
Logical
Inference and

Rule-based
reasoning

AI & SW History (non-scholarly)
Rule based reasoning has a long history in AI and SW
• 1970s: Prolog programming language based on rules

and used for many AI systems in Europe
• 1980s: the expert systems paradigm mostly used

rule-based reasoning; Japan embraced Prolog for its
5th generation computing systems push

• 2000s: semantic web promoted OWL, based on
description logic KR rather than rules; SWRL rule
system fails to become a W3C recommendation

• 2010s: various rule systems developed for RDF: RIF,
RuleML, SPIN, Datalog

• 2022: SWRL is still commonly supported and used

https://en.wikipedia.org/wiki/Rule-based_system
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Fifth_Generation_Computer_Systems
https://en.wikipedia.org/wiki/Description_logic
https://en.wikipedia.org/wiki/Semantic_Web_Rule_Language
https://en.wikipedia.org/wiki/Rule_Interchange_Format
https://en.wikipedia.org/wiki/RuleML
https://www.w3.org/Submission/spin-overview/
https://www.oxfordsemantic.tech/blog/datalog-basics-and-rdfox

Automated inference for FOL
•Automated inference for FOL is harder than

Propositional Logic
– Variables can take on an infinite number of possible

values from their domains
– Hence there are potentially an infinite number of

ways to apply the Universal Elimination rule
•Godel's Completeness Theorem says FOL

entailment is only semi-decidable
– If a sentence is true given a set of axioms, there is a

procedure that will eventually determine this
– If a sentence is false, there’s no guarantee a

procedure will ever discover this — it may never halt

Generalized Modus Ponens (GMP)
•Modus Ponens: P, P=>Q |= Q
•Generalized Modus Ponens extends this to

rules in FOL
•Combines And-Introduction, Universal-

Elimination, and Modus Ponens, e.g.
– given P(c) , Q(c) , "x P(x)ÙQ(x) ® R(x)
– derive R(c)

•Must deal with
–more than one condition on rule’s left side
–variables

Often rules restricted to Horn clauses

•A Horn clause is a sentence of the form:
P1(…) Ù P2(…) Ù ... Ù Pn(...) ® Q(…)

where
– ≥ 0 Pis and 0 or 1 Q
– Pis and Q are positive (i.e., non-negated) literals
–The … are a sequence of variables or literals

•Prolog and most rule-based systems are
limited to Horn clauses

•Horn clauses are a subset of all FOL sentences

https://en.wikipedia.org/wiki/Horn_clause

Horn clauses 2
•Special cases

– Typical rule: P1 Ù P2 Ù … Pn® Q
– Constraint: P1 Ù P2 Ù … Pn® false
– A fact: ® Q
– A goal: Q ®

•Examples
– parent(P1,P2) Ù parent(P2,P3) ® grandparent(P1,P3)
– male(X) Ù female(X) ® false
– ® male(john)
– female(mary) ®

Horn clauses 3
•These are not Horn clauses:

– married(x, y) ® loves(x, y) Ú hates(x, y)
– ¬ likes(john, mary)
– ¬ likes(x, y) ® hates(x, y)

•Can’t assert/conclude disjunctions (i.e., “or”)
•Can’t have “true” negation

– Though some systems, like Prolog, allow a negation
operator that means “can’t prove”

•No wonder Horn clause reasoning is easier

Horn clauses 3
•Where are the quantifiers?
– Variables in conclusion universally quantified
– Variables appearing only in premises existentially quantified

•Examples:
– parentOf(P,C) ® childOf(C,P)
"P "C parentOf(P,C) ® childOf(C,P)

– parentOf(P,X) ® isParent(P)
"P $X parent(P,X) ® isParent(P)

– parent(P1, X) Ù parent(X, P2) ® grandParent(P1, P2)
"P1,P2 $X parent(P1,X) Ù parent(X, P2) ® grandParent(P1, P2)

Definite Clauses

•A definite clause is a horn clause with a
conclusion

•What’s not allowed is a horn clause w/o a
conclusion, e.g.
– male(x), female(x) ®
– i.e., ~male(x) Ú ~female(x)

•Most rule-based reasoning systems, like
Prolog, allow only definite clauses in the KB

Limitations

•Most rule-based reasoning systems use only
definite horn clauses
– Limited ability to reason about negation and disjunction
– Cannot have try negation in a rule
– Cannot have rules whose conclusion is an or

• These are required for some problems (e.g.,
playing Clue)

• Benefit is decidability and efficiency
• Some limitations can be overcome by

– Adding procedural components
– Augmenting with other reasoners

Some non-limitations
•We can easily rewrite some non Horn clause

rules to as several simpler Horn clauses
•Example, rewrite 1 as 2

1. married(x, y) ® loves(x, y) Ù knows(x, y)
2. married(x, y) ® loves(x, y)

married(x, y) ® knows(x, y)

• Example, rewrite 1 as 2
1. loves(x, y) Ú likes(x,y) ® knows(x, y)
2. loves(x, y) ® knows(x, y)

likes(x, y) ® knows(x, y)

• Additional rewriting rules are available

Forward & Backward Reasoning

•We often talk about two reasoning
strategies:
– Forward chaining and
– Backward chaining

•Both are equally powerful, but optimized
for different use cases

•You can also have a mixed strategy
– Each rule specifies how it’s to be used

Forward chaining

•Proofs start with given axioms/premises in KB,
deriving new sentences using GMP until the
goal/query sentence is derived
– Process follows a chain of rules and facts going from

the KB to the conclusion

•This defines a forward-chaining inference
procedure because it moves “forward” from
the KB to the goal [eventually]

•Inference using GMP is sound and complete for
KBs containing only Horn clauses

http://en.wikipedia.org/wiki/Forward_chaining

Forward chaining example

• KB:
1. allergies(X) ® sneeze(X)
2. cat(Y) Ù allergicToCats(X) ® allergies(X)
3. cat(felix)
4. allergicToCats(mary)

• Goal:
– sneeze(mary)

Forward chaining example

• KB:
1. allergies(X) ® sneeze(X)
2. cat(Y) Ù allergicToCats(X) ® allergies(X)
3. cat(felix)
4. allergicToCats(mary)
5. #3 , #4 ® allergies(mary)
6. allergies(mary)
7. #6 , #1 ® sneeze(mary)
8. sneeze(mary)

• Goal:
– sneeze(mary)

In practice…
•Most forward chaining systems compute and

add to the KB all inferred facts
– This is generally OK for Horn clause systems, as

there will be a finite number of them
– But could be a problem if the KB is large

•Another problem: suppose you want to
remove a fact or rule?
– You could delete all of the inferred facts and start

over, or
– Use a truth maintenance system to only remove

inferred facts that depended on the deleted items

https://en.wikipedia.org/wiki/Reason_maintenance

Backward chaining
• Backward-chaining deduction using GMP is also

complete for KBs containing only Horn clauses
• Proofs start with the goal query, find rules with

that conclusion, and then tries to prove each of
the antecedents in the rule

• Keep going until you reach premises
• Avoid loops by checking if new subgoal is already

on the goal stack
• Avoid repeated work: use a cache to check if new

subgoal already proved true or failed

http://en.wikipedia.org/wiki/Backward_chaining

Backward chaining example

• KB:
– allergies(X) ® sneeze(X)
– cat(Y) Ù allergicToCats(X) ® allergies(X)
– cat(felix)
– allergicToCats(mary)

• Goal:
– sneeze(mary)

Backward chaining example
• KB:

1. allergies(X) ® sneeze(X)
2. cat(Y) Ù allergicToCats(X) ® allergies(X)
3. cat(felix)
4. allergicToCats(mary)

• Goal:
– sneeze(mary) if allergies(mary)
– allergies(mary) if cat(Y) Ù allergicToCats(mary)
– allergies(mary) if cat(Y) Ù cat(felix)
– allergies(mary)
– sneeze(mary)

In practice…

•Backward chaining is very common and used
in Prolog and many other rule-based systems

•It does not have a problem if the facts of
rules change

•It can be less efficient if you want to prove
the same conclusion multiple times

Forward vs. backward chaining
•Forward chaining is data-driven

– Automatic, unconscious processing, e.g., object
recognition, routine decisions

– May do lots of work that is irrelevant to the goal
– Efficient when you want to compute all conclusions

•Backward chaining is goal-driven, better for
problem-solving and query answering
– Where are my keys? How do I get to my next class?
– Complexity can be much less than linear wrt KB size
– Efficient when you want one or a few conclusions
– Good where the underlying facts are changing

Mixed strategy
• Many practical reasoning systems do both forward

and backward chaining
• How you encode rule determines how it’s used:

spouse(X,Y) => spouse(Y,X) % forward chaining
father(X,Y) <= parent(X,Y), male(X) % backward chaining

• Forward chaining rules useful if you want to draw
conclusions and materialize them as facts
– This also easily avoid loops, e.g., don’t trigger forward

chaining if the fact already exists

• Given a model of your rules and the kind of
reasoning needed, you can decide which to encode
as FC and which as BC rules

Completeness of GMP

•GMP (using forward or backward chaining) is
complete for KBs containing only Horn clauses

•not complete for simple KBs with non-Horn
clauses

•What is entailed by the following sentences?
1.("x) P(x) ® Q(x)
2.("x) ¬P(x) ® R(x)
3.("x) Q(x) ® S(x)
4.("x) R(x) ® S(x)

Completeness of GMP

•The following entail that S(A) is true:
1.("x) P(x) ® Q(x)
2.("x) ¬P(x) ® R(x)
3.("x) Q(x) ® S(x)
4.("x) R(x) ® S(x)

•If we want to conclude S(A), with GMP we
can’t, since the second one isn’t a Horn clause

•It is equivalent to P(x) Ú R(x)

How about Prolog?
•Prolog syntax is a bit different, putting the rule’s

conclusion first
hasMother(?x, ?m) :- hasParent(?x, ?m), female(?m) .

•A fact is a rule w/o a body (i.e., no conditions)
hasParent(john, tom).
hasParent(john, mary).
female(mary).

• Prolog ‘proves’ queries by matching a fact, or a
rule’s conclusion and then proving each
condition in the rule’s body

head = conclusion body = conjunction of conditions

Can we do this in Prolog?
Try encoding this in Prolog

1. q(X) :- p(X).
2. r(X) :- neg(p(X)).
3. s(X) :- q(X).
4. s(X) :- r(X).

– We should not use \+ or not (in SWI) for negation
since it means “negation as failure”

– i.e., selective use of the closed world assumption or
“if I can’t prove it, it must be false”

– Prolog explores possible proofs independently
– It can’t take a larger view and realize that one

branch must be true since p(x) Ú ~p(x) is always true

1. ("x) P(x) ® Q(x)
2. ("x) ¬P(x) ® R(x)
3. ("x) Q(x) ® S(x)
4. ("x) R(x) ® S(x)

Fin
27

