
Chapter 4
OWL

Based on slides from Grigoris Antoniou and Frank van Harmelen

Outline

1.  A bit of history
2.  Basic Ideas of OWL
3.  The OWL Language
4.  Examples
5.  The OWL Namespace
6.  OWL 2

Joint EU/US Committee

DAML

OntoKnowledge+Others

The OWL Family Tree

Frames

Description
Logic

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL
W3C

SHOE

Logic Programming

A Brief History of OWL: SHOE

l  Simple HTML Ontology Extensions
l  Sean Luke, Lee Spector, and David Rager, 1996

SHOE allows World-Wide Web authors to annotate their
pages with ontology-based knowledge about page
contents. We present examples showing how the use of
SHOE can support a new generation of knowledge-
based search and knowledge discovery tools that
operate on the World-Wide Web.

l  Supported adding “semantic” tags defined in an
ontology plus prolog-like rules to web pages.

A Brief History of OWL: SHOE

<META HTTP-EQUIV="Instance-Key" CONTENT="http://
www.cs.umd.edu/~george"> <USE-ONTOLOGY "our-ontology"
VERSION="1.0" PREFIX="our" URL="http://ont.org/our-ont.html">
…
<CATEGORY "our.Person">
<RELATION "our.firstName" TO="George">
<RELATION "our.lastName" TO="Cook">
<RELATION "our.marriedTo" TO="http://www.cs.umd.edu/~helena">
<RELATION "our.employee" FROM="http://www.cs.umd.edu">

A Brief History of OWL: OIL

l  Developed by group of (largely) European
researchers (several from EU OntoKnowledge
project)

l  Based on frame-based language
l  Strong emphasis on formal rigour
l  Semantics in terms of Description Logics
l  RDFS based syntax

Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL

A Brief History of OWL: DAML-ONT

l  Developed by DARPA DAML Program
–  Largely US based researchers

l  Extended RDFS with constructors from OO and
frame-based languages

l  Rather weak semantic specification
–  Problems with machine interpretation
–  Problems with human interpretation

Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL

A Brief History of OWL: DAML+OIL

l  Merging of DAML-ONT and OIL
l  Basically a DL with an RDFS-based syntax
l  Development was carried out by “Joint EU/US

Committee on Agent Markup Languages”
l  Extends (“DL subset” of) RDF
l  Submitted to W3C as basis for standardisation

–  Web-Ontology (WebOnt)
Working Group formed

 Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL

A Brief History of OWL: OWL

Frames

Description
Logics

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL

l  W3C Recommendation (February 2004)
l  Based largely on the March 2001 DAML+OIL

specification
l  Well defined RDF/XML serializations
l  Formal semantics

–  First Order
–  Relationship with RDF

l  Comprehensive test cases for
tools/implementations

l  Growing industrial take up.

OWL 2

l  Is an extension of OWL
–  Addresses deficiencies identified by users and

developers (at OWLED workshop)
l  Is based on more expressive DL: SROIQ

–  OWL is based on SHOIN
l W3C working group chartered

–  http://www.w3.org/2007/OWL/wiki/
OWL_Working_Group

–  Became a W3C recommendation October
2009

l Supported by popular OWL tools
–  Protégé, TopBraid, FaCT++, Pellet

Outline

1.  A bit of history
2.  Basic Ideas of OWL
3.  The OWL Language
4.  Examples
5.  The OWL Namespace
6.  OWL 2

Requirements for Ontology Languages

l  Ontology languages allow users to write
explicit, formal conceptualizations of domain
models

l  The main requirements are:
–  a well-defined syntax
–  efficient reasoning support
–  a formal semantics
–  sufficient expressive power
–  convenience of expression

Expressive Power vs Efficient Reasoning

l  There is always a tradeoff between expressive
power and efficient reasoning support

l  The richer the language is, the more inefficient
the reasoning support becomes

l  Sometimes it crosses the noncomputability
border

l  We need a compromise:
–  A language supported by reasonably efficient

reasoners
–  A language that can express large classes of

ontologies and knowledge.

Kinds of Reasoning about Knowledge

l  Class membership
–  If x is an instance of a class C, and C is a subclass of D, then we

can infer that x is an instance of D

l  Equivalence of classes
–  If class A is equivalent to class B, and class B is equivalent to

class C, then A is equivalent to C, too

l  Consistency
–  X instance of classes A and B, but A and B are disjoint
–  This is an indication of an error in the ontology

l  Classification
–  Certain property-value pairs are a sufficient condition for

membership in a class A; if an individual x satisfies such
conditions, we can conclude that x must be an instance of A

Uses for Reasoning

l  Reasoning support is important for
–  checking the consistency of the ontology and the

knowledge
–  checking for unintended relationships between classes
–  automatically classifying instances in classes

l  Checks like these are valuable for
–  designing large ontologies, where multiple authors are

involved
–  integrating and sharing ontologies from various

sources

Reasoning Support for OWL

l  Semantics is a prerequisite for reasoning support
l  Formal semantics and reasoning support are

usually provided by
–  mapping an ontology language to a known logical

formalism
–  using automated reasoners that already exist for those

formalisms
l  OWL is (partially) mapped on a description logic,

and makes use of reasoners such as FaCT,
RACER and Pellet

l  Description logics are a subset of predicate logic
for which efficient reasoning support is possible

 RDFS’s Expressive Power Limitations

l Local scope of properties
–  rdfs:range defines the range of a property

(e.g. eats) for all classes
–  In RDF Schema we cannot declare range

restrictions that apply to some classes only
– E.g. we cannot say that cows eat only plants,

while other animals may eat meat, too

 RDFS’s Expressive Power Limitations

l Disjointness of classes
–  Sometimes we wish to say that classes are

disjoint (e.g. male and female)
l Boolean combinations of classes

–  Sometimes we wish to build new classes by
combining other classes using union,
intersection, and complement

–  E.g. person is the disjoint union of the classes
male and female

 RDFS’s Expressive Power Limitations

l Cardinality restrictions
–  E.g. a person has exactly two parents, a

course is taught by at least one lecturer
l Special characteristics of properties

–  Transitive property (like “greater than”)
–  Unique property (like “is mother of”)
–  A property is the inverse of another property

(like “eats” and “is eaten by”)

Combining OWL with RDF Schema

l  Ideally, OWL would extend RDF Schema
–  Consistent with the layered architecture of the

Semantic Web
l But simply extending RDF Schema would

work against obtaining expressive power
and efficient reasoning
–  Combining RDF Schema with logic leads to

uncontrollable computational properties

Three Species of OWL

l W3C’sWeb Ontology Working Group
defined OWL as three different
sublanguages:
– OWL Full
– OWL DL
– OWL Lite

l Each sublanguage geared toward fulfilling
different aspects of requirements

OWL Full

l  It uses all the OWL languages primitives
l  It allows the combination of these

primitives in arbitrary ways with RDF and
RDF Schema

l OWL Full is fully upward-compatible with
RDF, both syntactically and semantically

l OWL Full is so powerful that it’s
undecidable
–  No complete (or efficient) reasoning support

Soundness and completeness

l A sound reasoner only makes conclusions that
logically follow from the input, i.e., all of it’s
conclusions are correct
–  We almost always require our reasoners to be sound

l A complete reasoner can make all of the
conclusions that logically follow from the input
–  We can not guarantee complete reasoners for full FOL

and many subsets

OWL DL

l  OWL DL (Description Logic) is a sublanguage of
OWL Full that restricts application of the
constructors from OWL and RDF
–  Application of OWL’s constructors’ to each other is

disallowed
–  Therefore it corresponds to a well studied description

logic
l  OWL DL permits efficient reasoning support
l  But we lose full compatibility with RDF:

–  Not every RDF document is a legal OWL DL
document.

–  Every legal OWL DL document is a legal RDF
document.

OWL Lite

l  An even further restriction limits OWL DL to a
subset of the language constructors
–  E.g., OWL Lite excludes enumerated classes,

disjointness statements, and arbitrary cardinality.
l  The advantage of this is a language that is

easier to
–  grasp, for users
–  implement, for tool builders

l  The disadvantage is restricted expressivity

Upward Compatibility for OWL Species

l  Every legal OWL Lite ontology is a legal OWL
DL ontology

l  Every legal OWL DL ontology is a legal OWL
Full ontology

l  Every valid OWL Lite conclusion is a valid OWL
DL conclusion

l  Every valid OWL DL conclusion is a valid OWL
Full conclusion

OWL Compatibility with RDF Schema

l All varieties of OWL
use RDF for their
syntax

l Instances are declared
 as in RDF, using RDF
 descriptions

l and typing information
 OWL constructors are
 specialisations of their
 RDF counterparts

rdfs:Resource

rdfs:Class

owl:DatatypeProperty owl:ObjectProperty

rdf:Property

OWL Compatibility with RDF Schema

l Semantic Web design aims at downward
compatibility with corresponding reuse of
software across the various layers

l The advantage of full downward
compatibility for OWL is only achieved for
OWL Full, at the cost of computational
intractability

Outline

1.  A bit of history
2.  Basic Ideas of OWL
3.  The OWL Language
4.  Examples
5.  The OWL Namespace
6.  Future Extensions

OWL Syntactic Varieties

l  OWL builds on RDF and uses RDF’s XML-
based syntax

l  Other syntactic forms for OWL have also been
defined:

–  An alternative, more readable XML-based
syntax

–  An abstract syntax, that is much more
compact and readable than the XML
languages

–  A graphic syntax based on the conventions of
UML

OWL XML/RDF Syntax: Header

<rdf:RDF
 xmlns:owl ="http://www.w3.org/2002/07/owl#"
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd ="http://www.w3.org/2001/ XLMSchema#">

l  OWL documents are RDF documents

l  and start with a typical declaration of namespaces

l  The W3C recommendation for owl has the namespace
http://www.w3.org/2002/07/owl#"

owl:Ontology

<owl:Ontology rdf:about="">
 <rdfs:comment>Example OWL ontology</rdfs:comment>
 <owl:priorVersion rdf:resource="http://www.-
 mydomain.org/uni-ns-old"/>
 <owl:imports rdf:resource="http://www.-mydomain.org/-
 persons"/>
 <rdfs:label>University Ontology</rdfs:label>
</owl:Ontology>

l  owl:imports, a transitive property, indicates that the
document commits to all of the terms as defined in its target

l  owl:priorVersion points to an earlier version of this
document

OWL Classes

<owl:Class rdf:about="#associateProfessor">
 <owl:disjointWith rdf:resource="#professor"/>
 <owl:disjointWith

 rdf:resource="#assistantProfessor"/>
</owl:Class>

l Classes are defined using owl:Class
–  owl:Class is a subclass of rdfs:Class

l Owl:Class is disjoint with datatypes (aka literals)
l Disjointness is defined using owl:disjointWith

–  Two disjoint classes are can share no instances

Separate Objects & Datatypes?

l Philosophical reasons:
– Datatypes structured by built-in predicates
– Not appropriate to form new datatypes using ontology

language
l Practical reasons:

– Note: Java does this, distinguishing classes from primitive datatypes

– Ontology language remains simple and compact
– Semantic integrity of ontology language not compromised
–  Implementability not compromised — can use hybrid reasoner

l Only need sound and complete decision procedure for:
 dI

1 Å … Å dI
n, where d is a (possibly negated) datatype

OWL Classes

<owl:Class rdf:ID="faculty">
 <owl:equivalentClass rdf:resource="#academicStaffMember"/>
</owl:Class>

l owl:equivalentClass defines equivalence of
classes

l owl:Thing is the most general class, which contains
everything
–  i.e., every owl class is rdfs:subClassOf owl:Thing

l owl:Nothing is the empty class
–  i.e., owl:NoThing is rdf:subClassOf every owl class

OWL Properties

l  In OWL there are two kinds of properties
l  Object properties relate objects to other objects

–  owl:DatatypeProperty
–  E.g. is-TaughtBy, supervises

l  Data type properties relate objects to datatype
values
–  owl:ObjectProperty
–  E.g. phone, title, age, etc.

l These were made separate to make it easier to
create sound and complete reaonsers

Datatype Properties

l OWL uses XML Schema data types, exploiting the
layered architecture of the Semantic Web

<owl:DatatypeProperty rdf:ID="age">
<rdfs:range rdf:resource= "http://www.w3.org/
2001/XLMSchema#nonNegativeInteger"/>
 <rdfs:domain rdf:resource="foaf:Person">

</owl:DatatypeProperty>

OWL Object Properties

l Typically user-defined data types

<owl:ObjectProperty rdf:ID="isTaughtBy">
 <rdfs:domain rdf:resource="#course"/>
 <rdfs:range rdf:resource=
 "#academicStaffMember"/>
 <rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty>

Inverse Properties

<owl:ObjectProperty rdf:ID="teaches">
 <rdfs:range rdf:resource="#course"/>
 <rdfs:domain rdf:resource= "#academicStaffMember"/>
 <owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

A partial list of axioms:
owl:inverseOf rdfs:domain owl:ObjectProperty;

rdfs:range owl:ObjectProperty;
a owl:SymmetricProperty.

{?P @has owl:inverseOf ?Q. ?S ?P ?O} => {?O ?Q ?S}.
{?P owl:inverseOf ?Q. ?P @has rdfs:domain ?C} => {?Q rdfs:range ?C}.
{?A owl:inverseOf ?C. ?B owl:inverseOf ?C} => {?A rdfs:subPropertyOf ?B}.

Equivalent Properties

<owl:equivalentProperty
 <owl:ObjectProperty rdf:ID="lecturesIn">
 <owl:equivalentProperty rdf:resource="#teaches"/>

</owl:ObjectProperty>

l  Two properties have the same property extension
l  Axioms

{?A rdfs:subPropertyOf ?B. ?B rdfs:subPropertyOf ?A}
<=> {?A owl:equivalentProperty ?B}.

Property Restrictions

l In OWL we can declare that the class C satisfies
certain conditions
–  All instances of C satisfy the conditions

l This is equivalent to saying that C is subclass of a
class C', where C collects all objects that satisfy
the conditions
–  C' can remain anonymous

l Example:
–  People whose sex is male and have at least one child

whose sex is female and whose age is six
–  Things with exactly two arms and two legs

Property Restrictions

l The owl:Restriction element describes such a
class

l This element contains an owl:onProperty element
and one or more restriction declarations

l One type defines cardinality restrictions (at least
one, at most 3,…)

l The other type defines restrictions on the kinds of
values the property may take
–  owl:allValuesFrom specifies universal quantification
–  owl:hasValue specifies a specific value
–  owl:someValuesFrom specifies existential

quantification

owl:allValuesFrom
l Describe a class where all of the values of a property match

some requirement
l E.g., Math courses taught by professors.

<!-- First year courses that are taught by professors -->
<owl:Class rdf:about="#firstYearCourse">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isTaughtBy"/>
 <owl:allValuesFrom rdf:resource="#Professor"/>
 </owl:Restriction>
 </rdfs:subClassOf>

</owl:Class>

Offspring of people are people

<!– The offspring of a Person is a Person -->
<rdf:Description rdf:about="foaf:Person">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="bio:offspring"/>
 <owl:allValuesFrom rdf:resource="foaf:Person"/>
 </owl:Restriction>
 </rdfs:subClassOf>

</rdf:Description>

Literally: Person is a sub-class of things all of whose offspring
are necessarily of type Person

{?X a foaf:Person. ?X bio:offspring ?O} => {?O a Person}

Offspring of people are people

<rdf:RDF
 xmlns:="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:bio="http://example.com/bio/" >
<Description about="foaf:Person">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty resource="bio:offspring" />
 <owl:allValuesFrom resource="foaf:Person"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</Description>

And in N3

n3> cwm --rdf restriction.xml --n3
…

@prefix : <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

 <foaf:Person> a :Class;
 rdfs:subClassOf [
 a :Restriction;
 :allValuesFrom <foaf:Person>;
 :onProperty <bio:offspring>] .

#ENDS

owl:hasValue

l  Describe a class with a particular value for a property
l  E.g., Math courses taught by Professor Longhair

<!– Math courses taught by #949352 à
<owl:Class>
 <rdfs:subClassOf>rdf:resource="#mathCourse”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource= "#isTaughtBy"/>
 <owl:hasValue rdf:resource= "#949352"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

owl:someValuesFrom

l Describe a class based on a requirement that it must have at least
one value for a property matching a description.

l E.g., Academic staff members who teach an undergraduate
course.

<owl:Class rdf:about="#academicStaffMember">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#teaches"/>
 <owl:someValuesFrom rdf:resource="#undergraduateCourse"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Cardinality Restrictions
l We can specify minimum and maximum number

using owl:minCardinality & owl:maxCardinality
–  Courses with fewer than 10 students
–  Courses with between 10 and 100 students
–  Courses with more than 100 students

l It is possible to specify a precise number by using
the same minimum and maximum number
–  Courses with exactly seven students

l For convenience, OWL offers also owl:cardinality
–  E.g., exactly N

Cardinality Restrictions

l  E.g. courses taught be at least two people.

<owl:Class rdf:about="#course">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#isTaughtBy"/>
 <owl:minCardinality

 rdf:datatype="&xsd;nonNegativeInteger">
 2
 </owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

What does this say?

<owl:Class rdf:ID="Parent">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasChild" />
 <owl:minCardinality rdf:datatype=
 "&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

Definition of a parent

The parent class is equivalent to the class of things
that have at least one child

All(x): Parent(x) ó Exisits(y) hasChild(x, y)

If hasChild is defined as having Person as it’s
domain, then Parents are also people.

Special Properties

l owl:TransitiveProperty (transitive property)
–  E.g. “has better grade than”, “is ancestor of”

l owl:SymmetricProperty (symmetry)
–  E.g. “has same grade as”, “is sibling of”

l owl:FunctionalProperty defines a property
that has at most one value for each object
–  E.g. “age”, “height”, “directSupervisor”

l owl:InverseFunctionalProperty defines a
property for which two different objects cannot
have the same value

Special Properties

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
 <rdf:type rdf:resource="&owl;SymmetricProperty"/>
 <rdfs:domain rdf:resource="#student"/>
 <rdfs:range rdf:resource="#student"/>
</owl:ObjectProperty>

Boolean Combinations

l We can combine classes using Boolean operations (union,
intersection, complement)

l Negation is introduced by the complementOf
l E.g., courses not taught be staffMembers
<owl:Class rdf:about="#course">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#teaches"/>
 <owl:allValuesFrom>
 <owl:complementOf rdf:resource="#staffMember"/>
 <owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Boolean Combinations

l  The new class is not a subclass of the union, but rather
equal to the union

–  We have stated an equivalence of classes
l  E.g., university people is the union of staffMembers and

Students

<owl:Class rdf:ID="peopleAtUni">

 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#staffMember"/>
 <owl:Class rdf:about="#student"/>
 </owl:unionOf>

</owl:Class>

Boolean Combinations

l E.g., CS faculty is the intersection of faculty and things
that belongTo the CS Department.

<owl:Class rdf:ID="facultyInCS">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#faculty"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#belongsTo"/>
 <owl:hasValue rdf:resource="#CSDepartment"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Nesting of Boolean Operators

l E.g., administrative staff are staff members who are not
faculty or technical staff members

<owl:Class rdf:ID="adminStaff">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#staffMember"/>
 <owl:complementOf>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#faculty"/>
 <owl:Class rdf:about="#techSupportStaff"/>
 </owl:unionOf>
 </owl:complementOf>
 </owl:intersectionOf>
</owl:Class>

SM

F TS

Enumerations with owl:oneOf

l E.g., a thing that is either Monday, Tuesday, …
<owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Monday"/>
 <owl:Thing rdf:about="#Tuesday"/>
 <owl:Thing rdf:about="#Wednesday"/>
 <owl:Thing rdf:about="#Thursday"/>
 <owl:Thing rdf:about="#Friday"/>
 <owl:Thing rdf:about="#Saturday"/>
 <owl:Thing rdf:about="#Sunday"/>
</owl:oneOf>

Declaring Instances

l Instances of classes are declared as in RDF, as in
these examples

<rdf:Description rdf:ID="949352">
 <rdf:type rdf:resource="#academicStaffMember"/>
</rdf:Description>
<academicStaffMember rdf:ID="949352">
 <uni:age rdf:datatype="&xsd;integer">
 39
 <uni:age>
</academicStaffMember>

No Unique-Names Assumption

l OWL does not adopt the unique-names
assumption of database systems
–  That two instances have a different name or ID does

not imply that they are different individuals
l Suppose we state that each course is taught by

at most one staff member, and that a given
course is taught by #949318 and is taught by
#949352
– An OWL reasoner does not flag an error
–  Instead it infers that the two resources are equal

Distinct Objects

To ensure that different individuals are
indeed recognized as such, we must
explicitly assert their inequality:

<lecturer rdf:about="949318">
 <owl:differentFrom rdf:resource="949352"/>
</lecturer>

Distinct Objects

l OWL provides a shorthand notation to assert the
pairwise inequality of all individuals in a given list

<owl:allDifferent>
 <owl:distinctMembers rdf:parseType="Collection">
 <lecturer rdf:about="949318"/>
 <lecturer rdf:about="949352"/>
 <lecturer rdf:about="949111"/>
 </owl:distinctMembers>
</owl:allDifferent>

Data Types in OWL

l XML Schema provides a mechanism to
construct user-defined data types
–  E.g., the data type of adultAge includes all

integers greater than 18
l Such derived data types cannot be used in

OWL
–  The OWL reference document lists all the XML

Schema data types that can be used
–  These include the most frequently used types such

as string, integer, Boolean, time, and date.

Versioning Information

l owl:priorVersion indicates earlier versions
of the current ontology
– No formal meaning, can be exploited for

ontology management
l owl:versionInfo generally contains a string

giving information about the current version,
e.g. keywords

Versioning Information

l owl:backwardCompatibleWith contains a
reference to another ontology
– All identifiers from the previous version have the

same intended interpretations in the new version
– Thus documents can be safely changed to

commit to the new version
l owl:incompatibleWith says that the

containing ontology is a later version of the
referenced ontology but is not backward
compatible with it

Combination of Features

l In different OWL languages there are different
sets of restrictions regarding the application of
features

l In OWL Full, all the language constructors may
be used in any combination as long as the
result is legal RDF

l OWL DL removes or restricts some features to
ensure that complete reasoning is tractable or
to make reasoning implementations easier

Restriction of Features in OWL DL

l Vocabulary partitioning
– Any resource is allowed to be only a class, a

data type, a data type property, an object
property, an individual, a data value, or part
of the built-in vocabulary, and not more than
one of these

l Explicit typing
– The partitioning of all resources must be

stated explicitly (e.g. a class must be
declared if used in conjunction with
rdfs:subClassOf)

Restriction of Features in OWL DL

l Property Separation
– The set of object properties and data type

properties are disjoint
– Therefore the following can never be

specified for data type properties:
l owl:inverseOf
l owl:FunctionalProperty
l owl:InverseFunctionalProperty
l owl:SymmetricProperty

Restriction of Features in OWL DL

l No transitive cardinality restrictions
–  No cardinality restrictions may be placed on

transitive properties
–  e.g., people with more than 5 ancestors

l Restricted anonymous classes
Anonymous classes are only allowed to occur as:
–  the domain and range of either

owl:equivalentClass or owl:disjointWith
–  the range (but not the domain) of rdfs:subClassOf

Restriction of Features in OWL Lite

l  Restrictions of OWL DL and more
l  owl:oneOf, owl:disjointWith, owl:unionOf,

owl:complementOf and owl:hasValue are not
allowed

l  Cardinality statements (minimal, maximal, and
exact cardinality) can only be made on the values
0 or 1

l  owl:equivalentClass statements can no longer
be made between anonymous classes but only
between class identifiers

Outline

1.  A bit of history
2.  Basic Ideas of OWL
3.  The OWL Language
4.  Examples
5.  The OWL Namespace
6.  Future Extensions

African Wildlife Ontology: Classes

African Wildlife: Schematic Representation

Βranches are parts of trees

African Wildlife: Properties

<owl:TransitiveProperty rdf:ID="is-part-of"/>

<owl:ObjectProperty rdf:ID="eats">
 <rdfs:domain rdf:resource="#animal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="eaten-by">
 <owl:inverseOf rdf:resource="#eats"/>

</owl:ObjectProperty>

African Wildlife: Plants and Trees

<owl:Class rdf:ID="plant">
 <rdfs:comment>Plants are disjoint from
animals. </rdfs:comment>
 <owl:disjointWith="#animal"/>

</owl:Class>

<owl:Class rdf:ID="tree">
 <rdfs:comment>Trees are a type of plant.
</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#plant"/>

</owl:Class>

An African Wildlife: Branches

<owl:Class rdf:ID="branch">
 <rdfs:comment>Branches are parts of trees. </

rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#is-part-of"/>
 <owl:allValuesFrom rdf:resource="#tree"/>

 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

African Wildlife: Leaves

<owl:Class rdf:ID="leaf">
 <rdfs:comment>Leaves are parts of branches. </

rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#is-part-of"/>
 <owl:allValuesFrom rdf:resource="#branch"/>

 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

African Wildlife: Carnivores

<owl:Class rdf:ID="carnivore">
 <rdfs:comment>Carnivores are exactly those animals that

eat also animals.</rdfs:comment>
 <owl:intersectionOf rdf:parsetype="Collection">
 <owl:Class rdf:about="#animal"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#eats"/>
 <owl:someValuesFrom rdf:resource="#animal"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

African Wildlife: Herbivores

How can we define Herbivores?

African Wildlife: Herbivores

Here is one approach

<owl:Class rdf:ID="herbivore">
 <rdfs:comment>
 Herbivores are exactly those animals that

 eat only plants or parts of plants.
 </rdfs:comment>
 ????????????????????
</owl:Class>

<owl:Class rdf:ID="herbivore">
 <owl:intersectionOf rdf:parseType=“Collection”>
 <owl:Class rdf=about=“#animal”/>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#eats”/>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType=“Collection”>
 <owl:Class rdf:resource=“plant”/>
 <owl:Restriction>
 <owl:onProperty rdf;resource=“#is_part_of”/>
 <owl:allValuesFrom rdf:resource=“#plant”/>
 </owl:Restriction>
 </owl:unionOf>
 </class>
 </owl:allValuesFrom>
 </owl:Restrcition>
 </owl:intersectionOf>
</owl:Class>

African Wildlife: Giraffes

<owl:Class rdf:ID="giraffe">
 <rdfs:comment>Giraffes are herbivores, and they
 eat only leaves.</rdfs:comment>
 <rdfs:subClassOf rdf:type="#herbivore"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#eats"/>
 <owl:allValuesFrom rdf:resource="#leaf"/>
 </owl:Restriction>
 </rdfs:subClassOf>

</owl:Class>

African Wildlife: Lions

<owl:Class rdf:ID="lion">
 <rdfs:comment>Lions are animals that eat
 only herbivores.</rdfs:comment>
 <rdfs:subClassOf rdf:type="#carnivore"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#eats"/>
 <owl:allValuesFrom rdf:resource="#herbivore"/>
 </owl:Restriction>
 </rdfs:subClassOf>

</owl:Class>

African Wildlife: Tasty Plants

<owl:Class rdf:ID="tasty-plant">
 <rdfs:comment>Plants eaten both by herbivores
and carnivores </rdfs:comment>
 <rdfs:comment>
 ???????????????
 <rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="tasty-plant">
 <rdfs:subClassOf rdf:resource=“#plant”/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#eaten_by”/>
 <owl:someValuesFrom> <owl:Class rdf:about=“#herbivore”/>
 </owl:someValuefrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#eaten_by”/>
 <owl:someValuesFrom> <owl:Class rdf:about=“#carnivore”/>
 </owl:someValuefrom>
 </owl:Restriction>
 </rdfsSublassOf>
</owl:Class>

Printer Ontology – Class Hierarchy

Printer Ontology – Products and Devices

<owl:Class rdf:ID="product">
 <rdfs:comment>Products form a class. </rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="padid">
 <rdfs:comment>Printing and digital imaging devices
 form a subclass of products.</rdfs:comment>
 <rdfs:label>Device</rdfs:label>
 <rdfs:subClassOf rdf:resource="#product"/>

</owl:Class>

Printer Ontology – HP Products

<owl:Class rdf:ID="hpProduct">
 <owl:intersectionOf>
 <owl:Class rdf:about="#product"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#manufactured-by"/>
 <owl:hasValue>
 <xsd:string rdf:value="Hewlett Packard"/>
 </owl:hasValue>
 </owl:Restriction>
 </owl:intersectionOf>

</owl:Class>

Printer Ontology – Printers & Personal Printers

<owl:Class rdf:ID="printer">
 <rdfs:comment>Printers are printing and digital
 imaging devices.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#padid"/>

</owl:Class>

<owl:Class rdf:ID="personalPrinter">
 <rdfs:comment>Printers for personal use form
 a subclass of printers.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#printer"/>

</owl:Class>

HP LaserJet 1100se Printers

<owl:Class rdf:ID="1100se">
 <rdfs:comment>1100se printers belong to the 1100
series and cost $450.</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#1100series"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#price"/>
 <owl:hasValue><xsd:integer rdf:value="450"/>
 </owl:hasValue>
 </owl:Restriction>
 </rdfs:subClassOf>

</owl:Class>

A Printer Ontology – Properties

<owl:DatatypeProperty rdf:ID="manufactured-by">
 <rdfs:domain rdf:resource="#product"/>
 <rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingTechnology">
 <rdfs:domain rdf:resource="#printer"/>
 <rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

Outline

1.  A bit of history
2.  Basic Ideas of OWL
3.  The OWL Language
4.  Examples
5.  The OWL Namespace
6.  OWL 2

OWL in OWL

l We present a part of the definition of OWL
in terms of itself

l The following captures some of OWL’s
meaning in OWL
–  It does not capture the entire semantics
–  A separate semantic specification is necessary

l The URI of the OWL definition is defined as
the default namespace

Classes of Classes (Metaclasses)

The class of all OWL classes is itself a
subclass of the class of all RDF Schema
classes:

<rdfs:Class rdf:ID="Class">
 <rdfs:label>Class</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rdfs;Class"/

>
</rdfs:Class>

Metaclasses – Thing and Nothing

l  Thing is most general object class in OWL
l  Nothing is most specific class: the empty object

class
l  The following relationships hold:

Thing Nothing Nothing= ∪

Nothing Thing Nothing Nothing Nothing Nothing= = ∪ = ∩ =∅

Metaclasses – Thing and Nothing

<Class rdf:ID="Thing">
 <rdfs:label>Thing</rdfs:label>
 <unionOf rdf:parseType="Collection">
 <Class rdf:about="#Nothing"/>
 <Class>
 <complementOf rdf:resource="#Nothing"/>
 </Class>
 </unionOf>

</Class>

<Class rdf:ID="Nothing">
 <rdfs:label>Nothing</rdfs:label>
 <complementOf rdf:resource="#Thing"/>

</Class>

Class and Property Equivalences

<rdf:Property rdf:ID="EquivalentClass">
 <rdfs:label>EquivalentClass</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="&rdfs;subClassOf"/>
 <rdfs:domain rdf:resource="#Class"/>
 <rdfs:range rdf:resource="#Class"/>

</rdf:Property>

<rdf:Property rdf:ID="EquivalentProperty">
 <rdfs:label>EquivalentProperty</rdfs:label>
 <rdfs:subPropertyOf rdf:resource="&rdfs;subPropertyOf"/>

</rdf:Property>

Class Disjointness

<rdf:Property rdf:ID="disjointWith">
 <rdfs:label>disjointWith</rdfs:label>
 <rdfs:domain rdf:resource="#Class” />
 <rdfs:range rdf:resource="#Class” />

</rdf:Property>

Equality and Inequality

l  Equality and inequality can be stated between
arbitrary things

–  In OWL Full this statement can also be applied to
classes

l  Properties sameIndividualAs, sameAs and
differentFrom

Equality and Inequality

<rdf:Property rdf:ID="sameIndividualAs">
 <rdfs:domain rdf:resource="#Thing"/>
 <rdfs:range rdf:resource="#Thing"/>

</rdf:Property>

<rdf:Property rdf:ID="sameAs">
 <EquivalentProperty rdf:resource=

 "#sameIndividualAs"/>
</rdf:Property>

Union and Intersection of Classes

l Build a class from a list, assumed to be a
list of other class expressions

<rdf:Property rdf:ID="unionOf">
 <rdfs:domain rdf:resource="#Class"/>
 <rdfs:range rdf:resource="&rdf;List"/>

</rdf:Property>

Restriction Classes

Restrictions in OWL define the class of
those objects that satisfy some attached
conditions

<rdfs:Class rdf:ID="Restriction">
 <rdfs:label>Restriction</rdfs:label>
 <rdfs:subClassOf

rdf:resource="#Class"/>
</rdfs:Class>

Restriction Properties

l  All the following properties (onProperty,
allValuesFrom, minCardinality, etc.) are only
allowed to occur within a restriction definition
–  Their domain is owl:Restriction, but they differ with

respect to their range

Restriction Properties

<rdf:Property rdf:ID="onProperty">
 <rdfs:label>onProperty</rdfs:label>
 <rdfs:domain rdf:resource="#Restriction"/>
 <rdfs:range rdf:resource="&rdf;Property"/>

</rdf:Property>
<rdf:Property rdf:ID="allValuesFrom">

 <rdfs:label>allValuesFrom</rdfs:label>
 <rdfs:domain rdf:resource="#Restriction"/>
 <rdfs:range rdf:resource="&rdfs;Class"/>

</rdf:Property>

Restriction Properties

<rdf:Property rdf:ID="hasValue">
 <rdfs:label>hasValue</rdfs:label>
 <rdfs:domain rdf:resource="#Restriction"/>

</rdf:Property>
<rdf:Property rdf:ID="minCardinality">

 <rdfs:label>minCardinality</rdfs:label>
 <rdfs:domain rdf:resource="#Restriction"/>
 <rdfs:range rdf:resource=

 "&xsd;nonNegativeInteger"/>
</rdf:Property>

Properties

l  owl:ObjectProperty and owl:DatatypeProperty
are special cases of rdf:Property

<rdfs:Class rdf:ID="ObjectProperty">

 <rdfs:label>ObjectProperty</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rdf:Property"/>

</rdfs:Class>

Properties

Symmetric, functional and inverse functional
properties can only be applied to object properties

<rdfs:Class rdf:ID="TransitiveProperty">
 <rdfs:label>TransitiveProperty</rdfs:label>
 <rdfs:subClassOf rdf:resource=
 "#ObjectProperty"/>

</rdfs:Class>

Properties

owl:inverseOf relates two object properties

<rdf:Property rdf:ID="inverseOf">
 <rdfs:label>inverseOf</rdfs:label>
 <rdfs:domain
 rdf:resource="#ObjectProperty"/>
 <rdfs:range
 rdf:resource="#ObjectProperty"/>

</rdf:Property>

Outline

1.  A bit of history
2.  Basic Ideas of OWL
3.  The OWL Language
4.  Examples
5.  The OWL Namespace
6.  OWL 2

Future Extensions of OWL

l  Modules and Imports
l  Defaults
l  Closed World Assumption
l  Unique Names Assumption
l  Procedural Attachments
l  Rules for Property Chaining

Modules and Imports

l  The importing facility of OWL is very trivial:
–  It only allows importing of an entire ontology, not parts

of it
l  Modules in programming languages based on

information hiding: state functionality, hide
implementation details
–  Open question how to define appropriate module

mechanism for Web ontology languages

Defaults

l Many practical knowledge representation
systems allow inherited values to be
overridden by more specific classes in the
hierarchy
–  treat inherited values as defaults

l No consensus has been reached on the
right formalization for the nonmonotonic
behaviour of default values

Closed World Assumption

l  OWL currently adopts the open-world
assumption:
–  A statement cannot be assumed true on the basis of a

failure to prove it
–  On the huge and only partially knowable WWW, this is

a correct assumption
l  Closed-world assumption: a statement is true

when its negation cannot be proved
–  tied to the notion of defaults, leads to nonmonotonic

behaviour

Unique Names Assumption

l  Typical database applications assume that
individuals with different names are indeed
different individuals

l  OWL follows the usual logical paradigm where
this is not the case
–  Plausible on the WWW

l  One may want to indicate portions of the ontology
for which the assumption does or does not hold

Procedural Attachments

l  A common concept in knowledge
representation is to define the meaning of a
term by attaching a piece of code to be
executed for computing the meaning of the
term
–  Not through explicit definitions in the language

l  Although widely used, this concept does not
lend itself very well to integration in a system
with a formal semantics, and it has not been
included in OWL

Rules for Property Chaining

l  OWL does not allow the composition of
properties for reasons of decidability

l  In many applications this is a useful operation
l  One may want to define properties as general

rules (Horn or otherwise) over other
properties

l  Integration of rule-based knowledge
representation and DL-style knowledge
representation is currently an active area of
research

OWL 2 adds

l Qualified cardinality
–  A hand has five digits, one of which is a thumb and four

of which are fingers
l Stronger datatype/range support
l Additional property characteristics

–  E.g., reflexivity

l Role chains
–  E.g., hasParent.hasSibling.hasChild

l A better defined model for punning within DL
–  Allows a term to name both a concept and an individual

l More powerful annotations

Conclusions

l  OWL is the proposed standard for Web ontologies
l  OWL builds upon RDF and RDF Schema:

–  (XML-based) RDF syntax is used
–  Instances are defined using RDF descriptions
–  Most RDFS modeling primitives are used

l  Formal semantics and reasoning support is provided
through the mapping of OWL on logics
–  Predicate logic and description logics have been used

for this purpose
l  While OWL is sufficiently rich to be used in practice,

extensions are in the making
–  They will provide further logical features, including rules

