
Chapter 4 (2)
OWL

Based on slides from Grigoris Antoniou and Frank van Harmelen

Outline

1. A bit of history
2. Basic Ideas of OWL
3. The OWL Language
4. Examples
5. Beyond OWL

OWL Syntactic Varieties

l OWL builds on RDF and uses RDF’s
serializations

l Other syntactic forms for OWL have also
been defined:

– Alternative, more readable serializations, e.g.,
Manchester syntax

– These are often used in ontology editing
tools, like Protege

OWL XML/RDF Syntax: Header in Turtle

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/ XLMSchema#> .

l OWL documents are RDF documents

l and start with a typical declaration of
namespaces

l W3C owl recommendation has the namespace
http://www.w3.org/2002/07/owl#"

http://www.w3.org/2002/07/owl
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema

owl:Ontology
<> a owl:Ontology ;
rdfs:comment "Example OWL ontology" ;
owl:priorVersion <http://example.org/uni-ns-old> ;
owl:imports <http://example.org/persons> ;
rdfs:label "University Ontology" .

l owl:imports, a transitive property, indicates that
the document commits to all of the terms as
defined in its target

l owl:priorVersion points to an earlier version of
this document

OWL Classes

:AssociateProfessor a owl:Class ;
owl:disjointWith (:Professor :AssistantProfessor) .

lClasses are defined using owl:Class
– owl:Class is a subclass of rdfs:Class

lOwl:Class is disjoint with datatypes (aka literals)
lDisjointness is defined using owl:disjointWith

– Two disjoint classes are can share no instances

Another Example

:Man rdfs:subClassOf foaf:Person .
:Woman rdfs:subClassOf foaf:Person .
:Man owl:disjointWith :Woman .

Questions:
l Is :Man an rdfs:Class or a owl:Class?
l Why don’t we need to assert that :Man is some kind of

class?
l Do we need to assert the disjointness both ways?
l What happens of we assert :pat a :Man; a :Woman?

Protégé

https://protege.stanford.edu/

StarDog

https://www.stardog.com/

OWL Classes
:Faculty a owl:Class;

owl:equivalentClass :AcademicStaffMember .

lowl:equivalentClass asserts two classes are
equivalent

–Each must have the same members

lowl:Thing is the most general class, which
contains everything
– i.e., every owl class is rdfs:subClassOf owl:Thing

lowl:Nothing is the empty class
– i.e., owl:NoThing is rdfs:subClassOf every owl class

OWL Properties

l OWL has two kinds of properties
l Object properties relate objects to other objects

– owl:ObjectProperty, e.g., isTaughtBy, employer
l Data type properties relate objects to Literals

– owl:DatatypeProperty, e.g., age, phone, title…
lThese were made separate to make it easier to

implement sound and complete reasoners

Datatype Properties

lOWL uses XML Schema data types just like RDF
nd RDFS, exploiting the layered architecture of
the Semantic Web

:age a owl:DatatypeProperty;
rdfs:domain foaf:Person;
rdfs:range xsd:nonNegativeInteger .

OWL Object Properties

These connect to non-Literal objects, e.g.:

:isTaughtBy a owl:ObjectProperty;
rdfs:domain :Course;
rdfs:range :AcademicStaffMember;
rdfs:subPropertyOf :involves .

Inverse Properties

:teaches a owl:ObjectProperty;
rdfs:range :Course;
rdfs:domain :AcademicStaffMember;
owl:inverseOf :isTaughtBy .

Or just

:teaches owl:inverseOf :isTaughtBy .
A partial list of axioms:

owl:inverseOf rdfs:domain owl:ObjectProperty;
rdfs:range owl:ObjectProperty;
a owl:SymmetricProperty.

{?P owl:inverseOf ?Q. ?S ?P ?O} => {?O ?Q ?S}.
{?P owl:inverseOf ?Q. ?P rdfs:domain ?C} => {?Q rdfs:range ?C}.
{?A owl:inverseOf ?C. ?B owl:inverseOf ?C} => {?A rdfs:subPropertyOf ?B}.

Equivalent Properties

:lecturesIn owl:equivalentProperty :teaches .
l Two properties have the same extension

– Intention vs. extension
– Extension of a property is all of the subject-object

pairs it holds between

l This could be defined by this axiom:
{ ?A rdfs:subPropertyOf ?B.

?B rdfs:subPropertyOf ?A.}
<=> {?A owl:equivalentProperty ?B.}.

https://en.wikipedia.org/wiki/Extension_(semantics)

Property Restrictions

lDeclare that class C satisfies certain conditions
– All instances of C satisfy the conditions

lEquivalent to: C is subclass of a class C', where
C' collects all objects that satisfy the
conditions (C' can remain anonymous)

lExamples:
– People whose age equals 20
– Things with exactly two arms and two legs
– People whose sex is male and have at least one

child whose sex is female and whose age is six

Property Restrictions

lowl:Restriction element describes such a class
lElement has an owl:onProperty element and one

or more restriction declarations
lOne type defines cardinality restrictions

A Parent must have at least one child
:Parent rdfs:subClassOf

[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinalityQ "1"] .

Property Restrictions

l This statement defines Parent as any
Person who has at least one child

:Parent owl:equivalentClass
owl:intersectionOf (:Person

[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinality "1”])

lNote the Turtle syntax
:C1 owl:intersectionOf (:C2 :C3 :C4) .

Property Restrictions

Other restriction types defines constraints on
the kinds of values the property may take

– owl:allValuesFrom specifies universal
quantification

– owl:hasValue specifies a specific value
– owl:someValuesFrom specifies existential

quantification

owl:allValuesFrom

lDescribe a class where all of the values of a
property match some requirement

lE.g., Math courses taught by professors:

[a :mathCourse,
[a owl:Restriction;
owl:onProperty :isTaughtBy;
owl:allValuesFrom :Professor]].

Offspring of people are people

lThis lets us solve the problem of an animal’s
offspring must be the same type of animal

l i..e., people beget people, dogs beget dogs

:Person a owl:Class,
rdfs:subClassOf

[a owl:Restriction;
owl:onProperty bio:offspring;
owl:allValuesFrom :Person] .

Offspring of people are people

:Person a owl:Class,
rdfs:subClassOf

[a owl:Restriction;
owl:onProperty bio:offspring;
owl:allValuesFrom :Person] .

“The class of things, all of whose offspring are
people”

:Person things, all of
whose offspring
are people

Offspring of people are people

:Person a owl:Class;
rdfs:subClassOf

[a owl:Restriction;
owl:allValuesFrom :Person;
owl:onProperty bio:offspring] .

:john a :Person; bio:offspring :mary

What follows?
:Person rdfs:subClassOf

[owl:allValuesFrom :Person;
owl:onProperty bio:offspring] .

???
:bio:offspring rdfs:domain :animal;

rdfs:range :animal.
???
:alice a foaf:Person;

bio:offspring :bob.
???
:carol a foaf:Person.
:don bio:offspring :carol.
???

“people
give birth to
people”

What follows?
:Person rdfs:subClassOf

[owl:allValuesFrom :Person;
owl:onProperty bio:offspring] .

nothing
:bio:offspring rdfs:domain :animal;

rdfs:range :animal.
:Person rdfs:subClassOf :bio:animal.
:alice a foaf:Person; bio:offspring :bob.
:alice a :animal. :bob a :animal, :person.
:carol a foaf:Person.
:don bio:offspring :carol.
:don a :animal.

“people
give birth to
people”
Maybe other
things can give
birth to people, too
(e.g., the ancient
Greek gods)

What follows?

:Person rdfs:subClassOf
[owl:allValuesFrom :Person;
owl:onProperty bio:offspringOf] .

bio:offspringOf rdfs:domain :animal;
rdfs:range :animal;
owl:inverse bio:offspring.

:carol a foaf:Person.
:don bio:offspring :carol.
???

“people are
born of
people”

What follows?

:Person rdfs:subClassOf
[owl:allValuesFrom :Person;
owl:onProperty bio:offsringOf] .

bio:offspringOf rdfs:domain :animal;
rdfs:range :animal;
owl:inverse bio:offspring.

:carol a foaf:Person.
:don bio:offspring :carol.

:don a foaf:Person

“people are
born of
people”

owl:hasValue

l Describe a class with a particular value for a property
l E.g., Math courses taught by Professor Longhair
Math courses taught by :longhair
[rdfs:subclassOf :mathCourse;
[a owl:restriction;

owl:onProperty :isTaughtBy;
owl:hasValue :longhair] .

Questions:
l Does this say all math courses are taught by :longhair?
l Does it say that there are some courses taught by :longhair?
l If X is a :mathCourse & :isTaughtBy :longhair is it in this set?
l Can all classes, however defined, be paraphrased by a noun

phrase in English?

owl:hasValue

l Describe a class with a particular value for a property
l E.g., Math courses taught by Professor Longhair
Math courses taught by :longhair
[rdfs:subclassOf :mathCourse;
[a owl:restriction;

owl:onProperty :isTaughtBy;
owl:hasValue :longhair] .

Questions:
l Does this say all math courses are taught by :longhair? No
l Does it say that there are some courses taught by :longhair? No
l If X is a :mathCourse & :isTaughtBy :longhair is it in this set? Yes
l Can all classes, however defined, be paraphrased by a noun

phrase in English? probably

owl:hasValue

l Describe a class with a particular value for a property
l E.g., Math courses taught by Professor Longhair
Math courses taught by :longhair
[rdfs:subclassOf :mathCourse;
[a owl:restriction;

owl:onProperty :isTaughtBy;
owl:hasValue :longhair] .

Questions:
l Does this say all math courses are taught by :longhair? No
l Does it say that there are some courses taught by :longhair? No
l If X is a :mathCourse & :isTaughtBy :longhair is it in this set? Yes
l Can all classes, however defined, be paraphrased by a noun

phrase in English? probably

• OWL is based on Description
Logic (DL)

• DL’s notation was designed to
be similar to the way we
describe things in human
languages

https://en.wikipedia.org/wiki/Description_logic

A typical example

:Male owl:equivalentClass
owl:intersectionOf
(:Person,

[a owl:Restriction;
owl:onProperty :sex;
owl:hasValue "male"]).

A typical example

:Man owl:equivalentClass
owl:intersectionOf
(:Person,

[a owl:Restriction;
owl:onProperty :sex;
owl:hasValue "male"]).

:Person

:sex == “male”

:Man

Classes are sets in OWL

What follows?

:ed a :Man .

???

:frank a foaf:Person; :sex "male".

???

:pat a foaf:Person; :sex "male"; :sex "female" .

???

What follows?
:ed a :Man .

:ed a :Person; :sex “male”

:frank a foaf:Person; :sex "male".

:frank a :Man

:pat a foaf:Person; :sex "male"; :sex "female" .

:pat a :Man

We’ve not
yet said that
you can only
have one
:sex value

owl:someValuesFrom

l Describe class requiring it to have at least one
value for a property matching a description

l E.g., Academic staff members who teach an
undergraduate course

[a :academicStaffMember;
a [owl:onProperty :teaches;

owl:someValuesFrom :undergraduateCourse]]

Cardinality Restrictions

lA set’s cardinality is its number of elements
lWe can specify minimum and maximum number

using owl:minCardinality & owl:maxCardinality
– Courses with fewer than 10 students
– Courses with between 10 and 100 students
– Courses with more than 100 students

lCan specify an exact number by using the same
minimum and maximum number
– Courses with exactly seven students

lFor convenience, OWL offers also owl:cardinality
– E.g., exactly N

https://en.wikipedia.org/wiki/Cardinality

Cardinality Restrictions

E.g., This represents the courses taught by
at least two instaructors:

[a owl:Restriction;

owl:onProperty :isTaughtBy;

owl:minCardinality
“2”^^xsd:nonNegativeInteger] .

Since we’re using
Turtle syntax, we can
just say 2

What does this say?

:Parent owl:equivalentClass
[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinality 1] .

Questions:
lMust parents be humans?
lMust their children be humans?

What does this say?

:Parent owl:equivalentClass
[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinality 1] .

Questions:
lMust parents be humans? No
lMust their children be humans? No

Definition of a parent

The parent class is equivalent to the class of
things that have at least one child

In logic, we might specify this as

All(x): Parent(x) ó Exisits(y) hasChild(x, y)

If hasChild is defined as having Person as its
domain, then Parents are also people.

Special Properties
lowl:TransitiveProperty (transitive property)

– E.g. “has better grade than”, “is ancestor of”

lowl:SymmetricProperty (symmetry)
– E.g. “has same grade as”, “is sibling of”

lowl:FunctionalProperty defines a property that has
at most one value for each object

– E.g. “age”, “height”, “directSupervisor”

lowl:InverseFunctionalProperty defines a property
for which two different subjects cannot have the
same value

– e.g., “ssn”, “mobile phone number”

Defining Classes: Boolean Combinations

lWe can combine classes using Boolean
operations (union, intersection, complement)

lNegation is introduced by complementOf, e.g.:
courses taught by things that are not staffMembers

[a :course,
owl:Restriction;

owl:onProperty :taughtBy;
owl:allValuesFrom [a owl:Class;

owl:complementOf :staffMember]
] .

Boolean Combinations

l The new class is not a subclass of the union, but
rather equal to the union
– We have stated an equivalence of classes

l E.g., university people is the union of
staffMembers and Students

:peopleAtUni
owl:equivalentClass

owl:unionOf (:staffMember :student) .

Boolean Combinations

E.g., CS faculty is the intersection of faculty and
things that belongTo the CS Department.

:facultyInCS owl:equivalentClass
owl:intersectionOf

(:faculty
[a owl:Restriction;

owl:onProperty :belongsTo;
owl:hasValue :CSDepartment]

) .

Nesting of Boolean Operators

E.g., administrative staff are staff members who are not
faculty or technical staff members

:adminStaff owl:equivalentClass

owl:intersectionOf

(:staffMember

[a owl:Class;

owl:complementOf [a owl:Class;

owl:equivalentClass

owl:unionOf (:faculty :techSupportStaff)]])

SM

F TS

Declaring Instances

Instances of OWL classes are declared as in RDF

:john
a :academicStaffMember;
uni:age 39 .

:Monday a owl:DayOfWeek .
:Tuesday a owl:DayOfWeek .
…

What if we want to say that DayOfWeek has a
fixed number of instances?

Enumerations with owl:oneOf

lSometimes we want to define a class that has
a fixed set of known instances

lE.g., a thing that’s either Monday, Tuesday, …

owl:DayOfWeek a owl:Class;
owl:oneOf (:Monday :Tuesday :Wednesday

:Thursday :Friday :Saturday :Sunday)]

lNote the list syntax: a sequence of elements
in parentheses with whitespace separators

No Unique-Names Assumption

lOWL does not adopt the unique name
assumption used in many database systems
– Two instances having different names or IDs

doesn’t imply that they’re different individuals

lSuppose we state that each course is taught
by at most one staff member, and that a
given course is taught by #949318 and is taught
by #949352
– An OWL reasoner does not flag an error
– Instead, it infers that the two resources are equal

https://en.wikipedia.org/wiki/Unique_name_assumption

Distinct Objects (1)

lAn owl:irreflexiveProperty is one where
the subject and object must differ

lGiven:
fam:hasChild a owl:IrreflexiveProperty
:alice fam:hasChild :bob, :carol.

lOwl infers that :alice is a different
individual that both :bob and :carol

Are :bob and :carol necessarily different?

Distinct Objects (2)

Assert that two instances are distinct like

:bob owl:differentFrom :carol .

OWL provides a shorthand notation to assert the
pairwise inequality of all individuals in a given list

[a owl:allDifferent;
owl:distinctMembers

(:alice :bob :carol :don)].

Inferring Distinctness
An ontology may provide many ways to infer that individ-
uals as distinct from what’s known about them, e.g., they
lBelong to sets known to be disjoint (e.g., :Man, :Woman)

:pat1 a :Man. :pat2 a :Woman. :Man owl:disjointWith :Woman.
lHave inverse functional properties with different values

:pat1 :mobile “4105618733 . :pat2 :mobile “2154729983” .
:mobile a owl:InverseFunctionalProperty .

lHave different values for a functional property
:pat1 :hasMother :p1 . :pat2 :hasMother :p2 .
:hasMother a owl:FunctionalProperty . :p1 owl:differentFrom :p2

l Are connected with an irreflexive relation
:pat1 :hasChild :pat2. :hasChild a owl:IrreflexiveProperty .

Inferring Distinctness
An ontology may provide many ways to infer that individ-
uals as distinct from what’s known about them, e.g., they
lBelong to sets known to be disjoint (e.g., :Man, :Woman)

:pat1 a :Man. :pat2 a :Woman. :Man owl:disjointWith :Woman.
lHave inverse functional properties with different values

:pat1 :mobile “4105618733 . :pat2 :mobile “2154729983” .
:mobile a owl:InverseFunctionalProperty .

lHave different values for a functional property
:pat1 :hasMother :p1 . :pat2 :hasMother :p2 .
:hasMother a owl:FunctionalProperty . :p1 owl:differentFrom :p2

l Are connected with an irreflexive relation
:pat1 :hasChild :pat2. :hasChild a owl:IrreflexiveProperty .

•An owl:inverseFunctionalProperty means
that its object uniquely defines the subject.

• i.e., at most one subject can have it as the
value of the property

Inferring Distinctness
An ontology may provide many ways to infer that individ-
uals as distinct from what’s known about them, e.g., they
lBelong to sets known to be disjoint (e.g., :Man, :Woman)

:pat1 a :Man. :pat2 a :Woman. :Man owl:disjointWith :Woman.
lHave inverse functional properties with different values

:pat1 :mobile “4105618733 . :pat2 :mobile “2154729983” .
:mobile a owl:InverseFunctionalProperty .

lHave different values for a functional property
:pat1 :hasMother :p1 . :pat2 :hasMother :p2 .
:hasMother a owl:FunctionalProperty. :p1 owl:differentFrom :p2

l Are connected with an irreflexive relation
:pat1 :hasChild :pat2. :hasChild a owl:IrreflexiveProperty .

•An owl:functionalProperty means that the
subject can only have one value

• If two instances have different values, they
must be different

Inferring Distinctness
An ontology may provide many ways to infer that individ-
uals as distinct from what’s known about them, e.g., they
lBelong to sets known to be disjoint (e.g., :Man, :Woman)

:pat1 a :Man. :pat2 a :Woman. :Man owl:disjointWith :Woman.
lHave inverse functional properties with different values

:pat1 :ssn “249148660” . :pat2 :ssn “482962271” .
:ssn a owl:InverseFunctionalProperty .

lHave different values for a functional property
:pat1 :ssn “249148660” . :pat2 :ssn “482962271” .
:ssn a owl:FunctionalProperty .

l Are connected with an irreflexive relation
:pat1 :hasChild :pat2. :hasChild a owl:IrreflexiveProperty .

•An owl:reflexiveProperty always holds
between an object and itself, e.g.:

owl:sameAge a owl:reflexiveProperty .

•An owl:irreflexiveProperty never holds
between an object and itself, e.g.,

owl:sibling a owl:irreflexiveProperty .

Data Types in OWL

lXML Schema provides a mechanism to
construct user-defined data types
– E.g., the data type of adultAge includes all

integers greater than 18

lSuch derived data types can’t be used in OWL
– The OWL reference document lists all the XML

Schema data types that can be used
– These include the most frequently used types such

as string, integer, Boolean, time, and date.

Combination of Features in OWL Profiles

lDifferent OWL profiles have different sets of
restrictions regarding the application of features

lIn OWL Full, all language constructors may be
used in any combination if the result is legal RDF

lOWL DL removes or restricts some features to
ensure that complete reasoning is possible and
tractable or to make implementations easier
– tractable computations can be done in polynomial time

lThe OWL RL profile further restricts features to
those that can be inferred by simple rules.

lMost practicle systems limit themselves to OWL RL

https://en.wikipedia.org/wiki/Computational_complexity_theory

OWL Conclusions (1)

lOWL is a standard for Web ontologies that
builds upon RDF and RDF Schema and provides
inference and consistency checking

lFormal semantics and reasoning support is
provided through the mapping of OWL to logic
– Predicate logic and description logics have

been used for this purpose
lWhile OWL is sufficiently rich to be used in

practice and most practical systems use OWL DL
or OWL RL subsets

OWL Conclusions (2)
lOWL is not used for many useful very large or

inconsistent KGs like Wikidata
lThese are often based on RDF and RDFS
lWe’ll cover important components that work on

these and provide some alternatives to
inference
– SPARQL (SPARQL Protocol and RDF Query Language)

is an efficient query language that can be used for
inference and query answering

– SHACL (SHApe Constraint Language) is a system
that defines consistency constraints

https://en.wikipedia.org/wiki/SPARQL
https://en.wikipedia.org/wiki/SHACL

