
Chapter 3 
RDF Schema  

 



Introduction 

l RDF has a very simple data model 
l RDF Schema (RDFS) enriches the data model, 

adding vocabulary and associated semantics for 
–  Classes and subclasses 
–  Properties and sub-properties 
–  Typing of properties 

l Support for describing simple ontologies 
l Adds an object-oriented flavor 
l But with a logic-oriented approach and using 

“open world” semantics 



RDFS is a simple KB Language 

Several widely used Knowledge-Base tools can import and 
export in RDFS, including Stanford’s Protégé KB editor 



RDFS Vocabulary 

l Terms for classes 
–  rdfs:Class   
–  rdfs:subClassOf   

l Terms for properties 
–  rdfs:domain   
–  rdfs:range   
–  rdfs:subPropertyOf   

l Special classes 
–  rdfs:Resource   
–  rdfs:Literal   
–  rdfs:Datatype   

l Terms for collections 
–  rdfs:member   
–  rdfs:Container   
–  rdfs:ContainerMem-

bershipProperty   
l Special properties 

–  rdfs:comment   
–  rdfs:seeAlso   
–  rdfs:isDefinedBy   
–  rdfs:label 

RDFS introduces the following terms, giving 
each a meaning w.r.t. the rdf data model 



Modeling the semantics in logic 

l We could represent any triple with a binary 
predicate, e.g. 
–  type(john, human) 
–  age(john, 32) 
–  subclass(human, animal) 

l But traditionally we model a classes as a unary 
predicate 
–  human(john) 
–  age(john, 32) 
–  subclass(human, animal) 

 



Classes and Instances 

l We must distinguish between 
–  Concrete “things” (individual objects) in the domain: 

Discrete Math, Richard Chang, etc. 
–  Sets of individuals sharing properties called classes: 

lecturers, students, courses etc. 
l Individual objects that belong to a class are 

referred to as instances of that class 
l The relationship between instances and 

classes in RDF is through rdf:type 
 



Classes are Useful 

Classes let us impose restrictions on what 
can be stated in an RDF document using 
the schema  
 

–  As in programming languages 
l  E.g. A+1, where A is an array 

–  Disallow nonsense from being stated 



Preventing nonsensical Statements 

l Discrete Math is taught by Calculus 
– We want courses to be taught by lecturers only  
– Restriction on values of the property “is taught 

by” (range restriction)  
l Room ITE228 is taught by Richard Chang 

– Only courses can be taught 
– This imposes a restriction on the objects to 

which the property can be applied (domain 
restriction) 



Class Hierarchies 

l Classes can be organized in hierarchies 
– A is a subclass of B if every instance of A is 

also an instance of B  
– We also say that B is a superclass of A 

l  A subclass graph needn’t be a tree  
– A class may have multiple superclasses 

l In logic: 
–  subclass(p, q) ó	
 p(x)	
 =>	
 q(x)	
 

–  subclass(p, q) ∧	
 p(x)	
 =>	
 q(x)	
 



Domain and Range 

l The domain and range properties let us associate 
classes with a property’s subject and object, e.g. 

l Only a course can be taught 
–  domain(isTaughtBy, course) 

l Only an academic staff member can teach 
–  range(isTaughtBy, academicStaffMember) 

l Semantics in logic: 
–  domain(pred, aclass) ∧	
 pred(subj, obj) =>	
 aclass(subj)  
–  range(pred, aclass) ∧	
 pred(subj, obj) =>	
 aclass(obj)  
 



Property Hierarchies 

l Hierarchical relationships for properties 
–  E.g., “is taught by” is a subproperty of “involves”  
–  If a course C is taught by an academic staff member 

A, then C also involves Α 
l The converse is not necessarily true 

–  E.g., A may be the teacher of the course C, or a TA 
who grades student homework but doesn’t teach  

l Semantics in logic 
–  subproperty(p, q) ∧ p(subj, obj) =>	
 q(sub,obj) 
–  e.g, subproperty(mother,parent), mother(p1, p2) =>	
 

parent(p1, p2) 



RDF Layer vs RDF Schema Layer 

l  Discrete Math is taught by Richard Chang 
l  The schema is itself written in a formal 

language, RDF Schema, that can express its 
ingredients:  

–  subClassOf, Class, Property, subPropertyOf, 
Resource, etc.  



RDF Schema in RDF 

l RDFS’s modeling primitives are defined using 
resources and properties (RDF itself is used!) 

l To declare that “lecturer” is a subclass of 
“academic staff member” 

–  Define resources lecturer, academicStaffMember, and 
subClassOf 

–  define property subClassOf 
–  Write triple (subClassOf, lecturer, academicStaffMember) 

l We use the XML-based syntax of RDF 



Core Classes 

l rdfs:Resource: class of all resources 
l rdfs:Class: class of all classes 
l rdfs:Literal: class of all literals (strings)  
l rdf:Property: class of all properties 
l rdf:Statement: class of all reified 

statements  



Core Properties 

l rdf:type: relates a resource to its class  
The resource is declared to be an instance of 
that class 

l rdfs:subClassOf: relates a class to one 
of its superclasses 
All instances of a class are instances of its 
superclass 

l rdfs:subPropertyOf: relates a property 
to one of its superproperties 



Core Properties  

l rdfs:domain: specifies the domain of a 
property P 
– The class of those resources that may appear 

as subjects in a triple with predicate P 
–  If the domain is not specified, then any 

resource can be the subject 
l rdfs:range: specifies the range of a 

property P 
– The class of those resources that may appear 

as values in a triple with predicate P 



Examples  

<rdfs:Class rdf:about="#lecturer"> 
 <rdfs:subClassOf rdf:resource="#staffMember"/> 

</rdfs:Class> 

<rdf:Property rdf:ID="phone"> 
  <rdfs:domain rdf:resource="#staffMember"/> 
  <rdfs:range rdf:resource="http://www.w3.org/ 
   2000/01/rdf-schema#Literal"/> 

</rdf:Property> 



Relationships: Core Classes & Properties 

l rdfs:subClassOf and rdfs:subPropertyOf 
are transitive, by definition 

l rdfs:Class is a subclass of rdfs:Resource 
– Because every class is a resource 

l rdfs:Resource is an instance of 
rdfs:Class  
– rdfs:Resource is the class of all resources, so it 

is a class 
l Every class is an instance of rdfs:Class 

– For the same reason 



Subclass Hierarchy of RDFS Primitives 

  
 

rdfs:Resource 

rdfs:Class rdf:Property rdfs:Literal 

rdfs:Datatype rdf:XMLLiteral 

arrows represent the rdfs:subClassOf relation 



Instance Relationships of RDFS Primitives   

  

 

rdfs:Class 

rdfs:Resource rdf:Property rdfs:Literal 

rdfs:Datatype rdf:XMLLiteral 

arrows represent the rdf:type relation 



RDF and RDFS Property Instances 

  

 
rdf:Property 

rdfs:domain 

rdf:range 

rdf:type 

rdfs:subClassOf rdfs:subPropertyOf 

arrows represent the rdf:type relation 



Reification and Containers 

l  rdf:subject: relates a reified statement to its 
subject 

l  rdf:predicate: relates a reified statement to its 
predicate 

l  rdf:object: relates a reified statement to its object 
l  rdf:Bag: the class of bags 
l  rdf:Seq: the class of sequences 
l  rdf:Alt: the class of alternatives 
l  rdfs:Container: a superclass of all container 

classes, including the three above 



Utility Properties 

l  rdfs:seeAlso relates a resource to another 
resource that explains it 

l  rdfs:isDefinedBy: a subproperty of rdfs:seeAlso 
that relates a resource to the place where its 
definition, typically an RDF schema, is found  

l  rfds:comment. Comments, typically longer text, 
can be associated with a resource 

l  rdfs:label. A human-friendly label (name) is 
associated with a resource  



Ex: University Lecturers – Prefix 
<rdf:RDF  

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

     
> 



Ex: University Lecturers -- Classes 
<rdfs:Class rdf:ID="staffMember"> 

 <rdfs:comment>The class of staff members </rdfs:comment> 
</rdfs:Class> 
 
<rdfs:Class rdf:ID="academicStaffMember"> 

 <rdfs:comment>The class of academic staff members </rdfs:comment> 
 <rdfs:subClassOf rdf:resource="#staffMember"/> 

</rdfs:Class> 
 
<rdfs:Class rdf:ID="lecturer"> 

 <rdfs:comment> The class of lecturers. All lecturers are academic staff 
members. 
 </rdfs:comment> 
 <rdfs:subClassOf rdf:resource="#academicStaffMember"/> 

</rdfs:Class> 
 
<rdfs:Class rdf:ID="course"> 

 <rdfs:comment>The class of courses</rdfs:comment> 
</rdfs:Class> 



Ex: University Lecturers -- Properties 
<rdf:Property rdf:ID="isTaughtBy"> 
   <rdfs:comment>Assigns lecturers to courses. </rdfs:comment> 
   <rdfs:domain rdf:resource="#course"/> 
   <rdfs:range rdf:resource="#lecturer"/> 
</rdf:Property> 
<rdf:Property rdf:ID="teaches"> 
   <rdfs:comment>Assigns courses to lecturers. </rdfs:comment> 
   <rdfs:domain rdf:resource="#lecturer"/> 
   <rdfs:range rdf:resource="#course"/> 
</rdf:Property> 
 



Ex: University Lecturers -- Instances 
<uni:lecturer rdf:ID="949318" 

 uni:name="Richard Chang" 
 uni:title="Associate Professor"> 
 <uni:teaches rdf:resource="#CIT1111"/> 
 <uni:teaches rdf:resource="#CIT3112"/> 

</uni:lecturer> 
<uni:lecturer rdf:ID="949352" 

 uni:name="Grigoris Antoniou" 
 uni:title="Professor"> 
 <uni:teaches rdf:resource="#CIT1112"/> 
 <uni:teaches rdf:resource="#CIT1113"/> 

</uni:lecturer> 
<uni:course rdf:ID="CIT1111" 

 uni:courseName="Discrete Mathematics"> 
 <uni:isTaughtBy rdf:resource="#949318"/> 

</uni:course> 
<uni:course rdf:ID="CIT1112" 

 uni:courseName="Concrete Mathematics"> 
 <uni:isTaughtBy rdf:resource="#949352"/> 

</uni:course> 



Example: A University 

<rdfs:Class rdf:ID="lecturer"> 
 <rdfs:comment> 
  The class of lecturers. All lecturers are 

 academic staff members. 
 </rdfs:comment> 
 <rdfs:subClassOf 
rdf:resource="#academicStaffMember"/> 

</rdfs:Class> 



Example: A University 

<rdfs:Class rdf:ID="course"> 
   <rdfs:comment>The class of courses</rdfs:comment> 
</rdfs:Class> 
 

<rdf:Property rdf:ID="isTaughtBy"> 
   <rdfs:comment> 

 Inherits its domain ("course") and range ("lecturer") 
 from its superproperty "involves” 

   </rdfs:comment> 
   <rdfs:subPropertyOf rdf:resource="#involves"/> 
</rdf:Property> 



Example: A University 

<rdf:Property rdf:ID="phone"> 
   <rdfs:comment> 
      It is a property of staff members 
      and takes literals as values. 
   </rdfs:comment> 
   <rdfs:domain rdf:resource="#staffMember"/> 
   <rdfs:range rdf:resource="http://www.w3.org/

2000/01/rdf-schema#Literal"/> 
</rdf:Property> 



RDF and RDFS Namespaces 

l The RDF, RDFS and OWL namespaces 
specify some constraints on the ‘languages’ 
– http://www.w3.org/1999/02/22-rdf-syntax-ns# 
– http://www.w3.org/2000/01/rdf-schema# 
– http://www.w3.org/2002/07/owl# 

l Strangely, each uses terms from all three to 
define its own terms 

l Don’t be confused: the real semantics of 
the terms isn’t specified in the namespace 
files 



RDF Namespace 
<rdf:RDF 
   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
   xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
   xmlns:owl="http://www.w3.org/2002/07/owl#"  
   xmlns:dc="http://purl.org/dc/elements/1.1/"> 
 

 <owl:Ontology  
     rdf:about="http://www.w3.org/2000/01/rdf-schema#" 
     dc:title="The RDF Schema vocabulary (RDFS)"/> 
 

<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Resource"> 
  <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> 
  <rdfs:label>Resource</rdfs:label> 
  <rdfs:comment>The class resource, everything.</rdfs:comment> 
</rdfs:Class> 

… 



RDF Namespace example 

This example shows how RDFS terms are used to 
say something important about the RDF predicate 
property 
 

<rdf:Property 
          rdf:ID="predicate" 

      rdfs:comment="Identifies the property of a 
            statement in reified form"/> 

   <rdfs:domain rdf:resource="#Statement"/> 
   <rdfs:range rdf:resource="#Property"/> 
</rdf:Property> 



RDF Namespace 

Define rdf:Resource and rdf:Class as instances of 
rdfs:Class & rdf:Class as a subclass of rdf:Resource 
 

<rdfs:Class rdf:ID="Resource" 
  rdfs:comment="The most general class"/> 
   

<rdfs:Class rdf:ID="Class" 
      rdfs:comment="The concept of classes. 
       All classes are resources"/> 
  <rdfs:subClassOf rdf:resource="#Resource"/> 

</rdfs:Class> 



RDF Namespace 

Define rdf:Resource and rdf:Class as instances of 
rdfs:Class & rdf:Class as a subclass of rdf:Resource 
 

<rdfs:Class rdf:ID="Resource" 
  rdfs:comment="The most general class"/> 
   

<rdfs:Class rdf:ID="Class" 
      rdfs:comment="The concept of classes. 
       All classes are resources"/> 
  <rdfs:subClassOf rdf:resource="#Resource"/> 

</rdfs:Class> 

rdf: 
Resource 

rdf: 
Class 

rdfs: 
Class 

rdf:type 
 

rdfs:subclass 
 

rdf:type 
 



RDFS Namespace 

<rdf:RDF … xmlns:dc="http://purl.org/dc/elements/1.1/"> 
… 
<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Class"> 
  <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> 
  <rdfs:label>Class</rdfs:label> 
  <rdfs:comment>The class of classes.</rdfs:comment> 
  <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> 
</rdfs:Class> 
 

<rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#subClassOf"> 
  <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> 
  <rdfs:label>subClassOf</rdfs:label> 
  <rdfs:comment>The subject is a subclass of a class.</rdfs:comment> 
  <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/> 
  <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/> 
</rdf:Property> 
… 



Namespaces vs. Semantics 

l Consider rdfs:subClassOf  
– The namespace specifies only that it applies to 

classes and has a class as a value 
– The meaning of being a subclass not specified 

l The meaning cannot be expressed in RDF 
–  If it could RDF Schema would be unnecessary  

l  External definition of semantics required 
– Respected by RDF/RDFS processing software 



RDFS vs. OO Models 

l In OO models, an object class defines the 
properties that apply to it 
–  Adding a new property means modifying the class 

l In RDF, properties are defined globally and aren’t 
encapsulated as attributes in the class definition 
–  One can define new properties w/o changing the class 
–  Properties can have properties 

:mother rdfs:subPropertyOf :parent; rdf:type :FamilyRelation. 

–  You can’t narrow the domain and range of properties in 
a subclass 



Example 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix bio: <http://example.com/biology#> . 

bio:Animal a rdfs:Class. 
Bio:offspring a rdfs:Property; 

 rdfs:domain bio:Animal; 
 rdfs:range bio:Animal. 

bio:Human rdfs:subClassOf bio:Animal. 
bio:Dog rdfs:subClassOf bio:Animal. 
:fido a bio:Dog. 
:john a bio:Human; 

 bio:offspring :fido. 

There is no way to say that 
the offspring of humans are 
humans and the offspring of 
dogs are dogs.   



Example 

Bio:child rdfs:subPropertyOf bio:offspring; 
 rdfs:domain bio:Human; 
 rdfs:range bio:Human. 

Bio:puppy rdfs:subPropertyOf bio:offspring; 
 rdfs:domain bio:Dog; 
 rdfs:range bio:Dog. 

:john bio:child :mary. 
:fido bio:puppy :rover. 

What do we know after 
each of the last two 
triples are asserted?   

Suppose we also assert: 
•  :john bio:puppy :rover 
•  :john bio:child :fido  



Not like types in OO systems 

l Classes differ from types in OO systems in how 
they are used. 
– They are not constraints on well-formedness 

l The lack of negation and the open world 
assumption in RDF+RDFS make it impossible to 
detect contradictions 
– Can’t say that Dog and Human are disjoint classes 
– Not knowing that there are individuals who are both 

doesn’t mean it’s not true 



No disjunctions or union types 

What does this mean? 
 

Bio:Human rdfs:subClassOf bio:Animal. 
bio:Cat rdfs:subClassOf bio:Animal. 
Bio:Dog rdfs:subClassOf bio:Animal. 
bio:hasPet a rdfs:Property; 
 rdfs:domain bio:Human; 
 rdfs:range bio:Dog; 
 rdfs:range bio:Cat. 



What do we want to say? 

l There are many different possibilities 
– Only a dog or a cat can be the object of a hasPet 

property. 
– Dogs and cats and maybe other animals are 

possible as pets. 
– Dogs and cats and maybe other things, not 

necessarily animals, are possible as pets. 
– All dogs and all cats are pets. 
–  It is possible for some dogs and for some cats to be 

pets. 
l Not all of these can be said in RDF+RDFS 



What do we want to say? 

animal 

cat dog human 

pet 

subclass 
subclass 

subclass 

property 

hasPet 

subclass 

domain 

range 

subclass 

subclass subclass 



Classes and individuals are not disjoint 

l  In OO systems a thing is either a class or object 
–  Many KR systems are like this: you are either an 

instance or a class, not both. 
l Not so in RDFS 

bio:Species rdf:type rdfs:Class. 
bio:Dog rdf:type rdfs:Species; rdfs:subClassOf bio:Animal. 
:fido rdf:type bio:Dog. 

l Adds richness to the language but causes 
problems, too 
–  In OWL lite and OWL DL you can’t do this. 
–  OWL has it’s own notion of a Class, owl:Class 



Inheritance is simple 

l No defaults, overriding, shadowing 
l What you say about a class is necessarily true of 

all sub-classes 
l A class’ properties are not inherited by its 

members. 
–  Can’t say “Dog’s are normally friendly” or even “All dogs 

are friendly” 
–  The meaning of the Dog class is a set of individuals 



Set Based Model Theory Example 

World Interpretation 

Daisy isA Cow 

Cow kindOf Animal 

Mary isA Person 

Person kindOf Animal 

Z123ABC isA Car 

Δ	



{... list of facts  
   about individuals ...} 

a 

b 

Model 

Mary drives Z123ABC 



Is RDF(S) better than XML? 

Q: For a specific application, should I use XML or RDF?  
A: It depends…  
l  XML's model is  

–  a tree, i.e., a strong hierarchy  
–  applications may rely on hierarchy position 
–  relatively simple syntax and structure  
–  not easy to combine trees  

l  RDF's model is  
–  a loose collections of relations  
–  applications may do “database”-like search  
–  not easy to recover hierarchy  
–  easy to combine relations in one big collection  
–  great for the integration of heterogeneous information  



Problems with RDFS 
l RDFS too weak to describe resources in sufficient detail, 
e.g.:  
– No localised range and domain constraints 

Can’t say that the range of hasChild is person when applied to 
persons and elephant when applied to elephants 

– No existence/cardinality constraints 
Can’t say that all instances of person have a mother that is also a 
person, or that persons have exactly 2 parents 

– No transitive, inverse or symmetrical properties 
Can’t say that isPartOf is a transitive property, that hasPart is the 
inverse of isPartOf or that touches is symmetrical 

l We need RDF terms providing these and other features. 



Conclusions 

l  RDF is a simple data model based on a graph 
–  Independent on any serialization (e.g., XML or N3) 

l  RDF has a formal semantics providing a dependable basis 
for reasoning about the meaning of RDF expressions 

l  RDF has an extensible URI-based vocabulary 
l  RDF has an XML serialization and can use values 

represented as XML schema datatypes 
l   Anyone can make statements about any resource (open 

world assumption) 
l  RDFS builds on RDF’s foundation by adding vocabulary 

with well defined semantics (e.g., Class, subClassOf, etc.) 
l  OWL addresses some of RDFS’s limitations adding 

richness (and complexity). 


