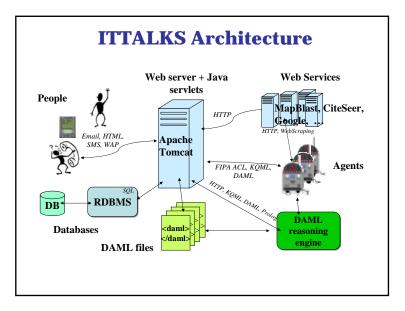
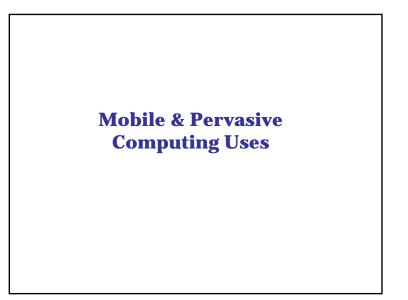
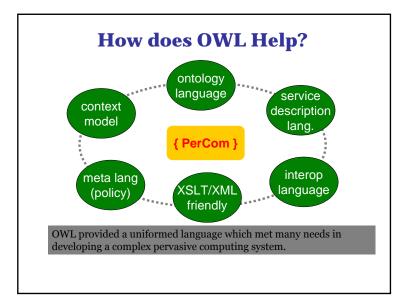

Introduction to the Semantic Web example applications


ITTALKS

- **ITTALKS** is a database driven web site of IT related talks at UMBC and other institutions. The database contains information on
 - Seminar events
 - People (speakers, hosts, users, ...)
 - Places (rooms, institutions, ...)
- Web pages with DAML markup are generated
- The DAML markup supports agent-based services relating to these talks.
- Users get talk announcements based on the interests, locations and schedules.





http://ebiquity.umbc.edu/

- Our research group's web site generate both HTML and OWL.
- **HOW?** This is relatively easy since the content is in a database.
- PHP is sufficient for the job.
- HTML pages have links to corresponding OWL
- **WHY?** This exposes the information to programs and agents no more web scraping.

OWL as an Ontology Language

- Key Benefits
 - Helps to separate the task of knowledge engineering and system engineering
 - Helps to define "semantic" specifications for applications that exploit KR and reasoning
 - Opens the door to the Semantic Web for mobile and pervasive computing applications
 - Gaining access to a vast amount of information on the Web
 - Applications will be less restricted by their sensing capability

OWL as a Service Description Lang.

- Key benefits
 - Enables **semantic** service discovery and matching
 - Expressing more detailed and more precise service description
 - Provides a means for ubiquitous service composition
 - Allows intelligent applications to have fine-grain control over system execution

- E.g. is it economic to print using a close by printer?
- E.g. is it polite to display my email using the room's project?

OWL as a Language for Interoperability

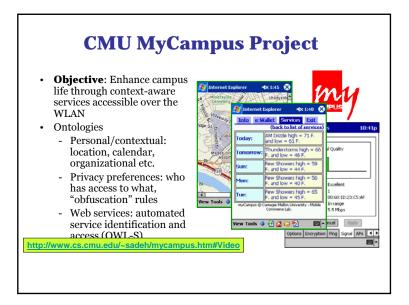
Key benefits

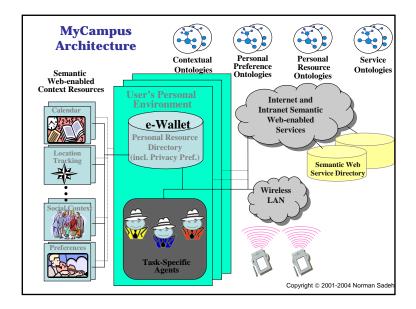
- Encourages independently developed systems to interoperate
 - A standard language backed up the W3C
 - Industrial organizations tend to follow W3C standards
 - · Amateurs tend to develop programs based on W3C standards
- Enables knowledge sharing and reasoning
 - APIs for processing RDF/XML -- the normative exchange syntax of OWL -- are widely available and suitable for building commercial strength applications
 - OWL has well defined language semantics for building OWL reasoners. A few number of OWL reasoners are now available.
- Provides standard constructs for ontology mapping
 - Multiple ontologies will likely to exist in a shared PerCom space
 - $\circ~$ Ontology mapping can help apps. that adopt different ontologies to interoperate

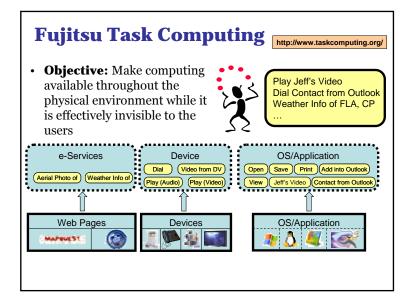
- Key benefits
 - Information expressed in OWL can be transformed into other languages for external processing
 - OWL => Prolog rules or Jess rules
 - OWL => XHTML
 - OWL => PHP, JavaScript
 - Maximizes the reusability of the knowledge that is encoded in OWL
 - · Not all useful tools and applications can process OWL
 - Not all XML developers are willing to switch to OWL
 - $\circ~$ Not all users think OWL (esp. in RDF/XML) is easily readable

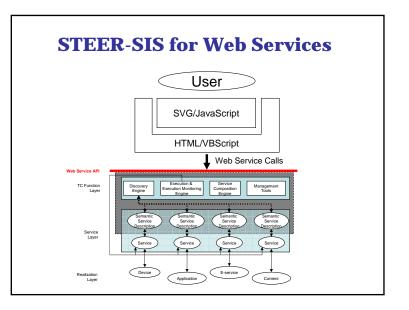
OWL as a Meta Language

- Key benefits
 - Helps to define new languages to control the high level behavior of a complex system (e.g. policy languages)
 - It's inflexible to adjust the dynamic behavior of a complex system by writing low level code
 - Using meta languages, users can change system behavior without needing to change the low-level system implementation
 - Meta languages (e.g. policy) defined using OWL can be used to work with other knowledge that is expressed in OWL
 - Security -- define policy to control actions that are expressed in OWL
 - Privacy protection -- define policy to protect user private information that are expressed in OWL


OWL for Defining Context Model


- Key benefits
 - Helps to overcome semantic ambiguities in representing contexts using programming languages
 - Java representations of contextual knowledge has limited expressiveness
 - · OWL representations have well defined semantics
 - Encourages the reuse of previously defined context model
 - Generic context models (e.g., time, space, actions, policy) can shared and reused by different context-aware systems
 - $\circ~$ Tools (e.g., reasoners, APIs) associated with these generic context models often can also be used by different system implementations


Ontology-Driven PerCom Systems


	Context modeling	Interop. Language	Define Meta-Lang. (Policy)	Enhance service discovery	XML/XSLT Integration
myCampus (CMU)	Х	X	x		X
Task Computing (Fujitsu)		x		x	
EasyMeeting (UMBC)	x	x	x		
Context Broker Architecture (UMBC)	x	x	x		

