Chapter 2
Structured Web
Documents in XML

Adapted from slides from Grigoris
Antoniou and Frank van Harmelen

Outline

(1) Introduction
(2) XML details
(3) Structuring
- DTDs
- XML Schema
(4) Namespaces
(5) Accessing, querying XML documents: XPath
(6) Transformations: XSLT

Role of XML in the Semantic Web

e Most of the Semantic Web involves ideas and
languages at a fairly abstract level
e.g., for defining ontologies, publishing data using them

e But we also need a practical way of encoding the
abstract languages

e Today’s Web technology is (still) heavily based on
XML standards

e So XML is (1) the source for many key SW
concepts technology bits; (2) a potential
alternative the SW must improve on; and (3) a
common serialization for SW data

To paraphrase Jamie Zawinski

Some people, when confronted
with a problem, think, "I know,
I'll use XML."

Now they have two problems.

“Some people, when confronted with a
problem, think "I know, I'll use regular
expressions." Now they have two problems.”
-- Wikiquote




History

e XML’s roots are in SGML
- Standard Generalized Markup Language

- A metalanguage for defining document markup
languages

- Very extensible, but very complicated
e HTML was defines using SGML

- It's a markup language, not a markup metalanguage
e XML proposal to W3C in July 1996

- Idea: a simplified SGML could greatly expand the power
and flexibility of the Web

- First XML Meeting, August 1996, Seattle
e Evolving series of W3C recommendations

(1) Introduction

An HTML Example

<h2>Nonmonotonic Reasoning: Context-
Dependent Reasoning</h2>
<i>by <b>V. Marek</b> and
<b>M. Truszczynski</b></i><br>
Springer 1993<br>
ISBN 0387976892

(1) Introduction

The Same Example in XML

<book>

<titte>Nonmonotonic Reasoning: Context-
Dependent Reasoning</title>

<author>V. Marek</author>

<author>M. Truszczynski</author>

<publisher>Springer</publisher>

<year>1993</year>

<ISBN>0387976892</ISBN>
</book>

(1) Introduction

HTML versus XML: Similarities

e Both use tags (e.g. <h2> and </year>)
e Tags may be nested (tags within tags)

e Human users can read and interpret both HTML
and XML representations quite easily

... But how about machines?

(1) Introduction




Problems Interpreting HTML Documents

An intelligent agent trying to retrieve the names
of the authors of the book

- Authors’ names could appear immediately after
the title

- or immediately after the word “by” or “van”if it's
in Dutch

— Are there two authors?

- Or just one, called “V. Marek and M.
Truszczynski’?

(1) Introduction

HTML vs XML: Structural Information

e HTML documents do not contain structural
information: pieces of the document and their
relationships.

e XML more easily accessible to machines because
- Every piece of information is described

- Relations are also defined through the nesting
structure

- E.g., <author> tags appear within the <book>
tags, so they describe properties of the
particular book

(1) Introduction

HTML vs XML: Structural Information

e A machine processing the XML document would
be able to deduce that

- the author element refers to the enclosing
book element

- rather than by proximity considerations or other
heuristics

o XML allows the definition of constraints on values
- E.g. a year must be a number of four digits

(1) Introduction

HTML vs. XML: Formatting

e The HTML representation provides more than the
XML representation:

- Formatting of the document is also described

e The main use of an HTML document is to display
information: it must define formatting

e XML: separation of content from display
- same information can be displayed in different
ways
- Presentation specified by documents using
other XML standards (CSS, XSL)

(1) Introduction




HTML vs. XML: Another Example

In HTML
<h2>Relationship matter-energy</h2>
<i> E=M x c2 </i>

In XML

<equation>
<gloss>Relationship matter energy </gloss>
<leftside> E </leftside>
<rightside> M x ¢c2 </rightside>

</equation>

(1) Introduction

HTML vs. XML: Different Use of Tags

e Both HTML documents use the same tags
e The XML documents use completely different tags

e HTML tags come from and finite, pre-defined
collection

e They define properties for display: font, color, lists
e XML tags not fixed: user definable tags

o XML meta markup language: language for
defining markup languages

(1) Introduction

XML Vocabularies

e Web applications must agree on common
vocabularies to communicate and collaborate

e Communities and business sectors define their
specialized vocabularies
- mathematics (MathML)
- bioinformatics (BSML)
- human resources (HRML)
- Syndication (RSS)
- Vector graphics (SVG)

(1) Introduction

Outline

(1) Introduction
(2) Detailed Description of XML
(3) Structuring
- DTDs
- XML Schema
(4) Namespaces
(5) Accessing, querying XML documents: XPath
(6) Transformations: XSLT

(2) XML details




The XML Language

An XML document consists of
e a prolog
e a number of elements

e an optional epilog (not discussed, not
used much)

(2) XML details

Prolog of an XML Document
The prolog consists of

e an XML declaration and

e an optional reference to external structuring
documents

<?xml version="1.0" encoding="UTF-16"?>

<!IDOCTYPE book SYSTEM "book.dtd">

(2) XML details

XML Elements

e Elements are the “things” the XML document talks
about

- E.g., books, authors, publishers
e An element consists of:
- an opening tag
- the content
- a closing tag
<lecturer> David Billington </lecturer>

(2) XML details

XML Elements

e Tag names can be chosen almost freely.

e The first character must be a letter, an
underscore, or a colon

e No name may begin with the string “xml” in
any combination of cases
- E.g. “Xml”, “xML”

(2) XML details




Content of XML Elements

e Content is what's between the tags
e |t can be text, or other elements, or nothing
<lecturer>
<name>David Billington</name>
<phone> +61 - 7 — 3875 507 </phone>
</lecturer>

e If there is no content, then the element is called
empty; it can be abbreviated as follows:

<lecturer/> = <lecturer></lecturer>

(2) XML details

XML Attributes

e An empty element is not necessarily meaningless
- It may have properties expressed as attributes

e An attribute is a name-value pair inside the
opening tag of an element

<lecturer
name="David Billington"

phone="+61 - 7 - 3875 507 />

(2) XML details

XML Attributes: An Example

<order orderNo="23456"
customer="John Smith"

date="October 15, 2002” >
<item itemNo="a528" quantity="1“ />
<item itemNo="c817" quantity="3" />
</order>

(2) XML details

The Same Example without Attributes

<order>
<orderNo>23456</orderNo>
<customer>John Smith</customer>
<date>October 15, 2002</date>
<item>
<itemNo>a528</itemNo>
<quantity>1</quantity>
</item>
<item>
<itemNo>c817</itemNo>
<quantity>3</quantity>
</item>
</order> (2) XML details




XML Elements vs. Attributes

e Attributes can be replaced by elements

e \When to use elements and when
attributes is a matter of taste

e But attributes cannot be nested

(2) XML details

Further Components of XML Docs

e Comments
- A piece of text that is to be ignored by parser
<!-- This is a comment -->

e Processing Instructions (Pls)
- Define procedural attachments

<?stylesheet type="text/css*
href="mystyle.css"?>

(2) XML details

Well-Formed XML Documents

Syntactically correct documents must adhere to
many rules

- Only one outermost element (the root element)

- Each element contains an opening and a
corresponding closing tag

Tags may not overlap

<author><name>Lee Hong</author></name>
Attributes within an element have unique names
Element and tag names must be permissible

(2) XML details

The Tree Model of XML Docs

The tree representation of an XML document is
an ordered labeled tree:

- There is exactly one root

- There are no cycles

- Each non-root node has exactly one parent
- Each node has a label.

- The order of elements is important

- ... but the order of attributes is not important

(2) XML details




Tree Model of XML Documents

<email>
<head>
<from name="Michael Maher"
address="michaelmaher@cs.gu.edu.au" />
<to name="Grigoris Antoniou"
address="grigoris@cs.unibremen.de" />
<subject>Where is your draft?</subject>
</head>
<body>
Grigoris, where is the draft of the paper you
promised me last week?
</body>

</email>
(2) XML details

Tree Model of XML Documents

1
grigorise

1
Grigoris E
Antcatou cs -unibremen. dal

Nichaal
Nabar

Whara e

c5.Qu.edu.3u yeur :r;xt“

I michaslnahers

(2) XML details

Outline

(1) Introduction
(2) Detailed Description of XML
(3) Structuring
- DTDs
- XML Schema
(4) Namespaces
(5) Accessing, querying XML documents: XPath
(6) Transformations: XSLT

Structuring XML Documents

e Some XML documents are required to follow
constraints defined in a “template” that can...

- define all the element and attribute names that
may be used

- define the structure
- what values an attribute may take

- which elements may or must occur within other
elements, etc.

e If such structuring information exists, the
document can be validated

(3) Structure




Structuring XML Documents

e An XML document is valid if
- it is well-formed
- respects the structuring information it uses
e Ways to define the structure of XML documents:

- DTDs (Document Type Definition) came first,
was based on SGML'’s approach.

- XML Schema (aka XML Schema Definition,
XSD) is more recent and expressive

- RELAX NG and DSDs are two alternatives

(3) Structure

DTD: Element Type Definition

<lecturer>
<name>David Billington</name>
<phone> +61 - 7 — 3875 507 </phone>
</lecturer>

DTD for above element (and all lecturer elements):

<IELEMENT lecturer (name, phone) >
<IELEMENT name (#PCDATA) >
<IELEMENT phone (#PCDATA) >

(3) Structure: DTDs

The Meaning of the DTD

e The element types lecturer, name, and phone
may be used in the document

e A lecturer element contains a name element and
a phone element, in that order (sequence)

e A name element and a phone element may have
any content

- In DTDs, #PCDATA is the only atomic type for
elements

- PCDATA = “parsed character data”

(3) Structure: DTDs

Disjunction in Element Type Definitions

e We express that a lecturer element contains
either a name element or a phone element as
follows:

<IELEMENT lecturer ( name | phone )>

e A lecturer element contains a name element
and a phone element in any order.

<IELEMENT lecturer((name,phone)|
(phone,name))>

e Do you see a problem with this approach?

(3) Structure: DTDs




Example of an XML Element

<order orderNo="23456"
customer="John Smith"
date="October 15, 2002">
<item itemNo="a528" quantity="1" />

<item itemNo="c817" quantity="3" />
</order>

(3) Structure: DTDs

The Corresponding DTD
<IELEMENT order (item+)>

<IATTLIST order
orderNo ID #REQUIRED
customer CDATA #REQUIRED
date CDATA #REQUIRED >

<I[ELEMENT item EMPTY>

<IATTLIST item
itemNo ID #REQUIRED
quantity CDATA #REQUIRED
comments CDATA  #IMPLIED >

(3) Structure: DTDs

Comments on the DTD

e The item element type is defined to be empty
- i.e., it can contain no elements
e + (after item) is a cardinality operator:

- Specifies how many item elements can be in
an order

- ?: appears zero times or once
- *: appears zero or more times
- +: appears one or more times
- No cardinality operator means exactly once

(3) Structure: DTDs

Comments on the DTD

e In addition to defining elements, we define
attributes

e This is done in an attribute list containing:
- Name of the element type to which the list
applies
- Alist of triplets of attribute name, attribute type,
and value type

e Attribute name: A name that may be used in an
XML document using a DTD

(3) Structure: DTDs

10



DTD: Attribute Types

e Similar to predefined data types, but limited
selection

e The most important types are
- CDATA, a string (sequence of characters)

- ID, a name that is unique across the entire XML
document (~ DB key)

- IDREF, a reference to another element with an ID
attribute carrying the same value as the IDREF attribute
(~ DB foreign key)

- IDREFS, a series of IDREFs

- (v1] . .. |vn), an enumeration of all possible values

e Limitations: no dates, number ranges etc.
(3) Structure: DTDs

DTD: Attribute Value Types

¢ #/REQUIRED

- Attribute must appear in every occurrence of
the element type in the XML document

e #IMPLIED
- The appearance of the attribute is optional
o #FIXED "value"
- Every element must have this attribute
e "value"
- This specifies the default value for the attribute

(3) Structure: DTDs

Referencing with IDREF and IDREFS

<IELEMENT family (person*)>
<IELEMENT person (name)>
<IELEMENT name (#PCDATA)>
<IATTLIST person

id ID #REQUIRED
mother IDREF #IMPLIED
father IDREF #IMPLIED

children  IDREFS #IMPLIED >

(3) Structure: DTDs

An XML Document Respecting the DTD

<family>

<person id="bob" mother="mary" father="peter">
<name>Bob Marley</name>

</person>

<person id="bridget" mother="mary">
<name>Bridget Jones</name>

</person>

<person id="mary" children="bob bridget">
<name>Mary Poppins</name>

</person>

<person id="peter" children="bob">
<name>Peter Marley</name>

</person>

</family>
(3) Structure: DTDs

11



A DTD for an Email Element

<IELEMENT email (head,body)>
<IELEMENT head (from,to+,cc*,subject)>
<I[ELEMENT from EMPTY>

<IATTLIST from
name CDATA #IMPLIED

address CDATA #REQUIRED>
<I[ELEMENT to EMPTY>

<IATTLIST to
name  CDATA #IMPLIED

address CDATA #REQUIRED>

(3) Structure: DTDs

A DTD for an Email Element

<IELEMENT cc EMPTY>

<IATTLIST cc
name CDATA #IMPLIED

address CDATA #REQUIRED>
<IELEMENT subject (#PCDATA) >
<IELEMENT body (text,attachment*) >
<I[ELEMENT text (#PCDATA) >
<IELEMENT attachment EMPTY >
<IATTLIST attachment

encoding (mimelbinhex)  "mime"

file CDATA #REQUIRED>

(3) Structure: DTDs

Interesting Parts of the DTD

e A head element contains (in order):
- a from element
- at least one to element
- zero or more cc elements
- a subject element
e In from, to, and cc elements
- the name attribute is not required
- the address attribute is always required

(3) Structure: DTDs

Interesting Parts of the DTD

e A body element contains
- a text element

- possibly followed by a number of attachment
elements

e The encoding attribute of an attachment
element must have either the value “mime” or
‘binhex”

- “mime” is the default value

(3) Structure: DTDs

12



Remarks on DTDs

e A DTD can be interpreted as an Extended
Backus-Naur Form (EBNF)

- <IELEMENT email (head,body)>
- is equivalent to email ::= head body
e Recursive definitions possible in DTDs
- <IELEMENT bintree
((bintree root bintree)|lemptytree)>

(3) Structure: DTDs

Outline

(1) Introduction
(2) Detailed Description of XML
(3) Structuring
- DTDs
- XML Schema
(4) Namespaces
(5) Accessing, querying XML documents: XPath
(6) Transformations: XSLT

XML Schema

e XML Schema is a significantly richer language
for defining the structure of XML documents

e Syntax is based on XML itself
=> separate tools to handle them not needed

e Reuse and refinement of schemas
=> can expand or delete existing schemas

e Sophisticated set of data types, compared to
DTDs (which only supports strings)

e W3C published the XML Schema
recommendation in 2001

(3) Structure: XML Schema

XML Schema

e An XML schema is an element with an opening
tag like
<schema
"http://lwww.w3.0rg/2000/10/XMLSchema"
version="1.0">
e Structure of schema elements
- Element and attribute types using data types

(3) Structure: XML Schema

13



Element Types

<element name="email"/>

<element name="head"
minOccurs="1
maxOccurs="1"/>

<element name="to" minOccurs="1"/>

Cardinality constraints:
- minOccurs="x" (default value 1)
- maxOccurs="x" (default value 1)
- Generalizations of *,?,+ offered by DTDs

(3) Structure: XML Schema

Attribute Types

<attribute name="id" type="ID*“ use="required"/>
<attribute name="speaks" type="Language"
use="default" value="en"/>

e Existence: use="x", where x may be optional or
required

e Default value: use="x" value="...", where x may
be default or fixed

(3) Structure: XML Schema

Data Types

e There are many built-in data types
- Numerical data types: integer, Short etc.
- String types: string, ID, IDREF, CDATA efc.
- Date and time data types: time, Month etc.
e There are also user-defined data types

- simple data types, which can’t use elements
or attributes

- complex data types, which can use these

(3) Structure: XML Schema

Complex Data Types

Complex data types are defined from existing
data types by defining some attributes (if any)
and using:
- sequence, a sequence of existing data type
elements (order is important)
- all, a collection of elements that must appear
(order is not important)
- choice, a collection of elements, of which one
will be chosen

(3) Structure: XML Schema

14



A Data Type Example

<complexType name="lecturerType">
<sequence>
<element name="firsthame" type="string"
minOccurs="0"“ maxOccurs="unbounded"/>
<element name="lastname" type="string"/>
</sequence>
<attribute name="title" type="string"
use="optional"/>
</complexType>

(3) Structure: XML Schema

Data Type Extension

Already existing data types can be extended
by new elements or attributes. Example:

<complexType name="extendedLecturerType">
<extension base="lecturerType">
<sequence>
<element name="email" type="string"
minOccurs="0" maxOccurs="1"/>
</sequence>
<attribute name="rank" type="string"
use="required"/>
</extension>
</complexType>

(3) Structure: XML Schema

Resulting Data Type

<complexType name="extendedLecturerType">
<sequence>
<element name="firstname" type="string"
minOccurs="0" maxOccurs="unbounded"/>
<element name="lastname" type="string"/>
<element name="email" type="string"
minOccurs="0" maxOccurs="1"/>
</sequence>
<attribute name="title" type="string" use="optional"/>
<attribute name="rank" type="string" use="required"/>
</complexType>

(3) Structure: XML Schema

Data Type Extension

A hierarchical relationship exists between the
original and the extended type
- Instances of the extended type are also
instances of the original type
- They may contain additional information, but
neither less information, nor information of
the wrong type

(3) Structure: XML Schema

15



Data Type Restriction Example of Data Type Restriction

e An existing data type may be restricted by <complexType name="restrictedLecturerType">

adding constraints on certain values <restriction base="lecturerType">
e Restriction is not the opposite from extension <sequence>
- Restriction is not achieved by deleting <element name="firstname" type="string"
elements or attributes minOccurs="1" maxOccurs="2"/>
e The following hierarchical relationship still </sequence>
holds: <attribute name="title" type="string"
- Instances of the restricted type are also use="required"/>

instances of the original type

- They satisfy at least the constraints of the
original type

</restriction>
</complexType>

(3) Structure: XML Schema (3) Structure: XML Schema

Restriction of Simple Data Types Data Type Restriction: Enumeration

<simpleType name="dayOfWeek">
<restriction base="string">
<enumeration value="Mon"/>
<enumeration value="Tue"/>

<simpleType name="dayOfMonth">
<restriction base="integer">
<mininclusive value="1"/>

<maxlnclusive value="31"/> <enumeration value="Wed"/>
</restriction> <enumeration value="Thu"/>
</simpleType> <enumeration value="Fri"/>

<enumeration value="Sat"/>
<enumeration value="Sun"/>
</restriction>
</simpleType>

(3) Structure: XML Schema (3) Structure: XML Schema




XML Schema: The Email Example

<element name="email" type="emailType"/>

<complexType name="emailType">
<sequence>
<element name="head" type="headType"/>
<element name="body" type="bodyType"/>
</sequence>
</complexType>

(3) Structure: XML Schema

XML Schema: The Email Example

<complexType name="headType">
<sequence>
<element name="from" type="nameAddress"/>
<element name="to" type="nameAddress"
minOccurs="1" maxOccurs="unbounded"/>
<element name="cc" type="nameAddress"
minOccurs="0" maxOccurs="unbounded"/>
<element name="subject" type="string"/>
</sequence>
</complexType>

(3) Structure: XML Schema

XML Schema: The Email Example

<complexType name="nameAddress">
<attribute name="name" type="string"
use="optional"/>
<attribute name="address"
type="string" use="required"/>
</complexType>

e Similar for bodyType

(3) Structure: XML Schema

Outline

(1) Introduction
(2) Detailed Description of XML
(3) Structuring
- DTDs
- XML Schema
(4) Namespaces
(5) Accessing, querying XML documents: XPath
(6) Transformations: XSLT

17



Namespaces

An Example

<vuinstructors xmins:vu="http://www.vu.com/empDTD"
xmlins:gu="http://www.gu.au/empDTD"
xmins:uky="http://www.uky.edu/empDTD" >

<uky:faculty uky:title="assistant professor"
uky:name="John Smith"
uky:department="Computer Science"/>

<gu:academicStaff gu:title="lecturer"
gu:name="Mate Jones"
gu:school="Information Technology"/>

</vu:instructors>

(4) Namespaces

e An XML document may use more than one
DTD or schema
e Since each structuring document was
developed independently, name clashes may
appear
e The solution is to use a different prefix for
each DTD or schema
- prefix:name
e Namespaces are even more important in RDF
(4) Namespaces
Namespace Declarations
o Namespaces are declared within an element
and can be used in that element and any of its
children (elements and attributes)
e A namespace declaration has the form:
- xmins:prefix="location"
- location is the address of the DTD or schema
e |[f a prefix is not specified: xmIns="location"

then the location is used as the default prefix

(4) Namespaces

Outline

(1) Introduction
(2) Detailed Description of XML
(3) Structuring
- DTDs
- XML Schema
(4) Namespaces
(5) Accessing, querying XML docs: XPath
(6) Transformations: XSLT

18



Addressing & Querying XML Documents

e In relational databases, parts of a database can
be selected and retrieved using SQL

- Also very useful for XML documents
- Query languages: XQuery, XQL, XML-QL

e The central concept of XML query languages is a
path expression

- Specifies how a node or a set of nodes, in the
tree representation of the XML document can
be reached

(5) XPath

XPath

e XPath is core for XML query languages

e Language for addressing parts of an XML
document.

- It operates on the tree data model of XML
- It has a non-XML syntax

e Two versions
- XPath 1.0 (1999) is widely supported

- XPath 2.0 (2007) is a more expressive subset of
Xquery and not as widely supported

Types of Path Expressions

e Absolute (starting at the root of the tree)
- Syntactically they begin with the symbol /

- It refers to the root of the document (situated
one level above the root element of the
document)

e Relative to a context node

(5) XPath

(5) XPath
An XML Example
<library location="Bremen">
<author name="Henry Wise"> =
<book title="Artificial Intelligence"/> "TT
<book title="Modern Web Services"/>
<book title="Theory of Computation"/>
</author>
<author name="William Smart">
<book title="Artificial Intelligence"/>
</author>
<author name="Cynthia Singleton">
<book title="The Semantic Web"/>
<book title="Browser Technology Revised"/>
</author>
</library>
(5) XPath

19



Tree Representation

(5) XPath

Examples of Path Expressions in XPath

eQ1: /library/author

- Addresses all author elements that are children of the
library element node immediately below the root

- It1/...Itn, where each ti+1 is a child node of ti, is a path
through the tree representation

e Q2: //author

- Here /I says that we should consider all elements in the
document and check whether they are of type author

- This path expression addresses all author elements
anywhere in the document

(5) XPath

Examples of Path Expressions in XPath

e Q3: /library/@location

- Addresses the location attribute nodes within library
element nodes

- The symbol @ is used to denote attribute nodes

e Q4: /Ibook/@title="Artificial Intelligence”

- Addresses all title attribute nodes within book elements
anywhere in the document, which have the value
“Artificial Intelligence”

(5) XPath

Tree Representation of Query 4

(5) XPath

20



Examples of Path Expressions in XPath

¢ Q5: /book[@title="Artificial Intelligence"]

- Addresses all books with title “Atrtificial
Intelligence”

- A test in brackets is a filter expression that
restricts the set of addressed nodes.

- Note differences between Q4 and Q5:

e Query 5 addresses book elements, the title of
which satisfies a certain condition.

e Query 4 collects title attribute nodes of book
elements

(5) XPath

Tree Representation of Query 5

Examples of Path Expressions in XPath

Q6: Address first author element node in the XML
document

/lauthor[1]

Q7: Address last book element within the first

author element node in the document
llauthor[1]/book[last()]

Q8: Address all book element nodes without a title
attribute

IIbook[not @title]

(5) XPath

General Form of Path Expressions

e A path expression consists of a series of steps,
separated by slashes
e A step consists of
- An axis specifier,
- A node test, and
- An optional predicate

(5) XPath

21



General Form of Path Expressions

e An axis specifier determines the tree relationship
between the nodes to be addressed and the
context node

- E.g. parent, ancestor, child (the default), sibling,
attribute node

- I/ is such an axis specifier: descendant or self

(5) XPath

General Form of Path Expressions

e A node test specifies which nodes to address

- The most common node tests are element
names

- E.g., * addresses all element nodes
- comment() addresses all comment nodes

(5) XPath

General Form of Path Expressions

e Predicates (or filter expressions) are optional
and are used to refine the set of addressed
nodes

- E.g., the expression [1] selects the first node
- [position()=last()] selects the last node
- [position() mod 2 =0] selects the even
nodes
e XPath has a more complicated full syntax.

- We have only presented the abbreviated

syntax
(5) XPath

Outline

(1) Introduction
(2) Detailed Description of XML
(3) Structuring
- DTDs
- XML Schema
(4) Namespaces

(5) Accessing, querying XML documents: XPath

(6) Transformations: XSLT

22



Displaying XML Documents

<author>
<name>Grigoris Antoniou</name>
<affiliation>University of Bremen</affiliation>
<email>ga@tzi.de</email>

</author>

may be displayed in different ways:

Grigoris Antoniou Grigoris Antoniou
University of Bremen University of Bremen

ga@tzi.de ga@tzi.de

Idea: use an external style sheet to transform an
XML tree into an HTML or XML tree

(5) XSLT transformations

Style Sheets

e Style sheets can be written in various
languages

- E.g. CSS2 (cascading style sheets level 2)
- XSL (extensible stylesheet language)
e XSL includes
- a transformation language (XSLT)
- a formatting language
- Both are XML applications

(5) XSLT transformations

XSL Transformations (XSLT)

AN
XML
o XSLT specifies rules with

which an input XML X Ty

document is transformed to > Q > | Por
ETC.

- another XML document . XSLT Processor

- an HTML document

- plain text

e The output document may use the same DTD or
schema, or a completely different vocabulary

o XSLT can be used independently of the
formatting language

(5) XSLT transformations

XSLT

<7xml version="1.0"

e Move data and metadata from one  ststlesheet xain

<1-- created 2005-12-12-->

XML representation to another a0t nemoamlT
Eizé;gemplate match="/">

e XSLT is chosen when applications ferstii sl el of

that use different DTDs or schemas = %%, ..
need to communicate el

e XSLT can be used for machine processing of
content without any regard to displaying the
information for people to read.

e In the following example we use XSLT only to
display XML documents as HTML

(5) XSLT transformations

23



XSLT Transformation into HTML

<author>
<name>Grigoris Antoniou</name>
<affiliation>University of Bremen</affiliation>
. <email>ga@tzi.de</email>
<xsl:template match="/author"> </author>

<html>
<head><title>An author</title></head>
<body bgcolor="white">
<b><xsl:value-of select="name"/></b><br>
<xsl:value-of select="affiliation"/><br>
<i><xsl:value-of select="email"/></i>
</body>
</html>
</xsl:template>

Style Sheet Output

<xsl:template match="/author"> <html>

<author>
STEIM et AnlEnlal <head><title>An author<title></head>
<affiliation>University of Bremen</affiliation> <body bgcolor="white">

<email>ga@tzi.de</email>
</author>

<b><xsl:value-of select="name"/></b><br>

(5) XSLT transformations

<xsl:value-of select="affiliation"/><br>
<i><xsl:value-of select="email"/></i>
</body>
</html></xsl:template>

<htmlI>
<head><title>An author</title></head>
<body bgcolor="white">
<b>Grigoris Antoniou</b><br>
University of Bremen<br>
<i>ga@tzi.de</i>
</body>

</html>
(5) XSLT transformations

Observations About XSLT

e XSLT documents are XML documents
- XSLT resides on top of XML
e The XSLT document defines a template

- In this case an HTML document, with some
placeholders for content to be inserted

o xsl:value-of retrieves the value of an element
and copies it into the output document

- It places some content into the template

(5) XSLT transformations

A Template

<html>
<head><title>An author</title></head>
<body bgcolor="white">
<b>...</b><br>
...<br>
<i>..</i>
</body>
</html>

(5) XSLT transformations

24



Auxiliary Templates

e We have an XML document with details of
several authors

e |t is a waste of effort to treat each author
element separately

e In such cases, a special template is defined for
author elements, which is used by the main
template

(5) XSLT transformations

Example of an Auxiliary Template

<authors>
<author>
<name>Grigoris Antoniou</name>
<affiliation>University of Bremen</affiliation>
<email>ga@tzi.de</email>
</author>
<author>
<name>David Billington</name>
<affiliation>Griffith University</affiliation>
<email>david@gu.edu.net</email>
</author>
</authors>

(5) XSLT transformations

Example of an Auxiliary Template (2)

<xsl:template match="/">
<html>
<head><title>Authors</title></head>
<body bgcolor="white">
<xsl:apply-templates select="author"/>
<I-- apply templates for AUTHORS children -->
</body>
</html>
</xsl:template>

(5) XSLT transformations

Example of an Auxiliary Template (3)

<xsl:template match="authors">
<xsl:apply-templates select="author"/>
</xsl:template>

<xsl:template match="author">
<h2><xsl:value-of select="name"/></h2>
<p> Affiliation:<xsl:value-of select="affiliation"/><br/>
Email: <xsl:value-of select="email"/> </p>
</xsl:template>

(5) XSLT transformations

25



Multiple Authors Output

<html>
<head><title>Authors</title></head>
<body bgcolor="white">
<h2>Grigoris Antoniou</h2>
<p>Affiliation: University of Bremen<br/>
Email: ga@tzi.de</p>
<h2>David Billington</h2>
<p>Affiliation: Griffith University<br/>
Email: david@gu.edu.net</p>
</body>
</html|>

(5) XSLT transformations

Explanation of the Example

xsl:apply-templates element causes all children
of the context node to be matched against the
selected path expression
- e.g., if current template applies to /, then element
xsl:apply-templates applies to root element
- i.e., the authors element (/ is located above root)
- If current context node is the authors element, then
element xsl:apply-templates select="author"
causes the template for the author elements to be
applied to all author children of the authors
element

(5) XSLT transformations

Explanation of the Example

e It is good practice to define a template for
each element type in the document
- Even if no specific processing is applied to
certain elements, the xsl:apply-templates
element should be used
- E.g. authors
e In this way, we work from the root to the
leaves of the tree, and all templates are
applied

(5) XSLT transformations

Processing XML Attributes

Suppose we wish to transform to itself the
element:

<person firsthname="John" lasthame="Woo"/>
Wrong solution:

<xsl:template match="person">
<person firstname="<xsl:value-of select="@firsthame">"
lastname="<xsl:value-of select="@lastname">"/>
</xsl:template>

(5) XSLT transformations

26



Processing XML Attributes

o Not well-formed because tags are not allowed
within the values of attributes

e We wish to add attribute values into template

<xsl:template match="person">
<person
firstname="{@firstname}"
lastname="{@lastname}" />
</xsl:template>

(5) XSLT transformations

Transforming an XML Document to Another

(5) XSLT transformations

Transforming an XML Document to Another

<xsl:template match="/">
<?xml version="1.0" encoding="UTF-16"?>
<authors>
<xsl:apply-templates select="authors"/>
</authors>
</xsl:template>

<xsl:template match="authors">
<author>
<xsl:apply-templates select="author"/>
</author>
</xsl:template>

(5) XSLT transformations

Transforming an XML Document to Another

<xsl:template match="author">
<name><xsl:value-of select="name"/></name>
<contact>
<institution>
<xsl:value-of select="affiliation"/>
</institution>
<email><xsl:value-of select="email"/></email>
</contact>
</xsl:template>

(5) XSLT transformations




Applying XSLT

e \When a modern browsers loads an XML file, it will
will apply a linked XSLT and display the results
(hopefully HTML!)

e Use an external Web service

e Use an XML editor

e Use a module or library for your favorite
programming language

An XSLT Web Service

© O O / mEwic xsLT servier

Important: W3C runs this service for its own use. The service,runs on Jigsaw, is based on Saxon and
supports XSLT 2.0, is available publicly, but usage is subject to the conditions set forth below.

[~ Inputs

URI for xsl resource:

URI for xml resource:
Attempt recursive authentication

Output

Forward language/content accept headers
Content-Type:

gzip compress output

Debug
Debug output
Show Trace
Suppress Transform output

transform

Validate

€ C i | © wwww3.0rg/2005/08/online_... @ 77 | B =g 9 [© s P B DR
r~ Systems . .
WC 83 Online XSLT 2.0 Service

T —
http://www.w3.0rg/2005/08/online_xslt/

CD Catalog example

<?xml-stylesheet type="text/xsl"
href="cdcatalog.xs|"?>

<catalog>

<cd>

<title>Empire Burlesque</title>
<artist>Bob Dylan</artist>
<country>USA</country>
<company>Columbia</company>
<price>10.90</price>
<year>1985</year>

</cd>

<cd>

<title>Hide your heart</title>
<artist>Bonnie Tyler</artist>
<country>UK</country>
<company>CBS Records</company>

</cd> ...

<xsl:template match="/">
<html> <body>
<h2>My CD Collection</h2>
<table border="1">
<tr bgcolor="#9acd32">
<th align="left">Title</th>
<th align="left">Artist</th>
</tr>
<xsl:for-each select="catalog/cd">
<tr>
<td><xsl:value-of select="title"/></td>
<td><xsl:value-of select="artist"/></td>
</tr>
</xsl:for-each>
</table>
</body> </html>
</xsl:template>
</xsl:stylesheet>

http://cs.umbc.edu/courses/graduate/691/spring12/03/ex/xml/cdcatalog/cdcatalog.xml

Viewing an XML file in a Browser

~> curl http://www.csee.umbc.edu/courses/graduate/691/
spring12/0. xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xs|" href="cdcatalog.xsI"?>
<catalog>

<cd>

<title>Empire Burlesque</title>

<artist>Bob Dylan</artist>
<country>USA</country>
<company>Columbia</company>
<price>10.90</price>

<year>1985</year>

</cd>

<cd>

<title>Hide your heart</title>

<artist>Bonnie Tyler</artist>
<country>UK</country>

<company>CBS Records</company>
<price>9.90</price>

<year>1988</year>
</cd>

© 00 /' @ www.csee.umbe.edu/cours

= CH Ow.OQ

My CD Collection

[Empire Burlesque L::;“Dylan
,ﬁdc your heart \Bonnie Tyler
(Greatest Hits Dolly Parton
Still got the blues Gary Moore
Eros [Eros Ramazzotti
One night only Bee Gees
Sylvias Mother Dr.Hook
Maggie May Rod Stewart
Romanza Andrea Bocelli
[When a man loves a woman|[Percy Sledge
Black angel Savage Rose
1999 Grammy Nominees  [Many

[For the good times Kenny Rogers
Big Willie style 'Will Smith
[Tupelo Honey Van Morrison
Soulsville Jom Hoel

[The very best of Cat Stevens
Stop Sam Brown

28



Summary

e XML is a metalanguage that allows users to
define markup

e XML separates content and structure from
formatting

e XML is the de facto standard to represent and
exchange structured information on the Web

e XML is supported by query languages

Comments for Discussion

e The nesting of tags does not have standard
meaning

e The semantics of XML documents is not
accessible to machines, only to people

e Collaboration and exchange are supported if
there is underlying shared understanding of the
vocabulary

o XML is well-suited for close collaboration, where
domain- or community-based vocabularies are
used
- Itis less well-suited for global communication

29



