Chapter 3

Querying RDF stores
with SPARQL

SPARQL

TL;DR

e We will want to query large RDF datasets,
e.g. LOD

e SPARQL is the SQL of RDF

e SPARQL is a language to query and update
triples in one or more triples stores

e |t's key to exploiting Linked Open Data

Three RDF use cases

e Markup web documents with semi-structured
data for better understanding by search
engines

e Use as a data interchange language that’s
more flexible and has a richer semantic schema
than XML or SQL

e Assemble and link large datasets and publish as
as knowledge bases to support a domain (e.g.,
genomics) or in general (DBpedia)

Three RDF use cases

e Assemble and link large datasets and publish as
as knowledge bases to support a domain (e.g.,
genomics) or in general (DBpedia)

- Such knowledge bases may be very large, e.g.,

DBpedia has “500M triples, Freebase has ~3B,
Google’s Knowledge Graph has 70B

- Using such large datasets requires a language to
qguery and update it

Semantic Web

Use Semantic Web Technology to
publish shared data & knowledge

Semantic web technologies
allow machines to share data
and knowledge using common
web language and protocols.

~ 1997

Semantic Web beginning

Semantic Web => Linked Open Data

Use Semantic Web Technology to
publish shared data & knowledge

2007

Data is inter-
linked to support inte-
gration and fusion of knowledge

LOD beginning

Semantic Web => Linked Open Data

Use Semantic Web Technology to
publish shared data & knowledge

2008

Data is inter-
linked to support inte-
gration and fusion of knowledge

LOD growing

Semantic Web => Linked Open Data

Use Semantic Web Technology to
publish shared data & knowledge

2009

Data is inter-
linked to support inte-
gration and fusion of knowledge

... and growing

Linked Open Data

Use Semantic Web Technology to
publish shared data & knowledge

Data is inter-
linked to support inte-
gration and fusion of knowledge

2010

LOD is the new Cyc: a common source
of background
knowledge

...growing faster

Linked Open Data

Use Semantic Web Technology to LOD is the new Cyc: a common
publish shared data & knowledge source of background

knowledge
Data is inter-

linked to support inte-
gration and fusion of knowledge

2011: 31B facts in 295 datasets interlinked by 504M assertions on ckan.net

Linked Open Data (LOD)

e Linked data is just RDF data, typically
just the instances (ABOX), not schema (TBOX)

eRDF data is a graph of triples

— URI URI string
dbr:Barack_Obama dbo:spouse “Michelle Obama”

- URI URI URI
dbr:Barack_Obama dbo:spouse dbpedia:Michelle_ Obama

eBest linked data practice prefers the 2" pattern,
using nodes rather than strings for “entities”

e Liked open data is just linked data freely accessible
on the Web along with any required ontologies

The Linked Data Mug

See Linked Data Rules, Tim Berners-Lee, circa 2006

Dbpedia: Wikipedia data in RDF

Available for download

* Broken up into files by
information type

* Contains all text, links,
infobox data, etc.

* Supported by several
ontologies

* Updated ~ every 3
months

* ~500M triples for en

Queryable

*You can query
any of several
RDF triple stores

*Or download
data, load into a
store and query
it locally

Browseable

* There are also RDF
browsers

* Driven by queries
to an RDF triple
store loaded with
the DBpedia data

Why an RDF Query Language?

e Why not use an XML query language?
e XML at a lower level of abstraction than RDF

e There are various ways of syntactically
representing an RDF statement in XML
e Thus we’d require several XPath queries, e.g.

— [/uni:lecturer/uni:title if uni:title element
— [/uni:lecturer/@uni:title if uni:title attribute
- Both XML representations equivalent!

SPARQL

e A key to exploiting such large RDF data sets is
the SPARQL query language

e Sparql Protocol And Rdf Query Language

e \W3C began developing a spec for a query
language in 2004

® There were/are other RDF query languages,
and extensions, e.g., RQL and Jena’s ARQ

e SPARQL a W3C recommendation in 2008 and
SPARQL 1.1 in 2013

® Most triple stores support SPARQL 1.1

SPARQL Example

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?age
WHERE {

?person a foaf:Person.
SPARQL
? : ?
?person foaf:name ?name. uses a Turtle
?person foaf:age ?age like syntax

}
ORDER BY ?age DESC

LIMIT 10

SPARQL Protocol, Endpoints, APIs

e SPARQL query language
@ SPROT = SPARQL Protocol for RDF

- Among other things specifies how results can be
encoded as RDF, XML or JSON

e SPARQL endpoint

— Service accepts queries, returns results via HTTP

— Either generic (fetching data as needed) or specific
(querying an associated triple store)

- May be a service for federated queries

SPARQL Basic Queries

e SPARQL is based on matching graph patterns
e Simplest graph pattern is the triple pattern
- ?person foaf:name ?name
- Like an RDF triple, but with variables
- Variables begin with a question mark
e Combining triple patterns gives a graph pattern;
an exact match to a graph is needed

e Like SQL, returns a set of results, one for for
each way the graph pattern can be instantiated

Turtle Like Syntax

As in Turtle and N3, we can omit a common
subject in a graph pattern

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?age

WHERE {
?person a foaf:Person;

foaf:name ?name;
foaf:age ?age

Optional Data

e Query fails unless the entire pattern matches

e We often want to collect information that
might not always be available

e Note difference with relational model
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?age
WHERE {

?person a foaf:Person;
foaf:name ?name.
OPTIONAL {?person foaf:age ?age}

1

Example of a Generic Endpoint

e Use the spargl endpoint at
- http://demo.openlinksw.com/sparaql

e To query graph at
- http://ebig.org/person/foaf/Tim/Finin/foaf.rdf
e For foaf knows relations

SELECT ?name ?p2
WHERE { ?person a foaf:Person;

foaf:name ?name;

foaf:knows ?p2. }

Example

Query results as HTML

Other result format options

Example of a dedicated Endpoint

e Use the spargl endpoint at
- http://dbpedia.org/spargl
e To query DBpedia
e Discover places associated with Pres. Obama

PREFIX dbp: <http://dbpedia.org/resource/>

PREFIX dbpo: <http://dbpedia.org/ontology/>

SELECT distinct ?Property ?Place

WHERE {dbp:Barack_Obama ?Property ?Place.
?Place rdf:type dbpo:Place .}

PREFIX dbp: <http://dbpedia.org/resource/>

PREFIX dbpo: <http://dbpedia.org/ontology/>

SELECT distinct ?Property ?Place

WHERE {dbp:Barack_Obama ?Property ?Place .
?Place rdf:type dbpo:Place .}

/

To use this you must know

e Know: RDF data model and SPARQL

e Know: Relevant ontology terms and CURIEs for
individuals

e More difficult than for a typical database
because the schema is so large

® Possible solutions:
- Browse the KB to learn terms and individual CURIEs

— Query using rdf:label and strings
— Use Lushan Han’s intuitive KB (Han, 2013)

Search for: dbpedia barack obama

Query using labels

PREFIX dbp: <http://dbpedia.org/resource/>
PREFIX dbpo: <http://dbpedia.org/ontology/>

PREFIX rdfs: <http://www.w3.0org/2000/01/rdf-
schema#>

SELECT distinct ?Property ?Place
WHERE {?P a dbpo:Person;
rdfs:label "Barack Obama" @en;
?Property ?Place .
?Place rdf:type dbpo:Place .}

Query using labels and FILTER

PREFIX dbp: <http://dbpedia.org/resource/>
PREFIX dbpo: <http://dbpedia.org/ontology/>

PREFIX rdfs: <http://www.w3.0org/2000/01/rdf-
schema#>

SELECT distinct ?P ?Property ?Place
WHERE {?P a dbpo:Person;
rdfs:label ?Name.
FILTER regex(?Name, 'obama’, 'i')
?P ?Property ?Place.
?Place rdf:type dbpo:Place.

Structured Keyword Queries

born in author
? *

The adventures of Tom Sawyer

Place Person Book

eNodes are entities and links binary relations

e Entities described by two unrestricted terms:
name or value and type or concept

e Outputs marked with ?

e Compromise between a natural language Q&A
system and formal query

— Users provide compositional structure of the question
- Free to use their own terms to annotate structure

Translation result

Concepts: Place => Place, Author => Writer, Book => Book
Properties: born in => birthPlace, wrote => author (inverse direction)

SPARQL Generation

The translation of a semantic graph query to SPARQL is
straightforward given the mappings

COHCthS PREFIX dbo: <http://dbpedia.org/ontology/=>

Pl => P|
ace ac?e SELECT DISTINCT ?x, ?y WHERE {
* Author => Writer 20 3 dbo-Book .
* Book => Book > | 20 rdfs:label ?label0 .
?1abel0 bif:contains ""The adventures of Tom Sawyer"' :
?x a dbo:Writer .

Relations ?y a dbo:Place .
eborn in => {?0 dbo:author ?x} .
birthPlace {?x dbo:birthPlace ?y} .

wrote => author

SELECT FROM

e The FROM clause lets us specify the target graph
in the query

® SELECT * returns all

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *
FROM <http://ebiqg.org/person/foaf/Tim/Finin/foaf.rdf>

WHERE {
?P1 foaf:knows ?p2

}

FILTER

Find landlocked countries with a population >15 million

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX type: <http://dbpedia.org/class/yago/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT ?country_name ?population
WHERE {
?country a type:LandlockedCountries ;
rdfs:label ?country _name;
prop:populationEstimate ?population .
FILTER (?population > 15000000) .

FILTER Functions

e Logical: !, &&, ||

e Math: +, - *, /

e Comparison: =, 1=, >, <, ...

e SPARQL tests: isURI, isBlank, isLiteral, bound

e SPARQL accessors: str, lang, datatype

® Other: sameTerm, langMatches, regex

e Conditionals (SPARQL 1.1): IF, COALESCE

e Constructors (SPARQL 1.1): URI, BNODE, STRDT, STRLANG
e Strings (SPARQL 1.1): STRLEN, SUBSTR, UCASE, ...

e More math (SPARQL 1.1): abs, round, ceil, floor, RAND

e Date/time (SPARQL 1.1): now, year, month, day, hours, ...
e Hashing (SPARQL 1.1): MD5, SHA1, SHA224, SHA256, ...

Union

e UNION keyword forms disjunction of two graph
patterns

e Both subquery results are included

PREFIX foaf: <http://xmlins.com/foaf/0.1/>

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?name

WHERE

{
{[]foaf:name ?name } UNION { [] vCard:FN ?name }

}

Query forms

Each form takes a WHERE block to restrict the query

e SELECT: Extract raw values from a SPARQL endpoint,
the results are returned in a table format

® CONSTRUCT: Extract information from the SPARQL
endpoint and transform the results into valid RDF

e ASK: Returns a simple True/False result for a query on a
SPARQL endpoint

e DESCRIBE Extract RDF graph from endpoint, the
contents of which is left to the endpoint to decide
based on what maintainer deems as useful information

SPARQL 1.1

SPARQL 1.1 includes

eUpdated 1.1 versions of SPARQL Query and
SPARQL Protocol

eSPARQL 1.1 Update

eSPARQL 1.1 Graph Store HTTP Protocol
oSPARQL 1.1 Service Descriptions
eSPARQL 1.1 Entailments

eSPARQL 1.1 Basic Federated Query

Summary

e An important usecase for RDF is exploiting large
collections of semi-structured data, e.g., the
linked open data cloud

e We need a good query language for this

e SPARQL is the SQL of RDF

e SPARQL is a language to query and update
triples in one or more triples stores

e |[t's key to exploiting Linked Open Data

