
Chapter 4 (3)
OWL

Based on slides from Grigoris Antoniou and Frank van Harmelen

Outline

1. A bit of history
2. Basic Ideas of OWL
3. The OWL Language
4. Examples
5. Beyond OWL

African Wildlife Ontology

lAn small example using OWL for an ontology of
African animals and plants

lUsed in 2nd edition of the Semantic Web Primer
lUsed by Maria Keet for her course and book An

Introduction to Ontology Engineering
lSee The African Wildlife Ontology tutorial

ontologies: requirements, design, and content
lSee the ontology in Turtle here

https://people.cs.uct.ac.za/~mkeet/OEbook/
https://arxiv.org/abs/1905.09519
https://redirect.cs.umbc.edu/courses/graduate/691/fall22/kg/examples/owl_examples/africanWildlife/AfricanWildlifeOntology4.ttl

African Wildlife Ontology

African Wildlife Ontology: Classes

See awo1.ttl

https://redirect.cs.umbc.edu/courses/graduate/691/fall22/kg/examples/owl_examples/africanWildlife/awo1.ttl

African Wildlife Ontology: Classes

:animal owl:disjointWith :plant .

:herbivore rsds:subClassOf :animal;
owl:disjointWith :carnivore .

:giraffe rdfs:subClassOf :herbivore .

:carnivore rdfs:subClassOf :animal .
:lion rdfs:subClassOf :carnivore .

Branches are parts of trees

African Wildlife: Properties

e.g, hand part of arm, arm part of body
:isPartOf a owl:TransitiveProperty .

only animals eat things
:eats :domain :animal.

the inverse of :eats in :eatenBy
:eats owl:inverseOf :eatenBy.

An African Wildlife: Branches

plants and animals are disjoint
:plant owl:disjointWith :animal

trees are plants
:tree rdfs:subClassOf :plant

branches are only parts of trees
:branch rdfs:subClassOf

[a owl:Restriction;
owl:allValuesFrom :tree
owl:onProperty :isPartOf]

African Wildlife: Leaves

leaves are only parts of branches
:leaf rdfs:subClassOf

[a owl:Restriction;
owl:allValuesFrom :branch
owl:onProperty :isPartOf]

African Wildlife: Carnivores

carnivores are exactly those animals
that eat animals
:Carnivore owl:intersectionOf

(:Animal,
[a owl:Restriction;

owl:someValuesFrom :Animal
owl:onProperty :eats]

) .

Can carnivores
eat plants?

African Wildlife: Herbivores

How can we define Herbivores?

African Wildlife: Herbivores

Here is a start

:herbivore a owl:Class;
rdfs:comment "Herbivores are exactly those

animals that eat only plants or parts of
plants” .

African Wildlife: Herbivores

:Herbivore owl:equivalentClass
[a owl:Class;
owl:intersectionOf
(:Animal
[a owl:Restriction
owl:onProperty :eats;
owl:allValuesFrom
[a owl:Class;
owl:equivalentClass
owl:unionOf
(:Plant
[a owl:Restriction;
owl:onProperty :isPartOf;
owl:allValuesFrom :Plant])]])]

African Wildlife: Giraffes

giraffes are herbivores, and eat only leaves
Giraffe rdfs:subClassOf

:Herbavore,
[owl:Restriction

owl:onProperty :eats;
owl:allValues:From :Leaf] .

African Wildlife: Lions
Lions are animals that eat only herbivores

:lion rdfs:subClassOf
:Carnivore,
[a Restriction

owl:onProperty :eats;
owl:allValuesFrom :Herbavore] .

African Wildlife: Tasty Plants

#tasty plants are eaten both by herbivores & carnivores

???????????????

African Wildlife: Tasty Plants

#tasty plants are eaten both by herbivores & carnivores
:TastyPlant

rdfs:subClassOf
:Plant,
[a Restriction

owl:onProperty :eatenBy;
owl:someValuesFrom :Herbavore],

[a Restriction
owl:onProperty :eatenBy;
owl:someValuesFrom :Carnivore .]

Outline

1. A bit of history
2. Basic Ideas of OWL
3. The OWL Language
4. Examples
5. Beyond OWL

Modules and Imports

l The importing facility of OWL is very trivial:
– It only allows importing of an entire

ontology, not parts of it
l Modules in programming languages based on

information hiding: state functionality, hide
implementation details
– Open question how to define appropriate

module mechanism for Web ontology
languages

Closed World Assumption

l OWL currently adopts the open-world
assumption:
– A statement cannot be assumed true on the basis

of a failure to prove it
– On the huge and only partially knowable WWW,

this is a correct assumption

l Closed-world assumption: a statement is true
when its negation cannot be proved
– tied to the notion of defaults, leads to

nonmonotonic behaviour

Defaults and nonmonotonic reasoning

l Many practical knowledge representation
systems allow inherited values to be
overridden by more specific cases
– treat inherited values as defaults
– Assume a bird can fly, unless we know otherwise

l No consensus on the right formalization for the
nonmonotonic behaviour of default values

l Some systems, like RDFox, support this along
with truth maintenance

https://en.wikipedia.org/wiki/Non-monotonic_logic
https://www.oxfordsemantic.tech/product

