Description Logics

What is **Description Logic**?

- A family of logic based KR formalisms
 - Descendants of <u>semantic networks</u> and <u>KL-ONE</u>
 - Describe domain in terms of concepts (classes), roles (relationships) and individuals
- Distinguished by:
 - Formal semantics (typically <u>model theoretic</u>) based on a <u>decidable</u> fragments of FOL
 - Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimized)
- Formal basis for OWL (DL profile)

Informally, What is **Description Logic**?

- We define a concept using a simple noun phrase in a human language like English
 - A red car
 - A tall person who works for IBM
 - A tall person who works for a Bay-area Technology company
- We don't do this using a set of rules
- Natural languages have multiple ways of attaching modifiers to a simple concept
 - E.g., adjectives, propositional phrases, clausal modifiers, connectives (and, or, not)
- Description logics, like OWL-DL, designed to define concepts in a similar way

Description Logic History

- Major focus of KR research in the 1980's
 - Grew out of early network-based KR systems like <u>semantic</u> <u>networks</u> and <u>frames</u>
 - Inspired by 1975 paper by Bill Woods, What's in a Link
- Major systems and languages
 - 80s: KL-ONE, NIKL, KANDOR, BACK, CLASSIC, LOOM
 - 90s: FACT, RACER, ...
 - 00s: DAML+OIL, OWL, Pellet, Jena, FACT++, ...
 - 10s: HermiT, ELK, ...
- Basis for semantic web language OWL

DL Paradigm

- <u>Description Logic</u> characterized by a set of constructors that allow one to build complex descriptions or terms out of concepts and roles from atomic ones
 - Concepts: classes interpreted as sets of objects,
 - Roles: relations interpreted as binary relations on objects
- Set of axioms for asserting facts about concepts, roles and individuals

Typical KB Architecture

Division into <u>TBox and ABox</u> has no logical significance, but is made for conceptual & implementation convenience

Tbox ≈ Ontology and Abox ≈ Data

DL defines a family of languages

- The expressiveness of a description logic is determined by the operators that it uses
 - Adding or removing operators (e.g., \neg , \cup) increases or decreases the kinds of statements expressible
 - Higher expressiveness usually means higher reasoning complexity
- AL or Attributive Language is the base and includes just a few operators
- Other DLs are described by the additional operators they include

AL: Attributive Language

Constructor	Syntax	Example
atomic concept	С	Human
atomic negation	~ C	~ Human
atomic role	R	hasChild
conjunction	$C \wedge D$	Human ∧ Male
value restriction	R.C	Human ∃ hasChild.Blond
existential rest. (lim)	∃ R	Human 3 hasChild
Top (universal concept)	T	T
bottom (null concept)	\perp	

for concepts C and D and role R

ALC Adds Complements

<u>ALC</u> is the smallest DL that is *propositionally closed* (i.e., includes full negation and disjunction) and include booleans (and, or, not) and restrictions on role values

constructor	Syntax	Example
atomic concept	C	Human
negation	~ C	~ (Human V Ape)
atomic role	R	hasChild
conjunction	C v D	Human ^ Male
disjunction	CVD	Nice V Rich
value restrict.	∃ R.C	Human ∃ hasChild.Blond
existential restrict.	∃ R.C	Human ∃ hasChild.Male
Top (univ. conconcept)	Т	Т
bottom (null concept)	\perp	上

Examples of ALC concepts

- Person ∧ ∀hasChild.Male (everybody whose children are all male)
- Person ∧ ∀hasChild.Male ∧∃hasChild.T (everybody who has a child and whose children are all male)
- Living_being ∧ ¬Human_being (all living beings that are not human beings)
- Student ∧ ¬∃interestedIn.Mathematics (all students not interested in mathematics)
- Student ∧ ∀drinks.tea (all students who only drink tea)
- ∃hasChild.Male V ∀hasChild.⊥ (everybody who has a son or no child)

Other Constructors

The general DL model has additional constructors...

Constructor	Syntax	Example
Number restriction	>= n R	>= 7 hasChild
	<= n R	<= 1 hasmother
Inverse role	R-	haschild-
Transitive role	R*	hasChild*
Role composition	$R \circ R$	hasParent o hasBrother
Qualified # restrict.	>= n R.C	>= 2 hasChild.Female
Singleton concepts	{ <name>}</name>	{Italy}

Special names and combinations

See http://en.wikipedia.org/wiki/Description_logic

- S = ALC + transitive properties
- H = role hierarchy, e.g., rdfs:subPropertyOf
- O = nominals, e.g., values constrained by enumerated classes (e.g., days of week), as in owl:oneOf and owl:hasValue
- I = inverse properties
- N = cardinality restrictions (owl:cardinality, maxCardonality)
- (D) = use of datatypes properties
- R = complex role axioms (e.g. (ir)reflexivity, disjointedness)
- Q = Qualified cardinality (e.g., at least two female children)
- → OWL-DL is SHOIN(D)
- → OWL 2 is SROIQ^(D)

Note: R->H and Q->N

DL defines a family of languages

OWL as a DL

- OWL-DL is SHOIN^(D)
- We can think of OWL as having three kinds of statements
 - Ways to specify classes
 - the intersection of humans and males
 - Ways to state axioms about those classes
 - Humans are a subclass of apes
 - Ways to talk about individuals
 - John is a human, a male, and has a child Mary

Subsumption: $D \subseteq C$?

- Concept C <u>subsumes</u> D iff for every <u>interpretation</u> I
 I(D) ⊆ I(C)
 - This means the same as \forall (x)(D(x) → C(x)) for complex statements D & C
- Determining whether one concept logically contains another is called the subsumption problem
- Subsumption is undecidable for reasonably expressive languages
 - e.g.; for FOL, subsumption means "does one FOL sentence imply another"
- and non-polynomial for fairly restricted ones

Other reasoning problems

These problems can be reduced to subsumption (for languages with negation) and to the satisfiability problem

- Concept satisfiability is C (necessarily) empty?
- Instance Checking Father(john)?
- **Equivalence** CreatureWithHeart ≡ CreatureWithKidney
- Disjointness
 C □ D
- **Retrieval** Father(X)? X = {john, robert}
- **Realization** X(john)? X = {Father}

Definitions

- A definition is a description of a concept or a relationship
- It is used to assign a meaning to a term
- In description logics, definitions use a specialized logical language
- Description logics are able to do limited reasoning about concepts defined in their logic
- One important inference is classification, i.e., the computation of subsumption relations

Necessary vs. Sufficient Properties

- Necessary properties of an object are common to all objects of that type
 - Being a man is a necessary condition for being a father
- Sufficient properties allow one to identify an object as belonging to a type and need not be common to all members of the type
 - Speeding is a sufficient reason for being stopped by the police (but there are others!)
- Definitions typically specify both necessary and sufficient properties

Subsumption (1)

- Meaning of subsumption in knowledge representation
 - A more general concept/description **subsumes** a more specific one. Members of a subsumed concept are necessarily members of a subsuming concept
- It's a familiar concept in programming languages, especially object-oriented ones
- Example: Animal subsumes Person
- Notations differ: IS-A, rdfs:subClassOf, P279

Subsumption (2)

Two ways to formalize meaning of subsumption

- Using logic: satisfying a subsumed concept implies that the subsuming concept is also satisfied
 - E.g., if john is a person, he is also an animal
- Using set theory: instances of subsumed concept are necessarily a subset of subsuming concept's instances
 E.g., the set of all persons is a subset of all animals

How Does Classification Work?

A sick animal **defined** as something that's both an animal and has at least one thing that is a kind of a disease

Defining a "rabid dog"

The **rabid dog** concept is **defined** as something that is both a dog and has rabies

Classification as a "sick animal"

We can easily prove that a rabid dog is a kind of sick animal

Defining "rabid animal"

The **rabid animal** concept is **defined** as something that is both an animal and has rabies

DL reasoners places concepts in hierarchy

The **rabid animal** concept is **defined** as something that is both an animal and has rabies

Primitive versus Structured (Defined)

- Description logics reason with definitions
 - They prefer to have complete descriptions
 - A complete definition includes both necessary conditions and sufficient conditions
- Often impractical or impossible, especially with <u>natural kinds</u>
- A "primitive" definition is an incomplete one
 - Limits amount of classification that can be done automatically
- Example:
 - Primitive: a Person
 - Defined: Parent = Person with at least one child

Classification is very useful

- Classification is a powerful kind of reasoning that is very useful
- Many AI systems can be usefully thought of as doing "heuristic classification"
- Logical classification over structured descripttions and individuals is also quite useful
- But... can classification ever deduce something about an individual other than what classes it belongs to?
- And what does that tell us?

Example: Blood Pressure

Example: Blood Pressure

Normal Systolic B.P. is a Systolic B.P. between 90 and 140

If Joe's BP is Normal is it also Non-Critical?

Classification Infers Normal BP is Subsumed by Non-Critical BP

Answer is Easy to Compute with Classified Concepts

Incidental properties

- We consider properties that are not part of any definition to be incidental
- Classification based on non-incidental properties allow inference of incidental properties
- Examples:
 - E.g., red cars have been observed to have a high accident rate by insurance companies
 - Birds weighing more than 25kg can not fly
 - People with non-critical blood pressure require no medication

DL Conclusion

- Description logic was the model for OWL reasoning
- More expressive than rule-based systems without being undecidable or intractable
- It can reason over general statements (e.g., a dog with rabies is a sick animal), unlike most rule-based systems
- It still has limitations, of course
- More powerful logics might be needed in some cases