

Ontology Editors (1)

IDEs for Ontologies

- Some people use simple text editors
 - Working with XML serialization will drive you crazy
 - Using Turtle or an abstract syntax works well
- Others prefer an IDE
 - Good IDEs support for reasoning, viZ, and more
- <u>Protégé</u> is a very popular IDE
 - From Stanford, free, lots of plugins
- The W3C has a page on <u>Ontology editors</u>
 - Somewhat outdated, tho

Protégé 5.5

Protégé 5.5

- http://protege.stanford.edu/
- Free, open-source ontology editor and KB framework
- Early versions predate OWL, so still supports earlier Frames representations
- In Java, extensible, large community of users
 - Requires Java Runtime Environment
- <u>Desktop</u> and <u>Web</u> versions
 - Works will under Linux, Mac OS X and Windows

Desktop Protégé

Web Protégé

YAS: Yet Another Syntax

- Neither OWL's official abstract syntax nor XML serialization is easy to read or use
- Protégé uses the <u>Manchester Syntax</u>
- Simpler and more compact: "some" and "only", not "someValuesFrom" and "allValuesFrom"
- A W3C recommendation, used in the <u>OWL 2 Primer</u>
- Example:

```
Class: man

Annotations: rdfs:label "man"

EquivalentTo: adult and male and person
```

Manchester OWL syntax (1)

OWL	DL Symbol	Manchester OWL Syntax Keyword	Example
someValuesFrom	3	some	hasChild some Man
allValuesFrom	A	only	hasSibling only Woman
hasValue	∋	value	hasCountryOfOrigin value England
minCardinality	≥	min	hasChild min 3
cardinality	=	exactly	hasChild exactly 3
maxCardinality	≤	max	hasChild max 3

Manchester OWL syntax (2)

OWL	DL Symbol	Manchester OWL Syntax Keyword	Example
intersectionOf	П	and	Doctor and Female
unionOf	Ц	or	Man or Woman
complementOf	٦	not	not Child

How can we define a class that is people who have children and all of them are male?

How can we define a class that is people who have children and all of them are male?

Define as the union of three classes

- 1. Person
- 2. Things that have children
- 3. Things where all of their children are male

Do we really need need 2 and 3?

How can we define a class that is people who have children and all of them are male?

An **owl**:someValuesFrom restriction on hasChild property

Define as the union of three classes

- 1. Person
- 2. Things that have children
- 3. Things where all of their children are male

An **owl**:allValuesFrom restriction on hasChild property

How can we define a class that is people who have children and all of them are male?

```
Person and
(hasChild only Man) and
(hasChild some Person)
```

Example 2

```
Person and
hasChild some
(Person and
(hasChild only Man) and
(hasChild some Person))
```

The set of people who have at least one child that has some children that are only men has a child with children who are all male

Data values and datatypes

- Data values typed or untyped (e.g., int, boolean, float)
- Constants w/ or w/o type, e.g.: hasAge value "21"^^long
- Use datatype names as classes: hasAge some int
- XSD facets, e.g.: Person and hasAge some int[>= 65]
- Ranges: Person and hasAge some int[>= 18, <= 30]

XSD facet	Meaning		
< x, <= x	less than, less than or equal to x (more info)		
> x, >= x	greater than, greater than or equal to x (more info)		
length x	For strings, the number of characters must be equal to x (more info)		
maxLength x	For strings, the number of characters must be less than or equal to x (more info)		
minLength x	For strings, the number of characters must be greater than or equal to x (more info)		
pattern regexp	The lexical representation of the value must match the regular expression, regexp (more info		
totalDigits x	Number can be expressed in x characters (more info)		
fractionDigits x	Part of the number to the right of the decimal place can be expressed in x characters (more info)		

Demonstration

- We'll use Protégé OWL v5.5 to implement a tiny ontology for people
- Start by downloading and installing Protégé 5.5 (You will need the JRE installed)
- You may want to install Graphviz
- Configure Protégé
 - E.g., select a reasoner to use (e.g., HermiT)

A basic workflow

- Think about usecases
- Preliminaries
 - Choose namespace URL, import other ontologies used
- Identify and define classes
 - Place in hierarchy, add axioms and run reasoner to check for errors or omissions
- Identify and define properties
 - Place in hierarchy, add axioms, run reasoner
- Add individuals & reasoner to check for problems
- Add comments and labels
- Export in desired formats, maybe upload to Web

More workflow steps

Use OOPS to find common ontology pitfalls

OntOlogy Pitfall Scanner detect many common problems introduced when developing ontologies

http://oops.linkeddata.es/

← → C ♠ ① Not Secure oops.linkeddata.es/response.jsp#	★ ~ G ① ★ 🛱 🦺 🖺 ()
OntOlogy Pitfall Scanner!	
OOPS! (OntOlogy Pitfall Scanner!) helps you to detect some of the most common pitfalls ap To try it, enter a URI or paste an OWL document into the text field above. A list of pitfalls and t	
Scanner by URI: https://raw.githubusercontent.com/finin/peeps/master/peeps.ttl	Scanner by URI
Example: http://data.semanticweb.org/ns/swc/swc_2009-05-09.rdf	
If you just include the RDF code here, the following Pitfalls will not be chec P36. URI contains file extension, P37. Ontology not available, P40. Names	
Scanner by direct input:	Scanner by RDF
Uncheck this checkbox if you don't want us to keep a copy of your ontology.	Go to advanced evaluation
Evaluation results It is obvious that not all the pitfalls are equally important; their impact in the ontology will deach pitfall has an importance level attached indicating how important it is. We have identified the	
 Critical : It is crucial to correct the pitfall. Otherwise, it could affect the ontology consisted Important : Though not critical for ontology function, it is important to correct this type of the pitfall. The pitfall is important to correct this type of the pitfall is interest. Minor : It is not really a problem, but by correcting it we will make the ontology nicer. 	sncy, reasoning, applicability, etc. Suggest new pitfalls Provide feedback
[Expand All] [Collapse All]	Documentation:
Results for P08: Missing annotations.	11 cases Minor • Pitfall catalogue
Results for P11: Missing domain or range in properties.	1 case Important • User guide Technical report
Results for P13: Inverse relationships not explicitly declared.	2 cases Minor O
Results for P34: Untyped class.	7 cases Important Related papers:
Results for P36: URI contains file extension.	ontology* Minor O
Results for P38: No OWL ontology declaration.	ontology* Important ○ ■ IJSWIS 2014 ■ EKAW 2012
Results for P41: No license declared.	ontology* Important ESWC 2012 Demo Ontoqual 2010
SUGGESTION: symmetric or transitive object properties.	2 cases

More workflow steps

- Link concepts (and individuals) to common ontologies (e.g., DBpedia, Freebase, foaf)
 - Use owl:sameAs to connect identical concepts or properties
 - E.g.: peeps:Person owl:sameAs foaf:Person
- Generate visualizations
- Produce documentation
- Develop examples with your use case(s)
- Encode data, describe in <u>VoID</u> (Vocabulary of Interlinked Datasets), add to <u>LOD cloud</u>

What to watch out for

- After editing your ontology or data you should
 (1) stop the reasoner and (2) run it again
- Look for any of the following problems
 - Unexpected inferences
 - Missing inferences
 - Reasoner stops with an error
 - Reasoner stops after finding a contradiction
 - Reasoner concludes a class is equivalent to owl:Nothing

Error: Impossible Class

Inconsistent Ontology

Reasoner fails

Reasoner fails

Reasoner fails

