Chapter 4 (2)
OWL

Based on slides from Grigoris Antoniou and Frank van Harmelen

Outline

1. A bit of history

2. Basic Ideas of OWL
3. The OWL Language
4. Examples

5. Beyond OWL

OWL Syntactic Varieties

OWL builds on RDF and uses RDF’s
serializations

Other syntactic forms for OWL have also
been defined:

- Alternative, more readable serializations, e.g.,
Manchester syntax

- These are often used in ontology editing
tools, like Protege

OWL XML/RDF Syntax: Header in Turtle

@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.0rg/2001/ XLMSchema#> .

® OWL documents are RDF documents

e and start with a typical declaration of
namespaces

e \WW3C owl recommendation has the namespace
http://www.w3.0org/2002/07/owl#"

http://www.w3.org/2002/07/owl
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema

owl:Ontology

<>a owl:Ontology ;
rdfs:comment "Example OWL ontology" ;
owl:priorVersion <http://example.org/uni-ns-old> ;
owl:imports <http://example.org/persons> ;
rdfs:label "University Ontology" .

o owl:imports, a transitive property, indicates that
the document commits to all of the terms as
defined in its target

e owl:priorVersion points to an earlier version of
this document

OWL Classes

:AssociateProfessor a owl:Class ;

owl:disjointWith (:Professor :AssistantProfessor) .

e(Classes are defined using owl:Class

- owl:Class is a subclass of rdfs:Class
eOwl:Class is disjoint with datatypes (aka literals)
eDisjointness is defined using owl:disjointWith

- Two disjoint classes are can share no instances

Another Example

:Man rdfs:subClassOf foaf:Person .
:Woman rdfs:subClassOf foaf:Person .
:Man owl:disjointWith :Woman .

Questions:
e Is :Man an rdfs:Class or a owl:Class?

e Why don’t we need to assert that :Man is some kind of
class?

e Do we need to assert the disjointness both ways?

e \What happens of we assert :pat a :Man; a :Woman”?

Protégé

L JK

OntologyID(Anonymous-2) : [/Users/finin/Desktop/owl/ex1.ttl]
> @ OntologylD(Anonymous-2)

Entities x | Classes x| Object

erties x | Data

Search...
erties x Individuals by class x|

(o] [@]

Individuals by type: pat [I=Mm[x] § Description: pat (2100 = [m] [x]
Types
v @ Man (1) @ Man
[pat |
v {'Woman (1)

¢ Woman
®pat

Same Individual As

Property assertions: pat = [[x]
Object property assertions
Data property assertions

Negative object property assertions

Class hierarchy | Class hierarchy (inferred) | Individuals |

Class hierarchy: RIMHE[x
v) owl:Thing
v () foaf:Person
@ Man

@ Woman

Asserted

To use the reasoner click Reasoner > Start reasoner Show Inferences
\ m 4

https://protege.stanford.edu/

StarDog

® © ® & |ocalhost:9090/ckg#!/browse/ X =+

& > C 3 ® localhost:9090/ck.. @ v ~ ® @ BN E 9 0 = % [@ :

q’;_‘ o8 Admin Console >_Query %&Browse &SData~ = | Search

attack-pattern--Microphone_or_Camera_Recordings

AttackPattern
created createdBy # Edit
2017-10-25T14:48:12.9132Z identity--The_MITRE_Corporation
identity--c78cb6e5-0c4b-4611-8297-d1b8b55e40b5 % Delete
description
i= Tree Browser
An adversary could use a malicious or exploited externalReference
application to surreptitiously record activities using the APP-19
device microphone and/or camera through use of MOB-T1032
standard operating system APIs. Detection: On both
Android (6.0 and up) and iOS, the user can view which mitigatedBy
applications have permission to use the microphone or course-of-action--Application_Vetting
the camera through the device settings screen, and the
user can choose to revoke the permissions. Platforms: name
Android, i0S Microphone or Camera Recordings
platform
kiliChainPhase Android
kill_chain_phase--collection.mitre-mobile-attack i05
modified tacticType
2018-04-13T17:05:30.7562 Post-Adversary Device Access
2018-01-17T12:56:55.080Z
usedBy
objectMarking malware--AndroRAT
marking-definition--fa42a846-8d%0-4e51-bc29-71d5b4802168 malware--Pegasus

malware--Dendroid
malware--Pegasus_for_Android

https://www.stardog.com/

OWL Classes

:Faculty a owl:Class;
owl:equivalentClass :AcademicStaffMember .

eowl:equivalentClass asserts two classes are
equivalent

~Each must have the same members

eowl:Thing is the most general class, which
contains everything

—i.e., every owl class is rdfs:subClassOf owl:Thing

eowl:Nothing is the empty class
—i.e., owl:NoThing is rdfs:subClassOf every owl class

OWL Properties

e OWL has two kinds of properties
e Object properties relate objects to other objects
- owl:ObjectProperty, e.g., isTaughtBy, employer
e Data type properties relate objects to Literals
- owl:DatatypeProperty, e.g., age, phone, title...

e These were made separate to make it easier to
implement sound and complete reasoners

Datatype Properties

e OWL uses XML Schema data types just like RDF
nd RDFS, exploiting the layered architecture of
the Semantic Web

:age a owl:DatatypeProperty;
rdfs:domain foaf:Person;
rdfs:range xsd:nonNegativelnteger .

OWL Object Properties

These connect to non-Literal objects, e.g.:

sisTaughtBy a owl:ObjectProperty;

rc
rc

rc

fs:domain :Course;
fs:range :AcademicStaffMember;
fs:subPropertyOf :involves .

Inverse Properties

:teaches a owl:ObjectProperty;
rdfs:range :Course;
rdfs:domain :AcademicStaffMember;

owl:inverseOf :isTaughtBy .
Or just
:teaches owl:inverseOf :isTaughtBy .

A partial list of axioms:

owl:inverseOf rdfs:domain owl:ObjectProperty;
rdfs:range owl:ObjectProperty;
a owl:SymmetricProperty.

{?P owl:inverseOf ?Q. ?S ?P ?0} => {?0 ?Q ?S}.
{?P owl:inverseOf ?Q. ?P rdfs:domain ?C} => {?Q rdfs:range ?C}.
{?A owl:inverseOf ?C. ?B owl:inverseOf ?C} => {?A rdfs:subPropertyOf ?B}.

Equivalent Properties

:lecturesin owl:equivalentProperty :teaches .
e Two properties have the same extension

— Intention vs. extension

—- Extension of a property is all of the subject-object
pairs it holds between

e This could be defined by this axiom:

{ ?A rdfs:subPropertyOf ?B.
?B rdfs:subPropertyOf ?A.}
<=> {?A owl:equivalentProperty ?B.}.

https://en.wikipedia.org/wiki/Extension_(semantics)

Property Restrictions

eDeclare that class C satisfies certain conditions

— All instances of C satisfy the conditions

eEquivalent to: Cis subclass of a class C', where
C' collects all objects that satisfy the
conditions (C' can remain anonymous)

eExamples:
- People whose age equals 20
- Things with exactly two arms and two legs

- People whose sex is male and have at least one
child whose sex is female and whose age is six

Property Restrictions

eoWwIl:Restriction element describes such a class

eElement has an owl:onProperty element and one
or more restriction declarations

eOne type defines cardinality restrictions
A Parent must have at least one child
:Parent rdfs:subClassOf

[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinalityQ "1"] .

Property Restrictions

e This statement defines Parent as any
Person who has at least one child

:Parent owl:equivalentClass
owl:intersectionOf (:Person
[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinality "1”])

e Note the Turtle syntax
:C1 owl:intersectionOf (:C2 :C3 :C4) .

Property Restrictions

Other restriction types defines constraints on
the kinds of values the property may take

- owl:allValuesFrom specifies universal
guantification

- owl:hasValue specifies a specific value

- owl:someValuesFrom specifies existential
guantification

owl:allValuesFrom

eDescribe a class where all of the values of a
property match some requirement

oE.g., Math courses taught by professors:

[a :mathCourse,
[a owl:Restriction;
owl:onProperty :isTaughtBy;
owl:allValuesFrom :Professor] |.

Offspring of people are people

e This lets us solve the problem of an animal’s
offspring must be the same type of animal

ei..e., people beget people, dogs beget dogs

:Person a owl:Class,
rdfs:subClassOf
[@ owl:Restriction;
owl:onProperty bio:offspring;
owl:allValuesFrom :Person] .

Offspring of people are people

:Person a owl:Class,
rdfs:subClassOf
[a owl:Restriction;
owl:onProperty bio:offspring;
owl:allValuesFrom :Person] .

“The class of things, all of whose offspring are
people”

p things, all of
.Ferson whose offspring

\/ are people

Offspring of people are people

:Person a owl:Class;
rdfs:subClassOf
[@ owl:Restriction;
owl:allValuesFrom :Person;
owl:onProperty bio:offspring | .

:john a :Person; bio:offspring :mary

What follows?

:Person rdfs:subClassOf

[owl:allValuesFrom :Person;
owl:onProperty bio:offspring] .

777

:blo:offsprlngdrfdfs:domam-:anllmal; “peop/e
rdfs:range :animal. . :

. give birth to

people”

:alice a foaf:Person;
bio:offspring :bob.

7?7

:carol a foaf:Person.

:don bio:offspring :carol.
27?7

What follows?

:Person rdfs:subClassOf

[owl:allValuesFrom :Person;
owl:onProperty bio:offspring] .

nothing

:bio:offspring rdfs:domain :animal,; “people
rdfs:range :animal.

:Person rdfs:subClassOf :bio:animal.

give birth to

J)
:alice a foaf:Person; bio:offspring :bob. people
:alice a :animal. :bob a :animal, :person. Maybe other
:carol a foaf:Person. things can give

birth to people, too
(e.g., the ancient
:don a :animal. Greek gods)

:don bio:offspring :carol.

What follows?

:Person rdfs:subClassOf “people are
[owl:allValuesFrom :Person; born of

owl:onProperty bio:offspringOf] . ”
people
bio:offspringOf rdfs:domain :animal;
rdfs:range :animal;
owl:inverse bio:offspring.

:carol a foaf:Person.

:don bio:offspring :carol.
2797

What follows?

:Person rdfs:subClassOf

[owl:allValuesFrom :Person;
owl:onProperty bio:offsringOf] .

bio:offspringOf rdfs:domain :animal; people el
rdfs:range :animal; born of

owl:inverse bio:offspring. people”

.carol a foaf:Person.
:don bio:offspring :carol.

:don a foaf:Person

owl:hasValue

® Describe a class with a particular value for a property
e E.g., Math courses taught by Professor Longhair

Math courses taught by :longhair
[rdfs:subclassOf :mathCourse;
[2 owl:restriction;
owl:onProperty :isTaughtBy;
owl:hasValue :longhair] .
Questions:
e Does this say all math courses are taught by :longhair?
e Does it say that there are some courses taught by :longhair?
e |f X is a :mathCourse & :isTaughtBy :longhair is it in this set?

e Can all classes, however defined, be paraphrased by a noun
phrase in English?

owl:hasValue

® Describe a class with a particular value for a property
e E.g., Math courses taught by Professor Longhair

Math courses taught by :longhair
[rdfs:subclassOf :mathCourse;
[2 owl:restriction;
owl:onProperty :isTaughtBy;
owl:hasValue :longhair] .

Questions:

e Does this say all math courses are taught by :longhair? No

e Does it say that there are some courses taught by :longhair? No
e |f X is a :mathCourse & :isTaughtBy :longhair is it in this set? Yes

e Can all classes, however defined, be paraphrased by a noun
phrase in English? probably

owl:hasValue

® Describe a class with a particular value for a property
e E.g., Math courses taught by Professor Longhair

Math courses taught by :longhair '~OWL is based on Description A

_ _ . Logic (DL)
[rdfs:subclassOf :mathCourse; Bl ot wes destned fo
[a owl:restriction; be similar to the way we
owl:onProperty :isTaughtBy; describe things in human

languages

owl:hasValue :longhair] .

4

Questions:

® Does this say all math courses are ta y :longhair? No
® Does it say that there are some c es taught by :longhair? No
e |f X is a :mathCourse & :isTaugh#8y :longhair is it in this set? Yes

e Can all classes, however defined, be paraphrased by a noun
phrase in English? probably

https://en.wikipedia.org/wiki/Description_logic

A typical example

:Male owl:equivalentClass
owl:intersectionOf
(:Person,
[a owl:Restriction;
owl:onProperty :sex;

owl:hasValue "male"]).

A typical example

:Man owl:equivalentClass
owl:intersectionOf :Person
(:Person,
[a owl:Restriction;
owl:onProperty :sex;

. n n
owl:hasValue "male"]). ‘sex == “male”

Classes are sets in OWL

What follows?

:ed a :Man .

27?7

:frank a foaf:Person; :sex "male".

27?7

:pat a foaf:Person; :sex "male"; :sex "female" .

27?7

What follows?

:ed a :Man..

:ed a :Person; :sex “male” We’ve not
yet said that

‘frank a foaf:Person; :sex "male". you can only
have one
:sex value

:frank a :Man

:pat a foaf:Person; :sex "male"; :sex "female" .

:pat a :Man

owl:someValuesFrom

e Describe class requiring it to have at least one
value for a property matching a description

e E.g., Academic staff members who teach an
undergraduate course

| a :academicStaffMember;
a [owl:onProperty :teaches;
owl:someValuesFrom :undergraduateCourse]]

Cardinality Restrictions

®A set’s cardinality is its number of elements

e\We can specify minimum and maximum number
using owl:minCardinality & owl:maxCardinality
— Courses with fewer than 10 students
— Courses with between 10 and 100 students
— Courses with more than 100 students

eCan specify an exact number by using the same
minimum and maximum number

— Courses with exactly seven students

eFor convenience, OWL offers also owl:cardinality
- E.g., exactly N

https://en.wikipedia.org/wiki/Cardinality

E.g.,

Cardinality Restrictions

This represents the courses taught by

at least two instaructors:

[a owl:Restriction;

ow

ow

:onProperty :isTaughtBy;

:minCardinality

“2"Mxsd:nonNegativelnteger] .

Since we’re using
Turtle syntax, we can
just say 2

What does this say?

:Parent owl:equivalentClass
[a owl:Restriction;
owl:onProperty :hasChild;

owl:minCardinality 1] .
Questions:

e Must parents be humans?
e Must their children be humans?

What does this say?

:Parent owl:equivalentClass
[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinality 1] .
Questions:

® Must parents be humans? No
e Must their children be humans? No

Definition of a parent

The parent class is equivalent to the class of
things that have at least one child

In logic, we might specify this as
All(x): Parent(x) < Exisits(y) hasChild(x, y)

If hasChild is defined as having Person as its
domain, then Parents are also people.

Special Properties

e owl:TransitiveProperty (transitive property)

) L

- E.g. “has better grade than”, “is ancestor of”

e owl:SymmetricProperty (symmetry)

1/

- E.g. “has same grade as”, “is sibling of”

e owl:FunctionalProperty defines a property that has
at most one value for each object
- E.g. “age”, “height”, “directSupervisor”

e owl:InverseFunctionalProperty defines a property
for which two different subjects cannot have the
same value

1/ {

- e.g., “ssn”, “mobile phone number”

Defining Classes: Boolean Combinations

e\We can combine classes using Boolean
operations (union, intersection, complement)

eNegation is introduced by complementOf, e.qg.:
courses taught by things that are not staffMembers

[@ :course,
owl:Restriction;
owl:onProperty :taughtBy;
owl:allValuesFrom [a owl:Class;
owl:complementOf :staffMember]

Boolean Combinations

® The new class is not a subclass of the union, but
rather equal to the union

- We have stated an equivalence of classes

e E.g., university people is the union of
staffMembers and Students

:peopleAtUni
owl:equivalentClass
owl:unionOf (:staffMember :student) .

Boolean Combinations

E.qg., CS faculty is the intersection of faculty and
things that belongTo the CS Department.

:facultyInCS owl:equivalentClass
owl:intersectionOf
(:faculty
[a owl:Restriction;
owl:onProperty :belongsTo;
owl:hasValue :CSDepartment |

Nesting of Boolean Operators

E.qg., administrative staff are staff members who are not
faculty or technical staff members

:adminStaff owl:equivalentClass SM
owl:intersectionOf F TS
(:staffMember
[a owl:Class;
owl:complementOf [a owl:Class;
owl:equivalentClass

owl:unionOf (:faculty :techSupportStaff)]])

Declaring Instances

Instances of OWL classes are declared as in RDF
;john
a :academicStaffMember;
uni:age 39.

:Monday a owl:DayOfWeek .
:Tuesday a owl:DayOfWeek .

What if we want to say that DayOfWeek has a
fixed number of instances?

Enumerations with owl:oneOf

eSometimes we want to define a class that has
a fixed set of known instances

®F.g., a thing that’s either Monday, Tuesday, ...

owl:DayOfWeek a owl:Class;
owl:oneOf (:Monday :Tuesday :Wednesday
:Thursday :Friday :Saturday :Sunday)]

e Note the list syntax: a sequence of elements
in parentheses with whitespace separators

No Unique-Names Assumption

eOWL does not adopt the unigue name
assumption used in many database systems

- Two instances having different names or IDs
doesn’t imply that they’re different individuals
eSuppose we state that each course is taught
by at most one staff member, and that a

given course is taught by #949318 and is taught
by #949352

— An OWL reasoner does not flag an error
- Instead, it infers that the two resources are equal

https://en.wikipedia.org/wiki/Unique_name_assumption

Distinct Objects (1)

e An owl:irreflexiveProperty is one where
the subject and object must differ

e Given:
fam:hasChild a owl:IrreflexiveProperty

:alice fam:hasChild :bob, :carol.

e Owl infers that :alice is a different
individual that both :bob and :carol

Are :bob and :carol necessarily different?

Distinct Objects (2)

Assert that two instances are distinct like
:bob owl:differentFrom :carol .

OWL provides a shorthand notation to assert the
pairwise inequality of all individuals in a given list
[a owl:allDifferent;

owl:distinctMembers

(:alice :bob :carol :don)].

Inferring Distinctness

An ontology may provide many ways to infer that individ-
uals as distinct from what’s known about them, e.g., they

® Belong to sets known to be disjoint (e.g., :Man, :Woman)
:patl a :Man. :pat2 a :Woman. :Man owl:disjointWith :Woman.

e Have inverse functional properties with different values
:patl :mobile “4105618733 . :pat2 :mobile “2154729983" .
:mobile a owl:InverseFunctionalProperty .

e Have different values for a functional property

:patl :hasMother :pl. :pat2 :hasMother :p2 .

:hasMother a owl:FunctionalProperty . :p1 owl:differentFrom :p2
® Are connected with an irreflexive relation

:patl :hasChild :pat2. :hasChild a owl:IrreflexiveProperty .

Inferring Distinctness

An ontology may provide many ways to infer that individ-
uals as distinct from what’s known about them, e.g., they
® Belong to sets known to be disjoint (e.g., :Man, :Woman)

:patl a :Man. :pat2 a :Woman. :Man owl:disjointWith :Woman.
e Have inverse functional properties with different values

:patl :mobile “4105618733 . :pat2 :mobile “2154729983" .
:mobile a owl:InverseFunctionalProperty .

® Have different values for a f

:patl :hasMother :pl. :pat2
:hasMother a owl:Fun

ional property
er:p2.

\ O

*An owl:inverseFunctionalProperty means\
® Are connected with 2 thatits object uniquely defines the subject.
pat1 :hasChild :pat2 *i.e., at most one subject can have it as the

e

Inferring Distinctness

An ontology may provide many ways to infer that individ-

uals as distinct from what’s known about them. e.o.. thev

* An owl:functionalProperty means that the
subject can only have one value

:patl a :Man. :pat2 a : «If two instances have different values, they
: : must be different
® Have inverse function.

:patl :mobile “4105618733 . i\ obile “2154729983"” .
:mobile a owl:InverseFunctionai Jperty .

® Belong to sets known

e Have different values for a functional property

:patl :hasMother :pl. :pat2 :hasMother :p2.

:hasMother a owl:FunctionalProperty. :p1 owl:differentFrom :p2
® Are connected with an irreflexive relation

:patl :hasChild :pat2. :hasChild a owl:IrreflexiveProperty .

Inferring Distinctness

* An owl:reflexiveProperty always holds
between an object and itself, e.g.:

Y owl:sameAge a owl:reflexiveProperty .

* An owl:irreflexiveProperty never holds
between an object and itself, e.g.,

owl:sibling a owl:irreflexiveProperty .

LB = B

e Are connected with an irreflexive relation
:patl :hasChild :pat2. :hasChild a owl:IrreflexiveProperty .

Data Types in OWL

e XML Schema provides a mechanism to
construct user-defined data types
- E.g., the data type of adultAge includes all
integers greater than 18

eSuch derived data types can’t be used in OWL

- The OWL reference document lists all the XML
Schema data types that can be used

- These include the most frequently used types such
as string, integer, Boolean, time, and date.

Combination of Features in OWL Profiles

eDifferent OWL profiles have different sets of
restrictions regarding the application of features

eIln OWL Full, all language constructors may be
used in any combination if the result is legal RDF

e OWL DL removes or restricts some features to
ensure that complete reasoning is possible and

tractable or to make implementations easier
— tractable computations can be done in polynomial time

e The OWL RL profile further restricts features to
those that can be inferred by simple rules.
e Most practicle systems limit themselves to OWL RL

https://en.wikipedia.org/wiki/Computational_complexity_theory

OWL Conclusions (1)

e OWL is a standard for Web ontologies that
builds upon RDF and RDF Schema and provides
inference and consistency checking

e Formal semantics and reasoning support is
provided through the mapping of OWL to logic

- Predicate logic and description logics have
been used for this purpose

e While OWL is sufficiently rich to be used in
practice and most practical systems use OWL DL
or OWL RL subsets

OWL Conclusions (2)

e OWL is not used for many useful very large or
inconsistent KGs like Wikidata

® These are often based on RDF and RDFS

e We'll cover important components that work on
these and provide some alternatives to
inference
- SPARQL (SPARQL Protocol and RDF Query Language)

is an efficient query language that can be used for
inference and query answering

- SHACL (SHApe Constraint Language) is a system
that defines consistency constraints

https://en.wikipedia.org/wiki/SPARQL
https://en.wikipedia.org/wiki/SHACL

