
Microdata and
schema.org

Basics

lMicrodata is a simple semantic markup scheme
that’s an alternative to RDFa

lDeveloped by WHATWG* and supported by
major search companies (Google, Microsoft,
Yahoo, Yandex)

l Like RDFa, it uses HTML tag attributes to host
metadata

l It can also be expressed as JSON-LD
lVocabularies are controlled and hosted at

schema.org * Web Hypertext Application Technology Working Group

http://en.wikipedia.org/wiki/Microdata_(HTML)
https://whatwg.org/
http://schema.org/

Microdata

lThe microdata effort has two parts:
– A markup scheme
– A set of vocabularies/ontologies

lThe markup is similar to RDFa in providing ways
to identify subjects, types, properties & objects
Also a standard way to encode Microdata as RDFa

lSanctioned vocabularies at schema.org and
include a small number of very useful ones:
people, movies, events, recipes, etc.

http://schema.org/

An example

<div>
<h1>Avatar</h1>
Director: James Cameron (born 1954)
Science fiction
Trailer
</div>

An example: itemscope

l An itemscope attribute identifies a content subtree that is the
subject about which we want to say something

<div itemscope >
<h1>Avatar</h1>
Director: James Cameron (born 1954)
Science fiction
Trailer

</div>

An example: itemtype

l An itemscope attribute identifies a content subtree that is the
subject about which we want to say something

l The itemtype attribute specifies the subject’s type

<div itemscope itemtype="http://schema.org/Movie">
<h1>Avatar</h1>
Director: James Cameron (born 1954)
Science fiction
Trailer

</div>

An example: itemtype

l An itemscope attribute identifies content subtree that is the
subject about which we want to say something

l The itemtype attribute specifies the subject’s type

<div itemscope itemtype="http://schema.org/Movie">
<h1>Avatar</h1>
Director: James Cameron (born 1954)
Science fiction
Trailer

</div>

[] a schema:Movie .

An example: itemprop

l An itemscope attribute identifies a content subtree that is the
subject about which we want to say something

l The itemtype attribute specifies the subject’s type
l An itemprop attribute gives a property of that type

<div itemscope itemtype="http://schema.org/Movie">
<h1 itemprop="name">Avatar</h1>
Director: James Cameron (born 1954)
Science fiction
Trailer

</div>

An example: itemprop

l An itemscope attribute identifies a content subtree that is the
subject about which we want to say something

l The itemtype attribute specifies the subject’s type
l An itemprop attribute gives a property of that type

<div itemscope itemtype="http://schema.org/Movie">
<h1 itemprop="name">Avatar</h1>
Director: James Cameron (born 1954)
Science fiction
Trailer

</div>

[] a schema:Movie ;
schema:genre "Science fiction" ;
schema:name "Avatar" ;
schema:trailer <avatar-trailer.html> .

An example: embedded items

l An itemprop immediately followed by another itemscope makes
the value an object

<div itemscope itemtype="http://schema.org/Movie">
<h1 itemprop="name">Avatar</h1>

<div itemprop="director"
itemscope itemtype="http://schema.org/Person">

Director: James Cameron
(born 1954)

</div>
Science fiction
Trailer
</div>

An example: embedded items

l An itemprop immediately followed by another itemcope makes
the value an object

<div itemscope itemtype="http://schema.org/Movie">
<h1 itemprop="name">Avatar</h1>

<div itemprop="director"
itemscope itemtype="http://schema.org/Person">

Director: James Cameron
(born 1954)

</div>
Science fiction
Trailer
</div>

[] a schema:Movie ;
schema:director [a schema:Person ;

schema:birthDate "1954" ;
schema:name "James Cameron"] ;

schema:genre "Science fiction" ;
schema:name "Avatar" ;
schema:trailer <avatar-trailer.html> .

schema.org vocabulary

lFull type hierarchy in one file
l797 classes, 1457 properties, 14 Data

Types as of Nov. 2022
lData types: Boolean, Date, DateTime,

Number, Text, Time
lObjects: Rooted at Thing with two

‘metaclasses’ (Class and Property) and
eight subclasses

lSee github repo for examples & code

Datatypes

Object Hierarchy

http://schema.org/docs/full.html
https://github.com/schemaorg/schemaorg

Schemas as rdfs and owl?
See the schema.org developer page

https://schema.org/docs/developers.html

http://www.schema.org/Recipe

http://www.schema.org/Recipe

Google’s Schema Markup Validator (1)

Google’s Schema Markup Validator (2)

Google’s Schema Markup Validator (3)

Google’s Schema Markup Validator (4)

Microdata as a KR language

lMore than RDF, less than RDFS
lProperties have an expected type (range)

– Can be a list of types, any of which are OK
– Might be a string for many properties (“some data

better than none”)

lProperties attached ≥ 1 types (domain)
lClasses can have multiple parents and inherit

(properties) from all of them
lNo axioms (e.g., disjointness, cardinality, etc.)
lNo relation like subPropertyOf

Mixing vocabularies

lMicrodata is intended to work with just one
vocabulary: the one at schema.org

lAdvantages: simple and controlled
– Simple, organized, well designed
– Controlled by the schema.org group

lDisadvantages: too simple, too controlled
– Too simple, narrow, mono-lingual
– Controlled by the schema.org people

https://schema.org/

Extending schema.org ontology

lExtensions: hosted vs. external
– Hosted: managed & published by schema.org project

lYou can subclass existing classes
– Person/Engineer
– Person/Engineer/ElectricalEngineer

lSubclass existing properties
– musicGroupMember/leadVocalist
– musicGroupMember/leadGuitar1
– musicGroupMember/leadGuitar2

Hosted Extensions
• auto.schema.org
• bib.schema.org
• health-lifesci.schema.org
• iot.schema.org
• meta.schema.org
• pending.schema.org

http://www.schema.org/docs/extension.html
http://auto.89.3-4pre.schemaorgae.appspot.com/
http://bib.89.3-4pre.schemaorgae.appspot.com/
http://health-lifesci.89.3-4pre.schemaorgae.appspot.com/
http://iot.89.3-4pre.schemaorgae.appspot.com/
http://meta.89.3-4pre.schemaorgae.appspot.com/
http://pending.89.3-4pre.schemaorgae.appspot.com/

Extension Problems

lHard to establish agreed upon meaning
– Through axioms supported by the language (e.g.,

equivalence, disjointness, etc.)
– No place for documentation (annotations, labels,

comments)

lWith no namespace mechanism, your
Person/Engineer and mine can be confused
and might mean different things
– Is a Computer Scientist an engineer?

l Extensions not generally adopted by schema.org

Serialization
lSchema.org has a data model and serializations

– Microdata is the original, native serialization
– RDFa is more expressive and works with the RDF stack
– Everyone agrees that RDFa Lite is a good encoding: as

simple as Microdata but more expressive
– JSON-LD is an increasingly popular accepted encoding

lSearch engines look for all of these, e.g.,
Microdata, RDFa and JSON-LD

lSchema.org considers RDFa to be the “canonical
machine representation of schema.org”

lBur Google recommends using JSON-LD

http://schema.org/docs/datamodel.html

lMicrodata is an effort by search companies to
use a simple, controlled semantic language

l Its semantics is pragmatic
– e.g., expected types: a string is accepted where a thing is

expected – “some data is better than none”

lThe real value is in
– Supported vocabularies and
– their use by Search companies

=> Immediate motivation for using semantic
markup

Conclusions

lMicrodata is an effort by search companies to
use a simple, controlled semantic language

l Its semantics is pragmatic
– e.g., expected types: a string is accepted where a thing is

expected – “some data is better than none”

lThe real value is in
– Supported vocabularies and
– their use by Search companies

=> Immediate motivation for using semantic
markup

Conclusions

