OWL, DL, and rules

OWL and Rules

- Rule based systems are an important and useful way to represent and reason with knowledge
- Adding rules to OWL has been fraught with problems
- We'll look at underlying issues some approaches
 - N3 rules: TBL's early idea for extending RDF
 - SWRL: failed standard that has become widely used
 - RIF: a successful standard that's not yet widely used
 - Datalog rules: a database idea adopted by the RDFox system

Semantic Web and Logic

- The Semantic Web is grounded in logic
- But what logic?
 - OWL Full = Classical first order logic (FOL)
 - OWL-DL = Description logic
 - N3 rules ~= logic programming (LP) rules
 - SWRL ~= DL + LP
 - Other choices are possible, e.g., default logic, fuzzy logic, probabilistic logics, ...
- How do these fit together and what are the consequences

We need both structure and rules

- OWL's ontologies based on DL (and thus on FOL)
 - The Web is an open environment
 - Reusability / interoperability
 - An ontology is a model easy to understand
- Many rule systems based on logic programming
 - To achieve decidability, ontology languages don't offer the expressiveness we want. Rules do it well
 - Efficient reasoning support already exists
 - Rules are well-known and often more intuitive

Description Logics vs. Horn Logic

- Neither is a subset of the other
- Impossible in OWL DL: people who study and live in same city are local students
- Easily done with a a rule
 studiesAt(X,U), loc(U,L), lives(X,L) → localStud(X)
- Impossible in horn rules: every person is either a man or a woman
- Easily done in OWL DL::Person owl:disjointUnionOf (:Man :Woman).

Non-ground entailment (1)

- Logic programming semantics defined in terms of minimal <u>Herbrand</u> model, i.e., sets of ground facts
- Because of this, LP horn clause reasoners can not derive rules, so that can not do general subsumption reasoning
 - i.e., can only reason about atomic facts to infer new facts
 - can't reason about rules and complex facts to create new rules

Non-ground entailment (2)

- A horn-clause reasoner can't do the following
- Given

```
animal(?X) \land disease(?D) \land has(?X,?D) \rightarrow sickAnimal(?x) dog(?X) \rightarrow animal(?X) disease(rabies)
```

- Derive a new rule dog(?X), has(?X, rabies) → sickAnimal(?X)
- Even though it follows from the underlying logic

Decidability

- The largest obstacle!
 Tradeoff between expressiveness and decidability
- Facing decidability issues from
 - In Logic Programming: finiteness of the domain
 - In classical logic (and thus in Description Logic):
 combination of constructs

• Problem:

Combination of "simple" DLs and Horn Logic are undecidable. (Levy & Rousset, 1998)

SWRL: Semantic Web Rule Language

- SWRL is the union of DL and horn logic + many built-in functions (e.g., for math)
- Submitted to W3C in 2004, but failed to become a recommendation (led to <u>RIF</u>)
- Problem: full SWRL specification leads to undecidability in reasoning
- SWRL is well-specified & subsets widely supported (e.g., in OWL reasoners Pellet and HermiT)
- Based on OWL: rules use terms for OWL concepts (classes, properties, individuals, literals...)

SWRL

 OWL classes are unary predicates, properties are binary ones

```
sibling(?p,?s) \wedge Man(?s) \rightarrow brother(?p,?s)
```

- As in Prolog, bulitins can be booleans or do a computation and unify the result to a variable
 - swrlb:greaterThan(?age2, ?age1) # age2>age1
 - swrlb:subtract(?n1,?n2,?diff) # diff=n1-n2
- SWRL predicates for OWL axioms and data tests
 - differentFrom(?x, ?y), sameAs(?x, ?y), xsd:int(?x),[3, 4, 5](?x), ...

SWRL Built-Ins

- SWRL has built-in predicate allowing for comparisons, math evaluation, string operations & more
 - Here is the <u>complete list</u>
- Examples
 - Person(?p), hasAge(?p, ?age), swrlb:greaterThan(?age, 18) ->
 Adult(?p)
 - Person(?p), bornOnDate(?p, ?date), xsd:date(?date),
 swrlb:date(?date, ?year, ?month, ?day, ?timezone) ->
 bornInYear(?p, ?year)
- Some reasoners (e.g., Pellet) allow you to define new built-ins in Java

Drawbacks of full SWRL

- Main source of complexity:
 arbitrary OWL expressions (e.g., restrictions)
 can appear in the head or body of a rule
- Adds significant expressive power to OWL, but causes undecidability
 - there is no inference engine that handles exactly the same conclusions as the SWRL semantics

SWRL Sublanguages

- Challenge: identify sublanguages of SWRL with right balance between expressivity and computational viability
- A candidate OWL DL + DL-safe rules
 - every variable must appear in a nondescription logic atom in the rule body

DL-safe rules

- Standard reasoners support only DL-safe rules Rule variables bind only to known individuals (i.e., OWL2 owl:NamedIndividual)
- Example

```
:Vehicle(?v) ^ :Motor(?m) ^ :hasMotor(?v,?m) -> :MotorVehicle(?v)
```

Where

```
:Car = :Vehicle and some :hasMotor Motor
:x a :Car
```


- Reasoner won't bind ?m to a motor since it is not a known individual
- Thus, the rule cannot conclude MotorVehicle(:x)

Protégé 5 had SWRLTab

Add/edit rules and optionally run a separate rules engine

SWRL limitations

SWRL rules do not support many useful features of of some rule-based systems

- Default reasoning
- Rule priorities
- Negation as failure (e.g., for closed-world semantics)
- Data structures
- ...

Limitations led to RIF, Rule Interchange Format

RDFox is an interesting alternative

- RDFox is an RDF database system with several interesting features
 - Supports OWL reasoning and SWRL, but also rules modeled after <u>Datalog</u>
 - Keeps its knowledge graph in memory
 - Uses forward chaining
 - Has a built-in truth maintenance system that removes inferred triples no longer supported

RDFox rules

```
# Most birds can fly, with some exceptions
:FlyingAnimal[?X] :-
    :Bird[?X], NOT :FlightlessAnimal[?X].
# penguins are birds, but no penguin can fly
:Bird[?X] :- :Penguin[?X].
:FlightlessAnimal[?X] :- :Penguin[?X].
# here are some birds
:Bird[:tweety].
:Penguin[:chillyWilly].
```

Summary

- Horn logic is a subset of predicate logic that allows efficient reasoning, orthogonal to description logics
- Horn logic is the basis of monotonic rules
- DLP and SWRL are two important ways of combining OWL with Horn rules.
 - DLP is essentially the intersection of OWL and Horn logic
 - SWRL is a much richer language

Summary (2)

- Nonmonotonic rules are useful in situations where the available information is incomplete
- They are rules that may be overridden by contrary evidence
- Priorities are sometimes used to resolve some conflicts between rules