SPARQL

SPARQL

An RDF Query Language

SPARQL

e SPARQL is a recursive acronym for
SPARQL Protocol And Rdf Query Language

e SPARQL is the SQL for RDF
e Example query suitable for DBpedia

find countries and their languages
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT * WHERE ({

?country a dbo:Country;

dbo:officiallanguage ?lang .

}
LIMIT 10

SPARQL History

e Several RDF query languages were developed
prior to SPARQL

e \W3C RDF Data Access Working Group (DAWG)
worked out SPARQL 2005-2008

® Became a W3C recommendation in Jan 2008
e SPARQL 1.1 (2013) is the current standard

e Support for many prog. languages available

e \WW3 SPARQL 1.2 Community Group established
in 2019 to explore extensions

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/community/sparql-12/

Typical Architecture

SPARQL endpoint receives queries and requests via
HTTP from programs or GUIs, accesses associated
RDF triple store and returns result, e.g., data

« O)
Rdf

modu
le

Program

SPARQL
protocol

® Web ™\
w B’gﬁfer SPARQL RDF Triple

Some SPARQL endpoints

There are many public endpoints, e.g.
e Dbpedia: https://dbpedia.ort/sparql/
e Wikidata: https://query.wikidata.org/sparq|
e DBLP: https://dblp.I3s.de/d2r/sparq|

eSee W3C(C's list of currently alive SPARQL
endpoints

It’s not hard to set up your own, e.g.

e UMBC cybersecurity knowledge graph:
http://eb4.cs.umbc.edu:9090/ckg/query/

https://dblp.l3s.de/d2r/sparql
https://www.w3.org/wiki/SparqlEndpoints

Endpoint GUIs

e Some endpoints offer their own SPARQL GUI
you can use to enter ad hoc queries

® They may use the same URL as the REST
interface and rely on the protocol to know
when it’s a person and when a query

- Dbpedia: http://dbpedia.org/sparql/
- Wikidata: https://query.wikidata.org/
- DBLP: https://dblp.I3s.de/d2r/snorqgl/

http://dbpedia.org/sparql/
https://query.wikidata.org/
https://dblp.l3s.de/d2r/snorql/

General SPARQL GUIs

® You can also access or run a general SPARQL
GUI that can talk to any SPARQL endpoint

e A nice example is YASGUI, which has a
public resource: https://vqagui.org/ and is
available to download

e Another open-source GUI is Twinkle

https://yqagui.org/
https://doc.yasgui.org/
http://www.ldodds.com/projects/twinkle/

YASGUI: Yet Another SPARQL GUI

® 5 ® D vasoul X +

< C (O @& https://yasgui.org
Query +

— http://dbpedia.org/sparql v

1 v+ PREFIX dbo: <http://dbpedia.org/ontology/>
2 v SELECT * WHERE {
?country a dbo:Country; dbo:officiallLanguage ?lang .

}
LIMIT 10

okl Response Pivot Table = Google Chart Geo & </>
Showing 1 to 10 of 10 entries (in 0.18 seconds)
country
1 http://dbpedia.org/resource/Arab_League
2 http://dbpedia.org/resource/Syldavia
3 http://dbpedia.org/resource/Syldavia
4 http://dbpedia.org/resource/Syria
5 http://dbpedia.org/resource/Seneca_Nation_of_Indians
6 http://dbpedia.org/resource/Seneca_Nation_of_Indians
7 http://dbpedia.org/resource//\land,,Islands

8 http://dbpedia.org/resource/Holy_Empire_of_Reunion

G

4D

Q % ~ @©@ ® B SBl ©® 0

Search: Show 50 ¢ entries
lang

http://dbpedia.org/resource/Arabic_language
http://dbpedia.org/resource/English_language
http://dbpedia.org/resource/Syldavian
http://dbpedia.org/resource/Arabic_language
http://dbpedia.org/resource/English_language

http://dbpedia.org/resource/Seneca_language

4 L]
http://dmt o/, i a '
. Ul.
http://dbpedia.org/resource/Portdguese_lang

SPARQL query structure

® Prefix declarations for . .
abbreviating URIs # prefix declarations

e Dataset definition: what PREFIX ex: <http://example.com/rdf/> ...

RDF grjph(s) arebeing 4 optional named graph source
querie

FROM ...
® Result clause: what # result clause (select,ask,update...)
information to return SELECT ...

from the query

query pattern
® Query pattern: whatto \yuERE {..}

query for in dataset # query modifiers

® Query modifiers, slicing, orRDERBY ...
ordering, rearranging GROUP BY
query results LIMIT 100

Basic SPARQL Query Forms

o SELECT

Returns all, or a subset of, the variables bound in a
guery pattern match

e ASK

Returns boolean indicating whether a query pattern
matches or not

e DESCRIBE
Returns an RDF graph describing resources found

e CONSTRUCT

Returns an RDF graph constructed by substituting
variable bindings in a set of triple templates

SPARQL protocol parameters

e To use this query, we need to know]
- What endpoint (URL) to send it to
- How we want the results encoded (JSON, XML, ...)
— ... other parameters ...

e These are set in GUI or your program

— Except for the endpoint, all have defaults

e Can even query with the unix curl command:

curl http://dbpedia.org/spargl/ --data-urlencode query='PREFIX yago:
<http://dbpedia.org/class/yago/> SELECT * WHERE {?city rdf:type
yago:WikicatCitiesInMaryland.}'

Exploring SPARQL with DBpedia
=

e DBpedia is a knowledge graph extracted from DBped'ia
different Wikipedia sites

e Started in 2007, it continued to develop and offer
services based on it

e Explore it in your browser in a human-readable form

e Query it using a public SPARQL endpoint to collect
data

e Use services like Dbpedia Spotlight to get entities and
concepts from text

e Download its data as JSON objects for your own use

Let’s find data about cities in MD

e \We need to understand how DBpedia models data
about cites

e \We can view the ontology with its ~700 classes and
~2,800 properties

e And/or examine familiar entities, like Baltimore by
- Doing a web search on dbpedia Baltimore

— Clicking on links in the resulting page

http://mappings.dbpedia.org/server/ontology/classes/
http://dbpedia.org/page/Baltimore

Baltimore in Dbpedia (1)

@ ® D About: Baltimore X -

&

MO @ ww e Om@AO B!

final URL part is Wikipedia name: o « 5 s = o

G BN Bu BRrR Bs BT Buil mm » BrA Bk & B sw » [Other Bookmarks

C 10 ® NotSecure | dbpedia.drg/page/Baltimore

&M ® Browse using v ki Formats ~ (7 Faceted Browser (J Spargl Endpoint

About: Baltimore

An Entity of Type : Independent city (United States), from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

Baltimore (/' ba:ltt, ma:r/, locally: ['bat.may)) is the largest city in the U.S. state of Maryland, and the 29th-most populous city in the
country. It was established by the Constitution of Maryland and is not part of any county; thus, it is the largest independent city in
the United States. Baltimore has more public monuments per capita than any other city in the country and is home to some of the
earliest National Register historic districts in the nation, including Fell's Point (1969), Federal Hill (1970) and Mount Vernon Place
(1971). More than 65,000 properties, or roughly one in three buildings in the city, are listed on the National Register, more than any

other city in the nation.

s) Property value pairs for this subject

dbo:PopulatedPlace/area = 1.0E-6
dbo:PopulatedPlace/areaTotal = 238.5379049619456
dbo:PopulatedPlace/populationDensity = 2961.9827092583737

DBO: is used as the prefixfor.the DBpedia ontology.. e ey n

the United States. Baltimore has more public monuments per capita than any other city in the country and is home to some of the
earliest National Register historic districts in the nation, including Fell's Point (1969), Federal Hill (1970) and Mount Vernon Place
(1971). More than 65,000 properties, or roughly one in three buildings in the city, are listed on the National Register, more than any
other city in the nation. Founded in 1729, Baltimore is the second largest seaport in the Mid-Atlantic. Baltimore's Inner Harbor was
once the second leading port of entry for immigrants to the United States and a major manufacturing center. After a decline in major
manufacturing, industrialization and rail transportation, Baltimore shifted to a service-oriented economy, with the Johns Hopkins
Hospital (founded 1889), and Johns Hopkins University (founded 1876), now the city's top two employers. Baltimore had a

Baltimore in Dbpedia (2)

@ ® D About: Baltimore X -+
< cC o (6 ~ GO XSO E]
w—";&m ® Browse using E Formats ~ (4 Faceted Browser 4 Sparq| Endpoint

http://purl.org/linguistics/gold/hypernym s dbr:City

georss:point = 30.28333333333333 -76.61666666666660

R Scroll down to find the rdf:type
Bl Property to see Baltimore’s
» dbo:Location types

" wikidata:Q486972

® wikidata:Q515

= dbo:City

= dbo:PopulatedPlace

= dbo:Settlement

= geo:SpatialThing

= schema:City

= schema:Place

= umbel-rc:City

= umbel-rc:Location_Underspecified

= umbel-rc:PopulatedPlace

= umbel-rc:TVShow_SingleCW

= umbel-rc:Village

= yago:WikicatFormerCapitalsOfTheUnitedStates
= yago:WikicatindependentCitiesInTheUnitedStates
= yvago:AdministrativeDistrict108491826

= yago:Area108497294

= yago:Capital108518505

» yago:Center108523483

m . O ANQENAT2E

Baltimore in Dbpedia (3)

ID About: Baltimore

~

X 4=

O &G Search Google or type a URL

& DBpedia

rdfs:comment

® Browse using ~

B Formats ~

yago:Location100027167
yago:Municipality108626283
yago:Object100002684
yago:PhysicalEntity 100001930
yago:Point108620061
yago:Port108633957
yago:Region108630039
yago:Region108630985
yago:Seat108647945
yago:Site108651247

yago: Tract108673395
yago:UrbanArea108675967
yago:YagoGeoEntity

yago:YagolegalActorGeo

~ GO %XHE % @S

This looks like the type we want!

Note: yago provides an ontology
derived from Wikipedia with >
10M entities.

For example, it induces types from
Wikipedia category pages.

yago:WikicatEarlyAmericanindustrialCenters

yago:WikicatMarylandCounties

yago:WikicatPopulatedPlacesEstablishedIn1729

yago:WikicatPortCities

yago:WikicatPortCitiesAndTownsOfTheUnitedStatesAtlanticCoast
yago:WikicatPortsAndHarborsOfTheUnitedStates

Baltimore (/'bo:lt mozr/, locally: [bot.moy]) is the largest city in the U.S. state of Maryland, and the
29th-most populous city in the country. It was established by the Constitution of Maryland and is

Y IS NI R Sve T T v | Hrr il) 1 P | HUNGE P SnrCusty UF JUCH PUBRgUTN PO G, J NP Py | TO-ul I 00 VRGN 7 . 7 oy e [~ W0 T ReIOBpaey Ry

https://en.wikipedia.org/wiki/YAGO_(database)

A Query: Maryland Cities

find URIs for cities in Maryland
PREFIX yago: <http://dbpedia.org/class/yago/>
SELECT * WHERE {

?city a yago:WikicatCitiesInMaryland

;

http://dbpedia.org/class/yago/WikicatCitiesInMaryland

Maryland Cities and population

get cities in MD and their populations

PREFIX yago: <http://dbpedia.org/class/yago/>t
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT * WHERE {

?city a yago:WikicatCitiesInMaryland;
dbo:populationTotal ?population .

http://dbpedia.org/class/yago/
http://dbpedia.org/class/yago/WikicatCitiesInMaryland

Maryland cities, population, names

this returns names in multiple languages @

PREFIX yago: <http://dbpedia.org/class/yago/>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

SELECT ?city ?name ?population WHERE {

?city a yago:WikicatCitiesInMaryland;

dbo:populationTotal ?population ;
rdfs:label ?7name .

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/
http://dbpedia.org/class/yago/WikicatCitiesInMaryland

Just the @en names, w/o lang tag

FILTER gives conditions that must be true
LANG(x) returns string’s language tag or ™
STR(x) returns a string’s value, i.e. w/o language tag

PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

select (str(?name) as ?name) ?population where {
?city a yago:WikicatCitiesInMaryland;
dbo:populationTotal ?population;
rdfs:label ?name .
FILTER (LANG(?name) = "en"

}

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/

Order results by population (descending)

sort results by population

PREFIX yago: http://dbpedia.org/class/yago/
PREFIX dbo: <http://dbpedia.org/ontology/>

select str(?”name) ?population where {
?city a yago:WikicatCitiesInMaryland;
dbo:populationTotal ?population;
rdfs:label ?name .
FILTER (LANG(?name) = "en")

h
ORDER BY DESC(?population)

http://dbpedia.org/class/yago/

Wait, where’s Catonsville? ®

e MD’s government focused on counties
e Catonsville not considered a city — it has no
government

e \We need another category of place
— Census designated place? Populated Place?

e Populated places include counties & regions;
let’s use census designated place

e But some ‘real’ cities in Maryland are not listed
as census designated places and some are

https://en.wikipedia.org/wiki/Census-designated_place
https://en.wikipedia.org/wiki/Human_settlement

UNION operator is OR

PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbr: <http://dbpedia.org/resource/>

SELECT str(?name) ?population where {

{?city dbo:type dbr:Census-designated_place;
dbo:isPartOf dbr:Maryland .}

UNION

{?city a yago:WikicatCitiesinMaryland . }

?city dbo:populationTotal ?population; rdfs:label ?name .

FILTER (LANG(?name) = "en"

}
ORDER BY DESC(?population)

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/

Now we have duplicate entries ®

e This happens because:
— Some “cities” are just in WikicatCitiesinMaryland
— Some are just in Census-designated_places
- Some are in both

e SPARQL’s procedure finds all ways to satisfy a query,
and for each one, records the variable bindings

e \We add DISTINCT to get SPARQL to remove
duplicate bindings from the results

DISTINCT produces unique results

PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT str(?name) ?population where {

{?city dbo:type dbr:Census-designated place;

dbo:isPartOf dbr:Maryland .}
UNION
{?city a yago:WikicatCitiesInMaryland . }

?city dbo:populationTotal ?population;
rdfs:label ?name .
FILTER (LANG(?name) = "en"

}
ORDER BY DESC(?population)

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/

Some cities are missing ®

e Experimentation with query showed there are
427 entities in MD that are either census
designated places or cities

e Only get 411 because nine have no population
and one has neither a population nor a label

— Typical of a large and somewhat noisy knowledge
graph created from crowdsourced data

e SPARQL’s OPIONAL directive to the rescue

OPTIONAL handles missing data

PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
select DISTINCT str(?name) ?population where {
{?city dbo:type dbr:Census-designated_place;
dbo:isPartOf dbr:Maryland .}
UNION
{?city a yago:WikicatCitiesInMaryland . }
OPTIONAL {?city dbo:populationTotal ?population.}
OPTIONAL {?city rdfs:label ?name . FILTER (LANG(?name) =
"en”) }

}
ORDER BY DESC(?population)

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/

Handling queries with many results

e Endpoints typically have limits on a query’s runtime or
the number of results it can return

® You can use the LIMIT and OFFSET query modifiers to
manage large queries

e Suppose we want to find all types that DBpedia uses
SELECT distinct ?type WHERE {?x a ?type.}

e DBpedia’s public endpoint limits queries
to 10K results

Get the first 10K

® O ® g inbox (192) - tfinin@gmail.con: X [} YASGUI X |+
= C {} A NotSecure | yasgui.org Q * ~ O @ OBl 9 0
Query Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 +
— http://dbpedia.org/sparq| v
1~ PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> ‘: ::
2 PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
3 v SELECT distinct ?type WHERE {
?xX a ?type .
5 |}
osto Response | PivotTable Google Chart Geo *r </
Showing 1 to 50 of 10,000 entries (in 35.463 seconds) Search: Show| 50 § entries
type %
1 http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat
2 http://www.openlinksw.com/schemas/virtrdf#QuadStorage
n Lt /) L = 1 1. - lo ol oo o Lotk ol EL e o £ ~IA A - A 4

Get the second 10K with OFFSET

@® ® B4 Inbox (193) - tfinin@gmail.con X [yascul X +
¢ C {Y A NotSecure | yasgui.org Q * ~ ® @ O N B © 0
Query Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 +
— http://dbpedia.org/sparq| v
~ PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> ::
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
» SELECT distinct ?type WHERE ({
?x a ?type .
}
limit 10000 offset 10000
oo Response = Pivot Table = Google Chart 3e0 ¥ <>
Showing 1 to 50 of 10,000 entries (in 20.643 seconds) Search: ﬂ Show | 50 ¢ entries
a
type v
1 http://www.wikidata.org/entity/Q2300833

2 http://www.wikidata.org/entity/Q2317783

n Lii . /! J [55 PPy SRl PR 1 I s (o Lo W £ W

from SPARQLWrapper import SPARQLWrapper, JSON

default_endpoint = "http://dbpedia.org/sparqgl"

type_query = """SELECT DISTINCT ?class WHERE {{?x a ?class}} LIMIT {LIM} OFFSET {OFF}"""
def getall(query, endpoint=default_endpoint):

limit = 10000

offset =total =0 A Simple
found = limit

tuples = [program
spargl = SPARQLWrapper(endpoint)

spargl.setReturnFormat('json') gets

while found == limit: # keep going until we don't get limit results the m a I I
g = query.format(LIM=limit, OFF=offset)
spargl.setQuery(q)
results = spargl.query().convert()
found =0
for result in results["results"]["bindings"]:
found +=1
tuples.append(tuple([str(v['value']) for v in result.values()]))
print('Found’, found, 'results’)
total = total + found
offset = offset + limit
return tuples

ASK query

e An ASK query returns True if it can be satisfied
and False if not

e® Was Barack Obama born in the US?

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
ask WHERE {
{dbr:Barack_Obama dbo:birthPlace dbr:United States}
UNION
{dbr:Barack_Obama dbo:birthPlace ?x.
?x dbo:isPartOf*/dbo:country dbr:United_States }

}

DESCRIBE Query

® “Describe ?x” means “tell me everything you
know about ?x

e Example: Describe Alan Turing ...
DESCRIBE <http://dbpedia.org/resource/Alan_Turing>
- Oof —
PREFIX dbr: <http://dbpedia.org/resource/>
DESCRIBE dbr:Alan_Turing

e Returns a collection of ~1500 triples in which
dbr:Alan_Turing is either the subject or object

Describes’s results?

e The DAWG did not reach a consensus on what
describe should return
® Possibilities include

— All triples where the variable bindings are
mentioned

— All triples where the bindings are the subject
- Something else

e What is useful might depend on the application
or the amount of data involved

® So it was left to the implementation

AAAAAAA

DESCRIBE Query (2)

e Describe the film “Double Indemnity”
PREFIX foaf: <http://xmlIns.com/foaf/0.1/>
PREFIX dbo: <http://dbpedia.org/ontology/>"
describe ?x WHERE {

?x a dbo:Film; foaf:name ?filmName .
FILTER (STR(?filmName) = "Double Indemnity")

J

e Returns a collection of ~500 triples

DESCRIBE Query (3)

e Describe can return triples about
multiple entities

e Describe films directed by Billy Wilder
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbr: <http://dbpedia.org/resource/>
describe ?x WHERE {

?x a dbo:Film; dbo:director dbr:Billy_Wilder.

}

e Returns a collection of ~8400 triples about the
27 films he directed

http://dbpedia.org/ontology/

DESCRIBE Query (4)

@ Describe can return triples about
multiple entities, but you can limit

the number

e Describe films directed by Billy Wilder
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbr: <http://dbpedia.org/resource/>
describe ?x WHERE {

?x a dbo:Film; dbo:director dbr:Billy_Wilder.
}LIMIT 1

e Returns a collection of ~500 triples about just
one film, The Apartment.

http://dbpedia.org/ontology/

Construct query (1)

e Construct queries return graphs as results, e.g.,
film directors and the actors they’ve directed
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX ex: <http://example.org/>
CONSTRUCT {?director ex:directed ?actor}
WHERE {?film a dbo:Film;
dbo:director ?director;
dbo:starring ?actor}

® Returns a graph with ~21,000 triples

On construct

e Having a result form that produces an RDF
graph is a good idea
e |t enables on to construct systems by using the

output of one SPARQL query as the data over
which another query works

e This kind of capability was a powerful one for
relational databases

Construct query (2)

" spaRQL 1.1)

e Actors and directors or producers allows using
, alternative
they’ve worked for properties

separated by
vertical bar

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX ex: <http://example.org/>
Construct {?actor ex:workedFor ?director@QrPfoducer}

WHERE {
?film a dbo:Film;
dbo:director|dbo:producer ?directorOrProducer;

dbo:starring ?actor}

e Returns a graph with ~31,000 triples

/

Example: finding missing inverses

e DBpedia is missing many inverse relations, including
more than 10k missing spouse relations

e This creates a graph of all the missing ones, which can
be added back to the KG via UPDATE ADD

PREFIX dbo: <http://dbpedia.org/ontology/>
CONSTRUCT { ?p2 dbo:spouse ?pl. }
WHERE {?p1 dbo:spouse ?p2.

FILTER NOT EXISTS {?p2 dbo:spouse ?pl}}

e Not the NOT EXISTS operator that succeeds iff
its graph pattern is not satisfiable

RDF Named graphs

e Having multiple RDF graphs in a single
document/repository and naming them with URIs

e Provides useful additional functionality built on top of
the RDF Recommendations

e SPARQL queries can involve several graphs, a

background one and multiple named ones, e.g.:

SELECT ?who ?g ?mbox
FROM <http://example.org/dft.ttl>
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
WHERE
{ ?g dc:publisher ?who .

GRAPH ?g { ?x foaf:mbox ?mbox }

}

UPDATE QUERIES

e Simple insert
INSERT DATA { :book1 :title "A new book" ; :creator
"A.N.Other" . }

e Simple delete
DELETE DATA { :book1 dc:title "A new book" . }

e Combine the two for a modification, optionally guided
by the results of a graph pattern
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DELETE { ?person foaf:givenName 'Bill’ }
INSERT { ?person foaf:givenName 'William’ }
WHERE { ?person foaf:givenName 'Bill' }

Aggregation Operators

e SPARQL 1.1 added many aggregation

operators, like count, min, max, ...

e Generally used in the results specification
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT (COUNT(?film) AS ?numberOfFilms)

WHERE {?film a dbo:Film .}

® This finds 129,980 films

Group by

e GROUP BY breaks the query's result set into
groups before applying the aggregate functions

e Find BO’s properties and group them by
property and find the number in each group
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?p (COUNT(?p) as ?number)
WHERE { dbr:Barack_Obama ?p ?0 }
GROUP BY ?p ORDER BY DESC(count(?p))

Inference via SPARQL

This query adds inverse spouse relations that don’t
already exist:

PREFIX dbo: <http://dbpedia.org/ontology/>
INSERT { ?p2 dbo:spouse ?pl. }
WHERE {?p1 dbo:spouse ?p?2.

FILTER NOT EXISTS {?p2 dbo:spouse ?pl}}

® SPIN and SHACL are systems to represent simple
constraint & inference rules that are done by sparql

® A big feature is that the rules are represented in the
graph

http://spinrdf.org/
https://www.w3.org/TR/shacl/

SPARQL 1.1 Additions

e SPARQ 1.1 added many more

features ...

- Subqueries
- Negation: MINUS
- Federated queries that access multiple endpoints

‘ OREILLY"

e Data you want to extract from an RDF graph
can probably be returned by one query

- Mig
® Searc

nt be a complicatec

one, thoug

n web for SPARQL tricks or t

N ...

nis book

