
W

A

m
a
m
a
©

K

1

p
o
s
o
o
a
a
t
d
c
a
d

1

v
t
s
w

1
d

ARTICLE IN PRESS+Model
EBSEM-123; No. of Pages 7

Available online at www.sciencedirect.com

Web Semantics: Science, Services and Agents
on the World Wide Web xxx (2007) xxx–xxx

hGRDDL: Bridging microformats and RDFa

Ben Adida ∗
Harvard University, 33 Oxford Street MD-110, Cambridge, MA 02118, United States

Received 4 July 2007; received in revised form 29 August 2007; accepted 6 November 2007

bstract

We propose hGRDDL (pronounced “h-griddle”), a simple mechanism for transforming ad hoc HTML-embedded structured data, such as
icroformats, into RDFa. This technique preserves the advantages of the original syntax, notably the correspondence between the rendered HTML
nd the related structured data, and requires little change on the publisher end. RDFa tool developers can leverage the existing deployments of
icroformats, while focusing new deployments on RDFa for greater extensibility and consistency, all using the same client-side toolset. We provide
prototype implementation of the hGRDDL processor and of transformations for hCard and hCal, two popular microformats.
2007 Ben Adida. Published by Elsevier B.V. All rights reserved.

a
s
s
c
e
d
s
t
u
“

c
i
s
c
r
p
e
u
e

eywords: RDFa; Microformats; GRDDL

. Introduction

Since the early days of the web, there have been efforts to
ublish semantic data alongside the primarily visual content
f HTML. Certain HTML elements, e.g. for empha-
is, are inherently more semantic and less explicitly visual than
thers, e.g. <i> for italics. Certain HTML attributes, e.g. rel
n an anchor element ,
re inherently semantic since they generally do not result in
ny visual effect, rather they indicate a relationship between
he current and linked documents. These concepts were the
riving force behind the microformats effort [17], which was
olloquially called “the small-s semantic web” for its ad hoc
pproach to evolving the web towards more machine-readable
ata.

.1. Multiple approaches

While microformats have grown to provide a number of
Please cite this article in press as: B. Adida, hGRDDL: Bridging microfo
(2007), doi:10.1016/j.websem.2007.11.006

ocabulary-specific syntaxes, other techniques have emerged
o provide more generic semantic web data embedding, with
yntax independent of the vocabulary. RDFa [2], the W3C’s
ork-in-progress in this area, enables the embedding of almost

∗ Corresponding author. Tel.: +1 617 395 8535.
E-mail address: ben@eecs.harvard.edu.

[
e
c
t
H
w
t

570-8268/$ – see front matter © 2007 Ben Adida. Published by Elsevier B.V. All ri
oi:10.1016/j.websem.2007.11.006
ny RDF graph inside XHTML1.1 and XHTML2 [10] using
ome additional attributes. eRDF [6] can embed a smaller sub-
et of RDF graphs inside plain HTML as long as the publisher
ontrols the document’s <head>. Meanwhile, a separate W3C
ffort, GRDDL [4], aims to extract RDF triples from any XML
ocument, including XHTML, using a document- or namespace-
pecific transformation. One of the use cases for GRDDL is
o extract RDF/XML from an HTML-with-microformats doc-
ment, though it can be applied to any homegrown syntax, i.e.
unofficial” microformats.

Multiple syntaxes are inevitable. However, variety comes at a
ost: each syntax requires its own parser, often its own semantic
nterpreter, and often its own mechanism for relating rendered
creen regions to structured data. Though RDFa provides a
onsistent syntax and the most expressivity, microformats cur-
ently enjoy significantly greater deployment: a number of large
ublishers, e.g. the social network LinkedIn [15], the online cal-
ndar 30Boxes [1], and Apple’s dotMac online email system [9],
se microformats. Recently, the total number of microformat-
nabled web pages was estimated at “hundreds of millions”
18]. Whatever limitations microformats may have, and how-
ver extensible a tool builder wishes to make her software, she
annot ignore microformats. How might we give the tool builder
rmats and RDFa, Web Semantics Sci Serv Agents World Wide Web

he best of all worlds while reducing her development effort?
ow can we enable a world of many structured data syntaxes
hile reducing the duplication of effort in writing client-side

ools?

ghts reserved.

dx.doi.org/10.1016/j.websem.2007.11.006
mailto:ben@eecs.harvard.edu
dx.doi.org/10.1016/j.websem.2007.11.006

 IN+Model
W

2 d Age

1

s
e
i
k
a
T
n
s
v
f
n

c
X
t
X
h

1

m
t
h
R
c
u
v
s
p
a

H
v
H
c
i
r

2

H
e
s
s
i
t
t

f
l

2

s
T
l
k
s
s
s

r
v
i
a
m
n
H

E
s
i
t
t
i
t
n
M
a
t

2

r
t
c
e
a

E
H
c
c
a
s
t
e
m

ARTICLEEBSEM-123; No. of Pages 7

B. Adida / Web Semantics: Science, Services an

.2. Bridging the syntaxes

We propose hGRDDL1, an approach that reduces syntax-
pecific code to a single transformation to RDFa. This solution
ffectively provides a funnel to RDFa, which becomes a unify-
ng syntax around which all client-side tools can be built. The
ey point of hGRDDL is that it processes an HTML document
nd produces another HTML document that renders identically.
he original HTML document can be entirely replaced by the
ew HTML document within the user’s browser. All client-
ide data processing can then be based solely on the RDFa
ersion of the document, even if publishers produced micro-
ormats, eRDF, or some other custom syntax for their specific
eeds.

Note that the specific HTML “host” for RDFa does not
hange with the transformation. If the original document is
HTML2, then the target document is XHTML2+RDFa, and if

he original document is XHTML1.1, then the target document is
HTML1.1+RDFa. As RDFa becomes supported in additional
ost dialects, we expect hGRDDL to apply accordingly.

.3. Why not just GRDDL?

The W3C’s GRDDL effort provides a way to transform
icroformats, eRDF, and other ad hoc HTML-embedded syn-

axes into RDF/XML. One might wonder what the point of
GRDDL is, then, if plain GRDDL can already extract the
DF. The key point is human context: an HTML page may
ontain a significant amount of structured data, of which the
ser may only want to select a small portion, typically by
isual means, e.g. using a contextual menu on a particular
ection of the page. A number of tools, e.g. Operator [13],
rovide just this kind of human-context-driven structured data
ccess.

With GRDDL, once RDF/XML has been extracted from
TML, there is no practical way to associate a point in the
isually rendered HTML with its corresponding RDF: the
TML Document Object Model (DOM) [22] has been dis-

arded. hGRDDL preserves the expression of the structured data
n HTML form, so that this visual-semantic correspondence is
etained.

. Principles for embedding semantics into HTML

There are many methods for embedding semantics in HTML.
ere, we outline four guiding principles, which we illustrate by

xample. Because these principles drove the design of RDFa, it
hould come as no surprise that RDFa is the only solution that
atisfies all four. That said, detailing these principles should clar-
Please cite this article in press as: B. Adida, hGRDDL: Bridging microfo
(2007), doi:10.1016/j.websem.2007.11.006

fy the advantages of choosing RDFa as the target of hGRDDL
ransformations and illustrate why retaining information about
he HTML DOM is particularly important.

1 Our solution is called hGRDDL because it is meant as a GRDDL-like trans-
ormation with a focus on processing microformats, which have a habit of using
owercase ‘h’ in their naming to indicate “HTML”.

2

h
s
s
e

 PRESS
nts on the World Wide Web xxx (2007) xxx–xxx

.1. Independence and extensibility

When a publisher provides structured data in her HTML, she
hould determine independently the exact vocabulary she needs.
here may be community-defined best practices, but the pub-

isher should not be forced to use a consensus approach, as she
nows her requirements better than anyone else. In particular, if
he chooses, as a starting point, some best practice vocabularies,
he should be able to extend them, combine them, or use only a
ubset.

Tools built to recognize the initial vocabularies should still
ecognize as much of them as remains in the final, customized
ocabulary, and be able to perform basic, generic data process-
ng on the additional fields. It should be noted that RDF [16], as
n abstract data modeling approach, precisely fits this require-
ent: any publisher can reuse existing RDF properties and mint

ew URIs to create new ones, while any consumer can perform
TTP-based discovery on properties it has not yet encountered.

xample 1 (Photography). A professional photography web
ite may want to reuse the vocabulary created by a simpler
mage-sharing web site, including photo caption, size, and date
aken. In addition, the professional photography site may wish
o describe the lens and exposure settings. A tool that sorts the
mage-sharing web site photos by “date taken” should continue
o function on the professional photography site. This tool is
ot aware of the new fields, but it can process the old ones.
ore interestingly, the old tool can still sort, filter, aggregate,

nd relate photos according to the new fields without knowing
heir deep semantics.

.2. DRY (Do not repeat yourself)

When human-readable data is the same as the machine-
eadable version, a publisher should not have to repeat herself:
he HTML should only contain a single copy of the data, which
an be both rendered and interpreted as the machine-readable
quivalent. In particular, solutions that maintain parallel HTML
nd RDF/XML files are not compliant with this principle.

xample 2 (Creative Commons). An artist with a simple
TML page licenses his graphic designs under a non-

ommercial Creative Commons license [5]. He decides to
hange the license to non-commercial-share-alike, so that other
rtists who reuse his work must share their new work in the
ame way. To accomplish this, he simply changes the href in
he anchor link to the Creative Commons license. Machine read-
rs should detect this change, too, without the artist having to
odify a second portion of his markup.

.3. Locality

When a user selects a portion of the rendered HTML within
rmats and RDFa, Web Semantics Sci Serv Agents World Wide Web

is browser, he should be able to access the corresponding
tructured data, using, for example, a contextual menu. The
tructured data must thus remain intimately tied to the syntax that
xpressed it.

dx.doi.org/10.1016/j.websem.2007.11.006

 IN+Model
W

d Age

E
o
i
e
i
p
l

2

t
i
s
(
i
t

t
p
w
s

E
M
f
a
w
d

3

3

j
t
d
m
d
o

v
c
p
c
o
e
s

c
a
o
i
s
<

m

3

c
s
[
v
d
s
e
m
d

3

m
R
m
u
i
a
i
G
i
i
n

3

o
c

•

•

a
s
s
x
t
c
i

3

ARTICLEEBSEM-123; No. of Pages 7

B. Adida / Web Semantics: Science, Services an

xample 3 (Weblog). A weblog consists of multiple entries,
ften presented in batches on a single HTML page. A user wish-
ng to extract categorization tags and authorship from a given
ntry should be able to right-click on the entry and find the related
nformation, independently of other entries. This assumes a
roperly updated browser but a straight-forward mechanism for
ocating related structured data.

.4. Self-containment

It should be relatively easy to produce a fragment of HTML
hat is entirely self-contained with respect to the structured data
t expresses. At a high level, this enables “copy-and-paste” of
emantically marked-up HTML from one document to another.
The source and target documents may require some kind of flag
ndicating the presence of structured data in the first place, but
his flag should not be vocabulary specific.)

Self-containment does not immediately follow from locality:
he expression of the structured data may depend on multi-
le portions of markup sprinkled throughout the page, which
eaken self-containment even if the crucial portion of markup

till provides locality.

xample 4 (Widgets). A number of destination web sites, e.g.
ySpace [19], provide users with the ability to include HTML

ragments from other sources within their page. A self-contained
pproach to HTML-embedded structured data ensures that these
idgets can carry their own structured data with them, indepen-
ently of the containing page.

. Approaches to embedding semantics in HTML

.1. Microformats

Microformats were built specifically with the intent to add
ust enough markup to make existing HTML “semantic.” Using
he HTML attributes class, rel, and title, microformats
efine domain-specific syntaxes, such as hCard for contact infor-
ation and hCal for calendaring. Microformats are quite widely

istributed: a recent estimate gauges deployment at “hundreds
f millions of web pages” [18].

Microformats provide locality and DRY, but they fail to pro-
ide independence and extensibility. Multiple microformats may
onflict with one another, and adding custom fields is not sup-
orted, neither technically nor socially within the microformat
ommunity [8]. Though it may be technically possible to create
ne’s own microformat, it is neither recommended nor made
asy by the parsing architecture, which tends to assume a fixed
et of well-defined vocabularies.

In the current deployments of microformats and their asso-
iated parsing tools, self-containment is supported, though this
ssumes that parsers are aware of all possible vocabularies ahead
Please cite this article in press as: B. Adida, hGRDDL: Bridging microfo
(2007), doi:10.1016/j.websem.2007.11.006

f time. If microformats were deployed according to their spec-
fication – using a profile URI – they would not provide true
elf-containment, as the profile URI needs to be copied into the
head> of the target document, an operation which precludes
any uses of self-containment, e.g. widgets.

s
s
t
v
p

 PRESS
nts on the World Wide Web xxx (2007) xxx–xxx 3

.2. eRDF

eRDF is a syntax that also uses the existing HTML attributes
lass, rel, and title to enable the embedding of simple,
ingle-layer-depth RDF graphs. It builds on some Dublin Core
7] conventions for embedding attributes in HTML. eRDF pro-
ides DRY and locality, but, because it also requires namespace
eclarations in the document’s <head>, does not fully provide
elf-containment. eRDF has good support for independence and
xtensibility, though not complete support, as any RDF graph
ore complex than a single layer of attributes becomes fairly

ifficult to express.

.3. GRDDL

GRDDL is a technique for declaring and applying transfor-
ations to XML documents in order to extract RDF, usually in
DF/XML form. GRDDL can be used specifically to process
icroformats, eRDF, and RDFa, as long as the HTML document

ses a profile URI. GRDDL offers independence and extensibil-
ty and DRY, since anyone can write a GRDDL transformation
nd the whole point of the transformation is to reuse the exist-
ng information in the HTML. However, the end product of a
RDDL transformation no longer contains any HTML DOM

nformation. In addition, the vocabulary-specific transformation
s specified in the HTML document’s head. Thus, GRDDL does
ot provide locality or self-containment.

.4. RDFa

RDFa was built from the ground up to enable the embedding
f most RDF graphs in HTML. To accomplish this task in a
onsistent way:

new attributes about, resource, instanceof, prop-
erty, and content were introduced;
the existing attributes rel and href were applied to all
elements, not just <a>.

As a result, a single syntax can be used for embedding just
bout any RDF graph, including even blank nodes: RDFa thus
upports independence and extensibility. Like eRDF, RDFa also
upports DRY and locality. In addition, because RDFa relies on
mlns for namespace declarations, it can easily be written so as

o support self-containment, making it trivial to copy-and-paste
hunks of HTML+RDFa into a page: no vocabulary-specific
nformation is required in the <head>.

.5. Selecting a target for hGRDDL transforms

Note how the set of data expressible by RDFa is a super-
et of that expressible by eRDF and microformats (given proper
rmats and RDFa, Web Semantics Sci Serv Agents World Wide Web

emantic mapping of the microformats). Note also how GRDDL,
hough it is infinitely flexible in what it can express, does not pro-
ide locality or self-containment. Though the validity of these
rinciples is debatable (and RDFa’s satisfaction of the principles

dx.doi.org/10.1016/j.websem.2007.11.006

 IN+Model
W

4 d Age

a
T

4

i
R
f
o
d
t

l
o
s
u
s
t

4

a

(

4

G
w
n
w

b
h
i

F
i

ARTICLEEBSEM-123; No. of Pages 7

B. Adida / Web Semantics: Science, Services an

bit of a tautology), we believe they provide real end-user value.
hus, we choose RDFa as the target for hGRDDL transforms.

. hGRDDL: transforming to RDFa

We propose hGRDDL, a simple technique for transform-
ng HTML-embedded ad hoc semantics into HTML-embedded
DFa. The goal is to provide a single, flexible development path

or tool builders, while preserving the existing properties of the
riginal syntax. In particular, the hGRDDL HTML output ren-
ers exactly like its input: the embedded semantics remain local
o the rendered data they pertain to.

Of course, as we are not modifying the syntax of the pub-
ished document, the limitations remain, too. A microformat
r eRDF page, even when hGRDDL-enabled, does not provide
elf-containment. The point of using RDFa as a target syntax is to
nify the client-side toolset and encourage a maximally expres-
ive syntax. However, existing syntaxes cannot gain properties
hey do not already support.

.1. GRDDL
Please cite this article in press as: B. Adida, hGRDDL: Bridging microfo
(2007), doi:10.1016/j.websem.2007.11.006

In the case of HTML documents, GRDDL uses the profile
ttribute, and takes the following steps:

(i) detect and retrieve the profile indicated in the
head;

t
a
t
N
p
t

ig. 1. hGRDDL vs. GRDDL. The hGRDDL transform happens before the user sees
n the shaded vertical bar. Note how, in the case of hGRDDL, the output of the transf
 PRESS
nts on the World Wide Web xxx (2007) xxx–xxx

(ii) run a GRDDL processor on the profile document to retrieve
a

grddl : profileTransformation

triple that indicates the URI of the document-level trans-
formation;

iii) fetch and apply the transformation to the original HTML
document to obtain RDF/XML.

.2. Finding the hGRDDL transform

hGRDDL, as its name implies, is strongly inspired by
RDDL. Unfortunately, because GRDDL does not provide a
ay to label transformations according to output format, we can-
ot use it as-is. We can, however, use a very similar approach
ithout interfering with any existing GRDDL transforms.
hGRDDL bootstraps off the GRDDL profile-

ased process, using the alternate predicate
grddl:hProfileTransformation. This new pred-

cate subclasses grddl:profileTransformation so
hat existing GRDDL processors can use this transformation as

generic way to extract an RDF serialization, which is what
rmats and RDFa, Web Semantics Sci Serv Agents World Wide Web

he RDFa output of the hGRDDL transformation provides.
ote, however, that the hGRDDL transform is expected to be
erformed by the user’s browser before the HTML is rendered,
hus the minting of a new predicate. See Fig. 1 for an illustration.

the rendered content. The point where the user sees the document is represented
ormation is both the machine-readable data, and the human-readable data.

dx.doi.org/10.1016/j.websem.2007.11.006

 IN+Model
W

d Age

4

i
s
c
c
t
s

b
u
c
l
I
u
r
w

4

e
h

c
p

i
o
h
f
t

4

r
t
n
t

p
c
a
p

4

p
w
m
a
X
c
i
r
h
b
i

m
l
w
u
a
b
t
a
t
w

5

h

5

w
a
a
A
t
s
G
t
f
O
h
n
and Opera 8 proved successful deployment ground for hGRDDL
ARTICLEEBSEM-123; No. of Pages 7

B. Adida / Web Semantics: Science, Services an

.3. The transformation

Because the HTML output should render exactly like the
nput, an hGRDDL transformation should take great care to pre-
erve all of the HTML markup that might be used to style the
ontent or that might in any other way affect it. Specifically, all
lass names should be preserved, and the element structure of

he DOM tree should be preserved. The only significant changes
hould be in the non-CSS attributes.

Preservation of the element structure of the DOM tree may not
e possible when there is no one-to-one mapping of the vocab-
laries: e.g. a full name becomes a first and last name. In such
ases, we recommend that an alternate RDF vocabulary be uti-
ized so that the addition of new elements be avoided at all costs.
f the transformation must add new elements, it should strive to
se as few as possible, though one must acknowledge that the
isk of changing the rendering of the page goes up significantly
ith this approach.

.4. An example: hCard

The point of hGRDDL, and its simplicity are best
xpressed by example. Consider the following simple, fictitious
Card:

We assume that the hCard profile has been updated to indi-
ate an hGRDDL transformation. The output of the hGRDDL
rocessor should then be:

Note how all existing class names were preserved. Only the
nstanceof, property and rel attributes were used. The
utput HTML should render exactly like the input. Note also
ow this syntax-specific transformation is relatively straight-
orward: it need only add a handful of attributes where it finds
he specific microformat properties.

.5. Hard-wiring some transforms

Most microformats are published without a profile URI. As a
Please cite this article in press as: B. Adida, hGRDDL: Bridging microfo
(2007), doi:10.1016/j.websem.2007.11.006

esult, most microformat parsers look through the DOM for the
op-level class values expected for each microformat. Fortu-
ately, this same approach can be used in hGRDDL: look for the
op-level microformat class, and use it as a flag of microformat

w
M
i
b

 PRESS
nts on the World Wide Web xxx (2007) xxx–xxx 5

resence. When a specific microformat is detected, hGRDDL
an simply assume the presence of a profile it already knows
bout for that microformat, exactly like existing microformat
arsers which have hard-wired parsers for each vocabulary.

.6. Implementation language

Given that we want a client-side, browser-based, cross-
latform implementation, two major routes are immediately
orth considering: XSLT or JavaScript+DOM. The XSLT route
akes hGRDDL particularly similar to GRDDL. GRDDL

lready defines ways to handle malformed XHTML and non-
ML-based HTML by tidying the input [21], which hGRDDL

an mimick. However, this tidying brings problems of its own:
t becomes particularly difficult to ensure that the output HTML
enders exactly like the input HTML. Because we expect an
GRDDL-aware user agent to perform the hGRDDL processing
efore rendering the result to the end-user, the XSLT approach
s likely unrealistic.

The second approach, JavaScript with DOM access, is far
ore promising. JavaScript can be tweaked to function seam-

essly across browsers, while the DOM can handle less than
ell formed XHTML. The JavaScript-DOM approach enables
s to change the HTML DOM “in place,” tweaking only the
ttributes we want. The DOM disambiguations performed by a
rowser when processing malformed input are fully preserved:
he hGRDDL JavaScript processor is only tweaking attributes in
n existing DOM tree. Thus, we propose an architecture where
he JavaScript transformations are run inside a web browser
ith the input HTML page loaded into the DOM.

. Implementing hGRDDL

Our prototype implementation is available at
ttp://ben.adida.net/projects/hgrddl/.

.1. Deployment platform

In order to automatically run the hGRDDL transformations,
e opted, in our prototype, to deploy the hGRDDL processor as
client-side JavaScript user script. User scripts are typically run
utomatically by compatible browsers on each page load, with an
PI that allows for more flexibility, e.g. cross-domain requests,

han a normal JavaScript program. The specific API that user-
cript platforms implement was initially defined by Firefox’s
reaseMonkey add-on [11]. We wrote our hGRDDL processor

o be as cross-browser-compatible as possible: we tested on Fire-
ox with GreaseMonkey, Safari with CreamMonkey [14], and
pera with its built-in user-script support [20]. We do not yet
ave an Internet Explorer implementation, as it currently does
ot provide a complete user-script platform. Firefox 2, Safari 3,
rmats and RDFa, Web Semantics Sci Serv Agents World Wide Web

ith very little effort. We hope that IE and add-ons like Grease-
onkey for IE [12] will enable a fully cross-platform approach

n the near future. There is no deep reason why this could not
e made compatible with IE.

dx.doi.org/10.1016/j.websem.2007.11.006
http://ben.adida.net/projects/hgrddl/

 IN+Model
W

6 d Age

5

5

h
p
b
w
p
R
T
m
v

5

p
fi
l
a
f
r
w
I
i
U
h
r

5

R
o
j
i
t
t
w
h
c

5

b

5

D
o
b
b
p

5

a

c
a
d
m
w
h

5

d
i
[

6

f
i
t
f
“
f
w

h
i
h
a
h
d
h
l

A

C
p
u
c
T
c

R

ARTICLEEBSEM-123; No. of Pages 7

B. Adida / Web Semantics: Science, Services an

.2. Components

.2.1. Profiles and transforms
We built hGRDDL profiles for two microformats, hCal and

Card. We implemented only the basic features of hCard. Each
rofile references its own hGRDDL JavaScript transformation
uilt to run against an existing DOM in a browser-independent
ay. The lion’s share of the code is spent building a cross-
latform way to read and write DOM attributes, in particular
DFa attributes that are not yet officially supported by browsers.
he transforms themselves are fairly simple, as each microfor-
at field generally maps to a single RDFa field in the appropriate

ocabulary.

.2.2. The hGRDDL processor
We wrote the hGRDDL processor as a user-script JavaScript

rogram. Beyond the GRDDL code needed for processing pro-
le documents, our hGRDDL processor required fewer than 25

ines of JavaScript. At a high level, the code looks for a profile
ttribute in the HTML document’s <head>, fetches it, looks
or the generic hGRDDL profile, and then for an anchor with
el=hProfileTransformation. (We effectively hard-
ired the GRDDL transformation for the hGRDDL profile.)

f an hGRDDL transformation is found, a <script> element
s added to the document’s <head> with the transformation’s
RI as the src attribute. This approach is taken to ensure that the
GRDDL transformation executes as unprivileged JavaScript,
ather than user-script JavaScript with its greater permissions.

.2.3. Verifying the output
We tested our hGRDDL engine’s output by invoking the

DFa bookmarklet to extract the N3 syntax for contained triples,
nce the page was loaded and the hGRDDL engine had done its
ob. Also interesting is the use of the RDFa Clipboard [3] to ver-
fy the preservation of the locality property. Finally, on Firefox,
he Operator plugin shows the presence of RDFa, but only after
he RDFa bookmarklet is invoked and triggers a DOM change
hich the plugin then notices. (The asynchronous loading of the
GRDDL transform means Operator does not notice the RDFa
hange until the DOM tree changes again.)

.3. Limitations

Our approach is currently a prototype. As such, it has a num-
er of limitations. We highlight the major ones here.

.3.1. JavaScript and DOM dependencies
The consumer must have a full JavaScript interpreter with

OM access. If one wants to use hGRDDL for machine-
nly fetching and parsing of information, this approach may
e too heavyweight. We hope that any profile will include
oth hGRDDL and classic GRDDL transforms: machine-only
arsers will choose the GRDDL route.
Please cite this article in press as: B. Adida, hGRDDL: Bridging microfo
(2007), doi:10.1016/j.websem.2007.11.006

.3.2. Delayed loading
The hGRDDL transformation is fully performed only

fter the dynamically added <script> is loaded and exe-
 PRESS
nts on the World Wide Web xxx (2007) xxx–xxx

uted. Because this loading and execution is performed
synchronously, client-side tools that trigger on the win-
ow.onload event may not notice the RDFa immediately. A
ore robust implementation of hGRDDL should ensure that the
indow.onload event is not fired until all transformations
ave completed.

.3.3. Dynamic pages
Performing hGRDDL transformations on the fly when pages

ynamically update will likely be slow. Though this limitation
s already seen in many browser extensions, including Operator
13], this remains an area of concern come deployment time.

. Conclusion and future work

We have presented hGRDDL, a particularly simple proposal
or transforming all HTML-embedded structured data syntaxes
nto RDFa. The goal is to ensure that tool builders can focus
heir efforts on RDFa, the most flexible and expressive syntax
or embedding RDF in HTML, all the while benefiting from the
hundreds of millions of pages” already deployed with micro-
ormats. We have shown how easy it is to implement hGRDDL
ith cross-browser compatibility.
In the future, it will be particularly interesting to integrate

GRDDL directly into a major RDFa parser. It will also be
mportant to conduct extensive tests to ensure that, as we
ypothesize, the rendering of the content is never affected by
n hGRDDL transform. We will also need to make sure that
GRDDL is made efficient enough to function inside highly
ynamic web pages. It may also be interesting to consider
GRDDL as a publisher-side pre-processing tool, when pub-
ishers eventually decide to fully upgrade to RDFa.

cknowledgements

The author wishes to acknowledge Keith Alexander, Dan
onnolly, Michael Kaply, and Elias Torres for a number of
roductive discussions, and the anonymous reviewers for very
seful contributions and tweaks. The original idea for hGRDDL
ame from discussions between the author and Dan Connolly.
he very first versions of the hGRDDL code were written in
ollaboration with Elias Torres.

eferences

[1] 30 Boxes, 30boxes. com (last viewed June 28, 2007).
[2] B. Adida, M. Birbeck, RDFa Primer, http://www.w3.org/TR/xhtml-rdfa-

primer/(last viewed June 28, 2007).
[3] B. Adida, RDFa Clipboard, http://www.w3.org/2006/07/SWD/RDFa/impl/

js/rdfa-clipboard/ (last viewed June 28, 2007).
[4] D. Connolly, Gleaning Resource Descriptions from Dialects of Languages

(GRDDL), http://www.w3.org/TR/grddl/ (last viewed June 28, 2007).
[5] Creative Commons, http://creativecommons.org (last viewed June 28,
rmats and RDFa, Web Semantics Sci Serv Agents World Wide Web

2007).
[6] I. Davis, RDF in HTML (eRDF), http://research.talis.com/2005/

erdf/wiki/Main/RdfInHtml (last viewed June 28, 2007).
[7] Dublin Core Metadata Initiative, http://dublincore.org/ (last viewed June

28, 2007).

dx.doi.org/10.1016/j.websem.2007.11.006
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/2006/07/SWD/RDFa/impl/js/rdfa-clipboard/
http://www.w3.org/2006/07/SWD/RDFa/impl/js/rdfa-clipboard/
http://www.w3.org/TR/grddl/
http://creativecommons.org
http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml
http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml
http://dublincore.org/

 IN+Model
W

d Age

[

[

[
[

[

[
[

[
[

[
[

tutorials/userjs/ (last viewed June 28, 2007).
ARTICLEEBSEM-123; No. of Pages 7

B. Adida / Web Semantics: Science, Services an

[8] D. Zachariadis. 4d: A geo microformat alternative proposal, http://
microformats.org/wiki/thoughts-on-extending-the-geo-microformat (last
viewed June 28, 2007).

[9] dot Mac, http://mac.com (last viewed June 28, 2007).
10] S. Pemberton, et al., XHTML 1.0 The Extensible HyperText Markup Lan-

guage, second ed., http://www.w3.org/TR/xhtml1/ (last viewed June 28,
2007).

11] GreaseMonkey Firefox Add-On, http://www.greasespot.net/ (last viewed
June 28, 2007).
Please cite this article in press as: B. Adida, hGRDDL: Bridging microfo
(2007), doi:10.1016/j.websem.2007.11.006

12] GreaseMonkey for IE, http://www.gm4ie.com/ (last viewed June 28, 2007).
13] M. Kaply, Operator, http://www.kaply.com/weblog/category/operator/

(last viewed June 28, 2007).
14] K. Kazuyoshi, CreamMonkey, http://creammonkey.sourceforge.net/ (last

viewed June 28, 2007).

[

[

 PRESS
nts on the World Wide Web xxx (2007) xxx–xxx 7

15] LinkedIn, http://linkedin.com (last viewed June 28, 2007).
16] F. Manola, E. Miller, RDF Primer, http://www.w3.org/TR/rdf-primer/ (last

viewed June 28, 2007).
17] Microformats, http://microformats.org (last viewed June 28, 2007).
18] microformats.org turns 2, http://microformats.org/blog/2007/06/21/

microformatsorg-turns-2/ (last viewed June 28, 2007).
19] MySpace, http://myspace.com (last viewed June 28, 2007).
20] Take Control with User JavaScript, http://www.opera.com/support/
rmats and RDFa, Web Semantics Sci Serv Agents World Wide Web

21] D. Raggett, HTML Tidy Library Project, http://tidy.sourceforge.net/ (last
viewed June 28, 2007).

22] W3C, Document Object Model (DOM), http://www.w3.org/DOM/ (last
viewed June 28, 2007).

dx.doi.org/10.1016/j.websem.2007.11.006
http://microformats.org/wiki/thoughts-on-extending-the-geo-microformat
http://microformats.org/wiki/thoughts-on-extending-the-geo-microformat
http://mac.com
http://www.w3.org/TR/xhtml1/
http://www.greasespot.net/
http://www.gm4ie.com/
http://www.kaply.com/weblog/category/operator/
http://creammonkey.sourceforge.net/
http://linkedin.com
http://www.w3.org/TR/rdf-primer/
http://microformats.org
http://microformats.org/blog/2007/06/21/microformatsorg-turns-2/
http://microformats.org/blog/2007/06/21/microformatsorg-turns-2/
http://myspace.com
http://www.opera.com/support/tutorials/userjs/
http://www.opera.com/support/tutorials/userjs/
http://tidy.sourceforge.net/
http://www.w3.org/DOM/

	hGRDDL: Bridging microformats and RDFa
	Introduction
	Multiple approaches
	Bridging the syntaxes
	Why not just GRDDL?

	Principles for embedding semantics into HTML
	Independence and extensibility
	DRY (Do not repeat yourself)
	Locality
	Self-containment

	Approaches to embedding semantics in HTML
	Microformats
	eRDF
	GRDDL
	RDFa
	Selecting a target for hGRDDL transforms

	hGRDDL: transforming to RDFa
	GRDDL
	Finding the hGRDDL transform
	The transformation
	An example: hCard
	Hard-wiring some transforms
	Implementation language

	Implementing hGRDDL
	Deployment platform
	Components
	Profiles and transforms
	The hGRDDL processor
	Verifying the output

	Limitations
	JavaScript and DOM dependencies
	Delayed loading
	Dynamic pages

	Conclusion and future work
	Acknowledgements
	References

