foaf:Person">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty resource="bio:offspring" />
<owl:allValuesFrom resource="foaf:Person"/>
</owl:Restriction>
</rdfs:subClassOf>
</Description>

And in N3

n3> cwm --rdf restriction.xml --n3

@prefix : <http://www.w3.0rg/2002/07/owl#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

<foaf:Person> a :Class;
rdfs:subClassOf |
a :Restriction;
-allValuesFrom <foaf:Person>:
.onProperty <bio:offspring>] .

#ENDS

owl:hasValue

e Describe a class with a particular value for a property
e E.g., Math courses taught by Professor Longhair

<l- Math courses taught by #949352 -
<owl:Class>
<rdfs:subClassOf>rdf:resource="#mathCourse”/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource= "#isTaughtBy"/>
<owl:hasValue rdf:resource= "#949352"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

owl:someValuesFrom

e Describe a class based on a requirement that it must have at least
one value for a property matching a description.

e E.g., Academic staff members who teach an undergraduate
course.

<owl:Class rdf:about="#academicStaffMember">
<rdfs:subClassOf>
<owl:Restriction>

</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Cardinality Restrictions

e \We can specify minimum and maximum number
using owl:minCardinality & owl:maxCardinality

— Courses with fewer than 10 students
— Courses with between 10 and 100 students
— Courses with more than 100 students
e It is possible to specify a precise number by using
the same minimum and maximum number
— Courses with exactly seven students

e For convenience, OWL offers also owl:cardinality
- E.g., exactly N

Cardinality Restrictions

e E.g. courses taught be at least two people.

<owl:Class rdf:about="#course">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:minCardinality
rdf:datatype="&xsd;nonNegativelnteger">

2
</owl:minCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

What does this say?

<owl:Class rdf:ID="Parent">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild" />
<owl:minCardinality rdf:datatype=
"&xsd;nonNegativelnteger">1</owl:minCardinality>
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>

Definition of a parent

The parent class is equivalent to the class of things
that have at least one child

All(x): Parent(x) < Exisits(y) hasChild(x, y)

If hasChild is defined as having Person as it's
domain, then Parents are also people.

Special Properties

eowl:TransitiveProperty (transitive property)
- E.g. "has better grade than”, “is ancestor of”

eowl:SymmetricProperty (symmetry)
- E.g. “has same grade as’, “is sibling of”
e owl:FunctionalProperty defines a property
that has at most one value for each object
- E.g. “age’”, “height”, “directSupervisor”
eowl:InverseFunctionalProperty defines a

property for which two different objects cannot
have the same value

Special Properties

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type rdf.:resource="&owl; TransitiveProperty"/>

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

<rdfs:domain rdf:resource="#student"/>

<rdfs:range rdf.resource="#student"/>
</owl:ObjectProperty>

Boolean Combinations

e We can combine classes using Boolean operations (union,
intersection, complement)

e Negation is introduced by the complementOf
e £.g., courses not taught be staffMembers

<owl:Class rdf:about="#course">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf.:resource="#teaches"/>
<owl:allValuesFrom>
<owl:complementOf rdf.resource="#staffMember"/>
<owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Boolean Combinations

e The new class is not a subclass of the union, but rather
equal to the union

- We have stated an equivalence of classes

e E.g., university people is the union of staffMembers and
Students

<owl:Class rdf:.ID="peopleAtUni">
<owl:unionOf rdf:parseType="Collection™>
<owl:Class rdf:about="#staffMember"/>
<owl:Class rdf:about="#student"/>
</owl:unionOf>
</owl:Class>

Boolean Combinations

e £.g9., CS faculty is the intersection of faculty and things
that belongTo the CS Department.

<owl:Class rdf:ID="facultyInCS">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#faculty"/>
<owl:Restriction>
<owl:onProperty rdf.resource="#belongsTo"/>
<owl:hasValue rdf.resource="#CSDepartment"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

Nesting of Boolean Operators

e E£.g., administrative staff are staff members who are not
faculty or technical staff members

<owl:Class rdf:ID="adminStaff">
<owl:intersectionOf rdf.parseType="Collection">
<owl:Class rdf:about="#staffMember"/>
<owl:complementOf>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#faculty"/>
<owl:Class rdf:about="#techSupportStaff"/>
</owl:unionOf>
</owl:complementOf> SM
</owl:intersectionOf>
</owl:Class> F TS

Enumerations with owl:oneOf

e £.g., a thing that is either Monday, Tuesday, ...

<owl:oneOf rdf.parseType="Collection">

<OW

<owl:
<owl:
T

<OwW

T
<owl:
<OWI.
<owl:

=4 4 4 o o

ning rdf:about="#Monday"/>
ning rdf:about="#Tuesday"/>
ning rdf:about="#Wednesday"/>
ning rdf:about="#Thursday"/>
ning rdf:about="#Friday"/>

ning rdf:about="#Saturday"/>

ning rdf:about="#Sunday"/>

</owl:oneOf>

Declaring Instances

e Instances of classes are declared as in RDF, as in
these examples

<rdf:Description rdf:ID="949352">

<rdf:type rdf.:resource="#academicStaffMember"/>
</rdf:Description>
<academicStaffMember rdf:ID="949352">

<uni:age rdf:datatype="&xsd;integer">

39

<uni:age>

</academicStaffMember>

No Unique-Names Assumption

e OWL does not adopt the unique-names
assumption of database systems

— That two instances have a different name or ID does
not imply that they are different individuals

e Suppose we state that each course is taught by
at most one staff member, and that a given

course is taught by #949318 and is taught by
#949352

- An OWL reasoner does not flag an error
- Instead it infers that the two resources are equal

Distinct Objects

To ensure that different individuals are
indeed recognized as such, we must
explicitly assert their inequality:

<lecturer rdf:about="949318">
<owl:differentFrom rdf:resource="949352"/>
</lecturer>

Distinct Objects

e OWL provides a shorthand notation to assert the
pairwise inequality of all individuals in a given list

<owl:allDifferent>
<owl.distinctMembers rdf.parseType="Collection">

<|ecturer rdf:about="949318"/>

<l|ecturer rdf:about="949352"/>

<lecturer rdf:about="949111"/>
</owl:distinctMembers>

</owl:allDifferent>

Data Types in OWL

e XML Schema provides a mechanism to
construct user-defined data types
- E.g., the data type of adultAge includes all
iIntegers greater than 18

e Such derived data types cannot be used in
OWL

- The OWL reference document lists all the XML
Schema data types that can be used

- These include the most frequently used types such
as string, integer, Boolean, time, and date.

Versioning Information

eowl:priorVersion indicates earlier versions
of the current ontology
- No formal meaning, can be exploited for
ontology management
eowl:versioninfo generally contains a string
giving information about the current version,
e.g. keywords

Versioning Information

e owl:backwardCompatibleWith contains a
reference to another ontology

- All identifiers from the previous version have the
same intended interpretations in the new version

- Thus documents can be safely changed to
commit to the new version

eowl:incompatibleWith says that the
containing ontology is a later version of the
referenced ontology but is not backward
compatible with it

Combination of Features

e In different OWL languages there are different
sets of restrictions regarding the application of
features

e In OWL Full, all the language constructors may
be used in any combination as long as the
result is legal RDF

e OWL DL removes or restricts some features to
ensure that complete reasoning is tractable or
to make reasoning implementations easier

Restriction of Features in OWL DL

e Vocabulary partitioning

- Any resource is allowed to be only a class, a
data type, a data type property, an object
property, an individual, a data value, or part
of the built-in vocabulary, and not more than
one of these

e Explicit typing
— The partitioning of all resources must be
stated explicitly (e.g. a class must be

declared if used in conjunction with
rdfs:subClassOf)

Restriction of Features in OWL DL

eProperty Separation

- The set of object properties and data type
properties are disjoint

— Therefore the following can never be
specified for data type properties:

eowl:inverseOf
eowl:FunctionalProperty
eowl:InverseFunctionalProperty
eowl:SymmetricProperty

Restriction of Features in OWL DL

e No transitive cardinality restrictions

— No cardinality restrictions may be placed on
transitive properties

- e.g., people with more than 5 ancestors

e Restricted anonymous classes
Anonymous classes are only allowed to occur as:

- the domain and range of either
owl:equivalentClass or owl:disjointWith

— the range (but not the domain) of rdfs:subClassOf

Restriction of Features in OWL Lite

e Restrictions of OWL DL and more

e owl:oneOf, owl:disjointWith, owl:unionOf,
owl:complementOf and owl:hasValue are not
allowed

e Cardinality statements (minimal, maximal, and
exact cardinality) can only be made on the values
0or1

e owl:equivalentClass statements can no longer
be made between anonymous classes but only
between class identifiers

Outline

1. A bit of history
2. Basic ldeas of OWL
3. The OWL Language

4. Examples
5. The OWL Namespace
6. Future Extensions

African Wildlife Ontology: Classes

animal plant

/ A\

herbivore carnivore tree

giraffe lion

African Wildlife: Schematic Representation

Branches are parts of trees

1sPartOf

onProperty

branch 1sSubclassOf

to(lass

African Wildlife: Properties

<owl: TransitiveProperty rdf:.ID="is-part-of"/>

<owl:ObjectProperty rdf:.ID="eats">
<rdfs:domain rdf:resource="#animal"/>
</owl.ObjectProperty>

<owl:ObjectProperty rdf:.ID="eaten-by">
<owl:inverseOf rdf.:resource="#eats"/>
</owl:ObjectProperty>

African Wildlife: Plants and Trees

<owl:Class rdf:ID="plant">

<rdfs:comment>Plants are disjoint from
animals. </rdfs:comment>

<owl:disjointWith="#animal"/>
</owl:Class>

<owl:Class rdf:ID="tree">

<rdfs:comment>Trees are a type of plant.
</rdfs:comment>

<rdfs:subClassOf rdf:resource="#plant"/>
</owl:Class>

An African Wildlife: Branches

<owl:Class rdf:ID="branch">

<rdfs:comment>Branches are parts of trees. </
rdfs:comment>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf.resource="#is-part-of"/>
<owl:allValuesFrom rdf:resource="#tree"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

African Wildlife: Leaves

<owl:Class rdf:ID="|eaf">

<rdfs:comment>Leaves are parts of branches. </
rdfs:comment>

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf.resource="#is-part-of"/>
<owl:allValuesFrom rdf:resource="#branch"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

African Wildlife: Carnivores

<owl:Class rdf:ID="carnivore">

<rdfs:comment>Carnivores are exactly those animals that
eat also animals.</rdfs:comment>

<owl:intersectionOf rdf.parsetype="Collection">
<owl:Class rdf:about="#animal"/>
<owl:Restriction>
<owl.onProperty rdf.resource="#eats"/>
<owl:someValuesFrom rdf:resource="#animal"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

African Wildlife: Herbivores

How can we define Herbivores?

African Wildlife: Herbivores

Here is one approach

<owl:Class rdf:ID="herbivore">
<rdfs:comment>

Herbivores are exactly those animals that
eat only plants or parts of plants.

</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="herbivore">
<owl:intersectionOf rdf:parseType="Collection™>
<owl:Class rdf=about="#animal”/>
<owl:Restriction>
<owl:onProperty rdf:resource="#eats”/>
<owl:allValuesFrom>
<owl:Class>
<owl:unionOf rdf:parseType="Collection™
<owl:Class rdf:resource=“plant’/>
<owl:Restriction>
<owl:onProperty rdf;resource="#is_part_of’/>
<owl:allValuesFrom rdf:resource="#plant”/>
</owl:Restriction>
</owl:unionOf>
</class>
</owl:allValuesFrom>
</owl:Restrcition>

</owl:intersectionOf>
</lowl Clacge>

African Wildlife: Giraffes

<owl:Class rdf:ID="giraffe">
<rdfs:comment>Giraffes are herbivores, and they
eat only leaves.</rdfs:comment>
<rdfs:subClassOf rdf:.type="#herbivore"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl.onProperty rdf:resource="#eats"/>
<owl:allValuesFrom rdf:resource="#leaf"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

African Wildlife: Lions

<owl:Class rdf:ID="lion">
<rdfs:comment>Lions are animals that eat
only herbivores.</rdfs:comment>

<rdfs:subClassOf rdf.type="#carnivore"/>
<rdfs:subClassOf>

<owl:
<Oow
<OowW

Restriction>
.onProperty rdf:resource="#eats"/>

-allValuesFrom rdf:resource="#herbivore"/>

</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

African Wildlife: Tasty Plants

<owl:Class rdf:ID="tasty-plant">

<rdfs:comment>Plants eaten both by herbivores
and carnivores </rdfs:comment>

<rdfs:comment>

<rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="tasty-plant">
<rdfs:subClassOf rdf.resource="#plant”/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#eaten_by"/>
<owl:someValuesFrom> <owl:Class rdf.about="#herbivore”/>
</owl:someValuefrom>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#eaten_by"/>
<owl:someValuesFrom> <owl:Class rdf:about="#carnivore”/>
</owl:someValuefrom>
</owl:Restriction>
</rdfsSublassOf>
</owl:Class>

Printer Ontology — Class Hierarchy

uuuuuuu

Printer Ontology — Products and Devices

<owl:Class rdf:ID="product">
<rdfs:comment>Products form a class. </rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="padid">
<rdfs:comment>Printing and digital imaging devices
form a subclass of products.</rdfs:comment>
<rdfs:label>Device</rdfs:label>
<rdfs:subClassOf rdf.resource="#product"/>
</owl:Class>

Printer Ontology — HP Products

<owl:Class rdf:ID="hpProduct">
<owl:intersectionOf>
<owl:Class rdf:about="#product"/>
<owl:Restriction>
<owl.onProperty rdf.resource="#manufactured-by"/>
<owl:hasValue>
<xsd:string rdf.value="Hewlett Packard"/>
</owl:hasValue>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

Printer Ontology — Printers & Personal Printers

<owl:Class rdf:ID="printer">

<rdfs:comment>Printers are printing and digital
iImaging devices.</rdfs:comment>

<rdfs:subClassOf rdf:resource="#padid"/>
</owl:Class>

<owl:Class rdf:.ID="personalPrinter">

<rdfs:comment>Printers for personal use form
a subclass of printers.</rdfs:comment>

<rdfs:subClassOf rdf:resource="#printer"/>
</owl:Class>

HP LaserJet 1100se Printers

<owl:Class rdf:ID="1100se">

<rdfs:comment>1100se printers belong to the 1100
series and cost $450.</rdfs:comment>

<rdfs:subClassOf rdf:resource="#1100series"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#price"/>
<owl:hasValue><xsd:integer rdf.value="450"/>
</owl:hasValue>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

A Printer Ontology — Properties

<owl:DatatypeProperty rdf:ID="manufactured-by">
<rdfs:domain rdf.resource="#product"/>
<rdfs:range rdf.resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingTechnology">
<rdfs:domain rdf:resource="#printer"/>
<rdfs:range rdf.resource="&xsd;string"/>
</owl:DatatypeProperty>

Outline

1. A bit of history

. Basic Ideas of OWL

. The OWL Language

. Examples

. The OWL Namespace
. OWL 2

oo O A~ W DN

OWL in OWL

e \We present a part of the definition of OWL
iIn terms of itself

e The following captures some of OWL's
meaning in OWL

- It does not capture the entire semantics
- A separate semantic specification is necessary

e The URI of the OWL definition is defined as
the default namespace

Classes of Classes (Metaclasses)

The class of all OWL classes is itself a
subclass of the class of all RDF Schema
classes:

<rdfs:Class rdf:ID="Class">
<rdfs:label>Class</rdfs:label>

<rdfs:subClassOf rdf:resource="&rdfs;Class"/
>

</rdfs:Class>

Metaclasses — Thing and Nothing

e Thing is most general object class in OWL

e Nothing is most specific class: the empty object
class

e The following relationships hold:

Thing = Nothing U Nothing

Nothing = Thing = Nothing U Nothing =Nothing N Nothing = &

Metaclasses — Thing and Nothing

<Class rdf:ID="Thing">
<rdfs:label>Thing</rdfs:label>
<unionOf rdf:parseType="Collection">
<Class rdf:about="#Nothing"/>
<Class>
<complementOf rdf:resource="#Nothing"/>
</Class>
</unionOf>
</Class>

<Class rdf:ID="Nothing">
<rdfs:label>Nothing</rdfs:label>
<complementOf rdf.:resource="#Thing"/>
</Class>

Class and Property Equivalences

<rdf:Property rdf:ID="EquivalentClass">
<rdfs:label>EquivalentClass</rdfs:label>
<rdfs:subPropertyOf rdf.resource="&rdfs;subClassOf"/>
<rdfs:domain rdf:resource="#Class"/>
<rdfs:range rdf.resource="#Class"/>

</rdf:Property>

<rdf:Property rdf:.ID="EquivalentProperty">
<rdfs:label>EquivalentProperty</rdfs:label>
<rdfs:subPropertyOf rdf.:resource="&rdfs;subPropertyOf"/>
</rdf:Property>

Class Disjointness

<rdf:Property rdf:ID="disjointWith">
<rdfs:label>disjointWith</rdfs:label>
<rdfs:domain rdf:resource="#Class” />
<rdfs:range rdf:resource="#Class” />
</rdf:Property>

Equality and Inequality

e Equality and inequality can be stated between
arbitrary things
- In OWL Full this statement can also be applied to
classes
e Properties samelndividualAs, sameAs and
differentFrom

Equality and Inequality

<rdf:Property rdf:ID="samelndividualAs">
<rdfs:domain rdf.resource="#Thing"/>
<rdfs:range rdf:resource="#Thing"/>
</rdf:Property>

<rdf:Property rdf:ID="sameAs">

<EquivalentProperty rdf:resource=
"##samelndividualAs"/>

</rdf:Property>

Union and Intersection of Classes

e Build a class from a list, assumed to be a
list of other class expressions

<rdf:Property rdf:ID="unionOf">
<rdfs:domain rdf.resource="#Class"/>
<rdfs:range rdf.resource="&rdf;List"/>

</rdf:Property>

Restriction Classes

Restrictions in OWL define the class of
those objects that satisfy some attached
conditions

<rdfs:Class rdf:ID="Restriction">
<rdfs:label>Restriction</rdfs:label>

<rdfs:subClassOf
rdf:resource="#Class"/>

</rdfs:Class>

Restriction Properties

e All the following properties (onProperty,
allValuesFrom, minCardinality, etc.) are only
allowed to occur within a restriction definition

— Their domain is owl:Restriction, but they differ with
respect to their range

Restriction Properties

<rdf:Property rdf:ID="onProperty">
<rdfs:label>onProperty</rdfs:label>

<rdfs:domain rdf:resource="# "[>
<rdfs:range rdf:resource="& "/>
</rdf:Property>

<rdf:Property rdf:ID="allValuesFrom">
<rdfs:label>allValuesFrom</rdfs:label>
<rdfs:domain rdf:resource="# "[>
<rdfs:range rdf.resource="& "[>
</rdf:Property>

Restriction Properties

<rdf:Property rdf:ID="hasValue">
<rdfs:label>hasValue</rdfs:label>
<rdfs:domain rdf.resource="#Restriction"/>

</rdf:Property>

<rdf:Property rdf:ID="minCardinality">
<rdfs:label>minCardinality</rdfs:label>
<rdfs:domain rdf.resource="#Restriction"/>

<rdfs:range rdf.resource=
"&xsd;nonNegativelnteger"/>

</rdf:Property>

Properties

e owl:ObjectProperty and owl:DatatypeProperty
are special cases of rdf:Property

<rdfs:Class rdf:ID="ObjectProperty">
<rdfs:label>ObjectProperty</rdfs:label>
<rdfs:subClassOf rdf.:resource="&rdf:Property"/>
</rdfs:Class>

Properties

Symmetric, functional and inverse functional
properties can only be applied to object properties

<rdfs:Class rdf:ID="TransitiveProperty">
<rdfs:label>TransitiveProperty</rdfs:label>

<rdfs:subClassOf rdf:resource=
"#ObjectProperty"/>

</rdfs:Class>

Properties

owl:inverseOf relates two object properties

<rdf:Property rdf:ID="inverseOf">
<rdfs:label>inverseOf</rdfs:label>

<rdfs:domain
rdf.-resource="#0ODbjectProperty"/>

<rdfs:range
rdf:resource="#0DbjectProperty"/>

</rdf:Property>

1

2
3
4
S
6

Outline

. A bit of history

. Basic Ideas of OWL
. The OWL Language
. Examples

. The OWL Namespace
. OWL 2

Future Extensions of OWL

e Modules and Imports

e Defaults

e Closed World Assumption
e Unique Names Assumption
e Procedural Attachments

e Rules for Property Chaining

Modules and Imports

e The importing facility of OWL is very trivial:
- It only allows importing of an entire ontology, not parts
of it
e Modules in programming languages based on
information hiding: state functionality, hide
Implementation details

- Open question how to define appropriate module
mechanism for Web ontology languages

Defaults

e Many practical knowledge representation
systems allow inherited values to be
overridden by more specific classes in the
hierarchy

— treat inherited values as defaults

e No consensus has been reached on the
right formalization for the nonmonotonic
behaviour of default values

Closed World Assumption

e OWL currently adopts the open-world
assumption:

- A statement cannot be assumed true on the basis of a
failure to prove it

— On the huge and only partially knowable WWW, this is
a correct assumption
e Closed-world assumption: a statement is true
when its negation cannot be proved

- tied to the notion of defaults, leads to nonmonotonic
behaviour

Unique Names Assumption

e Typical database applications assume that
individuals with different names are indeed
different individuals

e OWL follows the usual logical paradigm where
this is not the case
- Plausible on the WWW

e One may want to indicate portions of the ontology
for which the assumption does or does not hold

Procedural Attachments

e A common concept in knowledge
representation is to define the meaning of a
term by attaching a piece of code to be
executed for computing the meaning of the
term

- Not through explicit definitions in the language

e Although widely used, this concept does not
lend itself very well to integration in a system
with a formal semantics, and it has not been
included in OWL

Rules for Property Chaining

OWL does not allow the composition of
properties for reasons of decidability

In many applications this is a useful operation

One may want to define properties as general
rules (Horn or otherwise) over other
properties

Integration of rule-based knowledge
representation and DL-style knowledge
representation is currently an active area of
research

OWL 2 adds

e Qualified cardinality

- A hand has five digits, one of which is a thumb and four
of which are fingers

e Stronger datatype/range support
e Additional property characteristics
- E.g., reflexivity
e Role chains
- E.g., hasParent.hasSibling.hasChild
e A better defined model for punning within DL
- Allows a term to name both a concept and an individual

e More powerful annotations

Conclusions

e OWL is the proposed standard for Web ontologies
e OWL builds upon RDF and RDF Schema:
— (XML-based) RDF syntax is used
- Instances are defined using RDF descriptions
- Most RDFS modeling primitives are used

e Formal semantics and reasoning support is provided
through the mapping of OWL on logics

- Predicate logic and description logics have been used
for this purpose

e While OWL is sufficiently rich to be used in practice,
extensions are in the making

— They will provide further logical features, including rules

