
Chapter	3	
Querying	RDF	stores	

with	SPARQL	
	

TL;DR	

l We	will	want	to	query	large	RDF	datasets,	
e.g.	LOD	

l SPARQL	is	the	SQL	of	RDF	
l SPARQL	is	a	language	to	query	and	update	
triples	in	one	or	more	triples	stores	

l It’s	key	to	exploiEng	Linked	Open	Data	

Three	RDF	use	cases	

l Markup	web	documents	with	semi-structured	
data	for	beIer	understanding	by	search	
engines	

l Use	as	a	data	interchange	language	that’s	
more	flexible	and	has	a	richer	semanEc	schema	
than	XML	or	SQL	

l Assemble	and	link	large	datasets	and	publish	as	
as	knowledge	bases	to	support	a	domain	(e.g.,	
genomics)	or	in	general	(DBpedia)	

Three	RDF	use	cases	

l  Markup	web	documents	with	semi-structured	data	for	beIer	understanding	
by	search	engines	(Microdata)	

l  Use	as	a	data	interchange	language	that’s	more	flexible	and	has	a	richer	
semanEc	schema	than	XML	or	SQL	

l Assemble	and	link	large	datasets	and	publish	as	
as	knowledge	bases	to	support	a	domain	(e.g.,	
genomics)	or	in	general	(DBpedia)	
–  Such	knowledge	bases	may	be	very	large,	e.g.,	
DBpedia	has	~500M	triples,	Freebase	has	~3B,	
Google’s	Knowledge	Graph	has	70B	

– Using	such	large	datasets	requires	a	language	to	
query	and	update	it		

SemanEc	web	technologies	
allow	machines	to	share	data	
and	knowledge	using	common	
web	language	and	protocols.	
	
																~	1997		

SemanEc	Web	

SemanEc	Web	beginning	

Use	SemanEc	Web	Technology	to	
publish	shared	data	&	knowledge	

2007	

SemanEc	Web	=>	Linked	Open	Data	
Use	SemanEc	Web	Technology	to	
publish	shared	data	&	knowledge	

Data	is	inter-	
linked	to	support	inte-	
graEon	and	fusion	of	knowledge	

LOD	beginning	

2008	

SemanEc	Web	=>	Linked	Open	Data	
Use	SemanEc	Web	Technology	to	
publish	shared	data	&	knowledge	

Data	is	inter-	
linked	to	support	inte-	
graEon	and	fusion	of	knowledge	

LOD	growing	

2009	

SemanEc	Web	=>	Linked	Open	Data	
Use	SemanEc	Web	Technology	to	
publish	shared	data	&	knowledge	

Data	is	inter-	
linked	to	support	inte-	
graEon	and	fusion	of	knowledge	

…	and	growing	

Linked	Open	Data	

2010	

LOD	is	the	new	Cyc:	a	common	source	
of	background	

knowledge	

Use	SemanEc	Web	Technology	to	
publish	shared	data	&	knowledge	

Data	is	inter-	
linked	to	support	inte-	
graEon	and	fusion	of	knowledge	

…growing	faster	

Linked	Open	Data	

2011:	31B	facts	in	295	datasets	interlinked	by	504M	asserEons	on	ckan.net	

LOD	is	the	new	Cyc:	a	common	
source	of	background	

knowledge	

Use	SemanEc	Web	Technology	to	
publish	shared	data	&	knowledge	

Data	is	inter-	
linked	to	support	inte-	
graEon	and	fusion	of	knowledge	

Linked	Open	Data	(LOD)	
l Linked	data	is	just	RDF	data,	typically	
just	the	instances	(ABOX),	not	schema	(TBOX)	

l RDF	data	is	a	graph	of	triples	
– URI	URI	string	
dbr:Barack_Obama	dbo:spouse	“Michelle	Obama”	

– URI	URI	URI	
dbr:Barack_Obama	dbo:spouse	dbpedia:Michelle_Obama	

l Best	linked	data	pracEce	prefers	the	2nd	paIern,	
using	nodes	rather	than	strings	for	“enEEes”	

l Liked	open	data	is	just	linked	data	freely	accessible	
on	the	Web	along	with	any	required	ontologies	

The	Linked	Data	Mug	

See Linked Data Rules, Tim Berners-Lee, circa 2006

Dbpedia:	Wikipedia	data	in	RDF	

Available	for	download	

• Broken	up	into	files	by	
informaEon	type	

• Contains	all	text,	links,	
infobox	data,	etc.	

• Supported	by	several	
ontologies	

• Updated	~	every	3	
months		

• ~500M	triples	for	en	

Queryable	

• You	can	query	
any	of	several	
RDF	triple	stores	

• Or	download	
data,	load	into	a	
store	and	query	
it	locally	

Browseable	

• There	are	also	RDF	
browsers	

• Driven	by	queries	
to	an	RDF	triple	
store	loaded	with	
the	DBpedia	data	

Why	an	RDF	Query	Language?	

l Why	not	use	an	XML	query	language?	
l XML	at	a	lower	level	of	abstracEon	than	RDF	
l There	are	various	ways	of	syntacEcally	
represenEng	an	RDF	statement	in	XML	

l Thus	we’d	require	several	XPath	queries,	e.g.	
–  //uni:lecturer/uni:Mtle	if	uni:Mtle	element	
–  //uni:lecturer/@uni:Mtle	if	uni:Mtle	aIribute	
– Both	XML	representaEons	equivalent!	

SPARQL	

l A	key	to	exploiEng	such	large	RDF	data	sets	is	
the	SPARQL	query	language	

l Sparql	Protocol	And	Rdf	Query	Language	
l W3C	began	developing	a	spec	for	a	query	
language	in	2004	

l There	were/are	other	RDF	query	languages,	
and	extensions,	e.g.,	RQL	and	Jena’s	ARQ	

l SPARQL	a	W3C	recommendaEon	in	2008	and	
SPARQL	1.1		in	2013	

l Most	triple	stores	support	SPARQL	1.1	

SPARQL	Example		

PREFIX	foaf:	<hIp://xmlns.com/foaf/0.1/>	
SELECT	?name	?age	
WHERE	{	
		?person	a	foaf:Person.	
		?person	foaf:name	?name. 	
		?person	foaf:age	?age	
}	
ORDER	BY	?age	DESC	
LIMIT	10	
	

SPARQL
uses a Turtle
like syntax

SPARQL	Protocol,	Endpoints,	APIs	

l SPARQL	query	language	
l SPROT	=	SPARQL	Protocol	for	RDF	
– Among	other	things	specifies	how	results	can	be	
encoded	as	RDF,	XML	or	JSON	

l SPARQL	endpoint	
–  Service	accepts	queries,	returns	results	via	HTTP	
– Either	generic	(fetching	data	as	needed)	or	specific	
(querying	an	associated	triple	store)	

– May	be	a	service	for	federated	queries	

SPARQL	Basic	Queries	

l SPARQL	is	based	on	matching	graph	paIerns	
l Simplest	graph	paIern	is	the	triple	paIern	
-  ?person	foaf:name	?name	
-  Like	an	RDF	triple,	but	with	variables		
-  Variables	begin	with	a	quesEon	mark	

l Combining	triple	paIerns	gives	a	graph	paIern;	
an	exact	match	to	a	graph	is	needed	

l Like	SQL,	returns	a	set	of	results,	one	for	for	
each	way	the	graph	paIern	can	be	instanEated	

	

Turtle	Like	Syntax	

As	in	Turtle	and	N3,	we	can	omit	a	common	
subject	in	a	graph	paIern	
	

PREFIX	foaf:	<hIp://xmlns.com/foaf/0.1/>	
SELECT	?name	?age	
WHERE	{	
		?person	a	foaf:Person;	
																foaf:name	?name;	
																foaf:age	?age	
}	
	

OpMonal	Data	
l Query	fails	unless	the	enEre	paIern	matches	
l We	oxen	want	to	collect	informaEon	that	
might	not	always	be	available	

l Note	difference	with	relaEonal	model	
PREFIX	foaf:	<hIp://xmlns.com/foaf/0.1/>	
SELECT	?name	?age	
WHERE	{	
		?person	a	foaf:Person;	
																foaf:name	?name.	
OPTIONAL	{?person	foaf:age	?age}	
}	

	

Example	of	a	Generic	Endpoint	

l Use	the	sparql	endpoint	at	
– hIp://demo.openlinksw.com/sparql	

l To	query		graph	at		
– hIp://ebiq.org/person/foaf/Tim/Finin/foaf.rdf	

l For	foaf	knows	relaEons	
SELECT	?name	?p2	
WHERE	{	?person	a	foaf:Person;	
																															foaf:name	?name;	
																															foaf:knows	?p2.		}	

Example	

Query	results	as	HTML	

Other	result	format	opMons	

Example	of	a	dedicated	Endpoint	

l Use	the	sparql	endpoint	at	
– hIp://dbpedia.org/sparql	

l To	query	DBpedia		
l Discover	places	associated	with	Pres.	Obama	

PREFIX	dbp:	<hIp://dbpedia.org/resource/>	
PREFIX	dbpo:	<hIp://dbpedia.org/ontology/>	
SELECT	disEnct	?Property	?Place	
WHERE	{dbp:Barack_Obama	?Property	?Place	.	
															?Place	rdf:type	dbpo:Place	.}	

	

http://dbpedia.org/sparql/

PREFIX	dbp:	<hIp://dbpedia.org/resource/>	
PREFIX	dbpo:	<hIp://dbpedia.org/ontology/>	
SELECT	disEnct	?Property	?Place	
WHERE	{dbp:Barack_Obama	?Property	?Place	.	
															?Place	rdf:type	dbpo:Place	.}	

To	use	this	you	must	know	

l Know:	RDF	data	model	and	SPARQL	
l Know:	Relevant	ontology	terms	and	CURIEs	for	
individuals	

l More	difficult	than	for	a	typical	database	
because	the	schema	is	so	large	

l Possible	soluEons:	
– Browse	the	KB	to	learn	terms	and	individual	CURIEs	
– Query	using	rdf:label	and	strings	
– Use	Lushan	Han’s	intuiEve	KB	(Han,	2013)	

Search	for:	dbpedia	barack	obama	

Query	using	labels	

PREFIX	dbp:	<hIp://dbpedia.org/resource/>	
PREFIX	dbpo:	<hIp://dbpedia.org/ontology/>	
PREFIX	rdfs:	<hIp://www.w3.org/2000/01/rdf-
schema#>	
SELECT	disEnct	?Property	?Place	
WHERE	{?P	a	dbpo:Person;	
										rdfs:label	"Barack	Obama"@en;	
										?Property	?Place	.	
						?Place	rdf:type	dbpo:Place	.}	

Query	using	labels	and	FILTER	

PREFIX	dbp:	<hIp://dbpedia.org/resource/>	
PREFIX	dbpo:	<hIp://dbpedia.org/ontology/>	
PREFIX	rdfs:	<hIp://www.w3.org/2000/01/rdf-
schema#>	
SELECT	disEnct	?P	?Property	?Place	
WHERE	{?P	a	dbpo:Person;	
										rdfs:label	?Name.	
							FILTER	regex(?Name,	'obama',	'i')	
							?P	?Property	?Place	.	
							?Place	rdf:type	dbpo:Place	.	
}	

Structured	Keyword	Queries	

l Nodes	are	enEEes	and	links	binary	relaEons	
l EnEEes	described	by	two	unrestricted	terms:	
name	or	value	and	type	or	concept	

l Outputs	marked	with	?		
l Compromise	between	a	natural	language	Q&A	
system	and	formal	query	
–  Users	provide	composiEonal	structure	of	the	quesEon	
–  Free	to	use	their	own	terms	to	annotate	structure	

TranslaMon	result	

Concepts:	Place	=>	Place,	Author	=>	Writer,	Book	=>	Book	
Proper<es:	born	in	=>	birthPlace,	wrote	=>	author	(inverse	direcEon)	

The	translaEon	of	a	semanEc	graph	query	to	SPARQL	is	
straigh�orward	given	the	mappings	

SPARQL	GeneraMon	

Concepts
• Place => Place
• Author => Writer
• Book => Book

Relations
• born in =>
birthPlace

• wrote => author

SELECT	FROM	

l The	FROM	clause	lets	us	specify	the	target	graph	
in	the	query	

l SELECT	*	returns	all	
	

PREFIX	foaf:	<hIp://xmlns.com/foaf/0.1/>	
SELECT	*		
FROM	<hIp://ebiq.org/person/foaf/Tim/Finin/foaf.rdf>	
WHERE	{	
		?P1	foaf:knows	?p2	
}	

	

FILTER	

Find	landlocked	countries	with	a	popula<on	>15	million	
	

PREFIX	rdfs:	<hIp://www.w3.org/2000/01/rdf-schema#>									
PREFIX	type:	<hIp://dbpedia.org/class/yago/>	
PREFIX	prop:	<hIp://dbpedia.org/property/>	
SELECT	?country_name	?populaEon	
WHERE	{	
				?country	a	type:LandlockedCountries	;	
													rdfs:label	?country_name	;	
													prop:populaEonEsEmate	?populaEon	.	
				FILTER	(?populaEon	>	15000000)	.	
}	
		

FILTER	FuncMons	
l  Logical:	!,	&&,	||	
l Math:	+,	-,	*,	/	
l  Comparison:	=,	!=,	>,	<,	...	
l  SPARQL	tests:	isURI,	isBlank,	isLiteral,	bound	
l  SPARQL	accessors:	str,	lang,	datatype	
l  Other:	sameTerm,	langMatches,	regex	
l  CondiEonals	(SPARQL	1.1):	IF,	COALESCE	
l  Constructors	(SPARQL	1.1):	URI,	BNODE,	STRDT,	STRLANG	
l  Strings	(SPARQL	1.1):	STRLEN,	SUBSTR,	UCASE,	…		
l More	math	(SPARQL	1.1):	abs,	round,	ceil,	floor,	RAND	
l  Date/Eme	(SPARQL	1.1):	now,	year,	month,	day,	hours,	…	
l  Hashing	(SPARQL	1.1):	MD5,	SHA1,	SHA224,	SHA256,	…	

Union	

l UNION	keyword	forms	disjuncEon	of	two	graph	
paIerns	

l Both	subquery	results	are	included	
	
PREFIX	foaf:	<hIp://xmlns.com/foaf/0.1/>	
PREFIX	vCard:	<hIp://www.w3.org/2001/vcard-rdf/3.0#>	
SELECT	?name	
WHERE	
{	
			{	[]	foaf:name	?name	}	UNION	{	[]	vCard:FN	?name	}	
}	

Query	forms	

Each	form	takes	a	WHERE	block	to	restrict	the	query	
l SELECT:	Extract	raw	values	from	a	SPARQL	endpoint,	
the	results	are	returned	in	a	table	format	

l CONSTRUCT:	Extract	informaEon	from	the	SPARQL	
endpoint	and	transform	the	results	into	valid	RDF	

l ASK:	Returns	a	simple	True/False	result	for	a	query	on	a	
SPARQL	endpoint	

l DESCRIBE	Extract	RDF	graph	from	endpoint,	the	
contents	of	which	is	lex	to	the	endpoint	to	decide	
based	on	what	maintainer	deems	as	useful	informaEon	

SPARQL	1.1	

SPARQL	1.1	includes	
l Updated	1.1	versions	of	SPARQL	Query	and	
SPARQL	Protocol	

l SPARQL	1.1	Update	
l SPARQL	1.1	Graph	Store	HTTP	Protocol	
l SPARQL	1.1	Service	DescripEons	
l SPARQL	1.1	Entailments	
l SPARQL	1.1	Basic	Federated	Query	

Summary	

l An	important	usecase	for	RDF	is	exploiEng	large	
collecEons	of	semi-structured	data,	e.g.,	the	
linked	open	data	cloud	

l We	need	a	good	query	language	for	this	
l SPARQL	is	the	SQL	of	RDF	
l SPARQL	is	a	language	to	query	and	update	
triples	in	one	or	more	triples	stores	

l It’s	key	to	exploiEng	Linked	Open	Data	

