First-Order Logic: Review

RDFS/OWL Smantics

- The semantics of RDFS and OWL are based on First Order Logic
- Advantages:
 - Familiar, well defined, well understood, expressive, powerful
 - -Good procedures/tools for inference
- Disadvantages
 - No agreement on how to extend for probabilities, fuzzy representations, higher order logics, etc.
 - -Hard to process in parallel

First-order logic

- First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - Properties of objects that distinguish them from others
 - Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"
- Examples:
 - Objects: Students, lectures, companies, cars ...
 - Relations: Brother-of, bigger-than, outside, part-of, hascolor, occurs-after, owns, visits, precedes, ...
 - Properties: blue, oval, even, large, ...
 - Functions: father-of, best-friend, second-half, more-than ...

User provides

- Constant symbols representing individuals in the world
 - Mary, 3, green
- Function symbols, map individuals to individuals

-father_of(Mary) = John

-color_of(Sky) = Blue

- Predicate symbols, map individuals to truth values
 - -greater(5,3)
 - -green(Grass)
 - -color(Grass, Green)

FOL Provides

- Truth values
 - -True, False
- Variable symbols
 - –E.g., x, y, foo
- Connectives
 - -Same as in propositional logic: not (\neg), and (\land), or (\lor), implies (\rightarrow), iff (\leftrightarrow)
- Quantifiers
 - –Universal $\forall x \text{ or } (Ax)$
 - -Existential $\exists x \text{ or } (Ex)$

Sentences: built from terms and atoms

- A term (denoting a real-world individual) is a constant symbol, variable symbol, or n-place function of n terms, e.g.:
 - -Constants: john, umbc
 - –Variables: x, y, z
 - -Functions: mother_of(john), phone(mother(x))
- •Ground terms have no variables in them
 - -Ground: john, father_of(father_of(john))
 - -Not Ground: father_of(X)

Sentences: built from terms and atoms

- An atomic sentence (which has value true or false) is an n-place predicate of n terms, e.g.:
 - -green(Kermit))
 - -between(Philadelphia, Baltimore, DC)
 - -loves(X, mother(X))
- A complex sentence is formed from atomic sentences connected by logical connectives:

 $\neg P$, $P \lor Q$, $P \land Q$, $P \rightarrow Q$, $P \leftrightarrow Q$

where P and Q are sentences

Sentences: built from terms and atoms

- \bullet quantified sentences adds quantifiers \forall and \exists
 - $-\forall x \text{ loves}(x, \text{ mother}(x))$
 - $-\exists x \text{ number}(x) \land greater(x, 100), prime(x)$
- A well-formed formula (wff) is a sentence containing no "free" variables, i.e., all variables are "bound" by either a universal or existential quantifiers

 $(\forall x)P(x,y)$ has x bound as a universally quantified variable, but y is free

A BNF for FOL

```
S := <Sentence> ;
<Sentence> := <AtomicSentence> |
         <Sentence> <Connective> <Sentence>
          <Quantifier> <Variable>,... <Sentence>
          "NOT" <Sentence>
          "(" <Sentence> ")";
<AtomicSentence> := <Predicate> "(" <Term>, ... ")"
                   <Term> "=" <Term>;
<Term> := <Function> "(" <Term>, ... ")" |
         <Constant>
          <Variable>;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL";
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ;
<Function> := "Mother" | "LeftLegOf" | ...;
```

Quantifiers

- Universal quantification
 - –(∀x)P(x) means P holds for all values of x in domain associated with variable
 - -E.g., $(\forall x)$ dolphin(x) \rightarrow mammal(x)

Existential quantification

- –(∃x)P(x) means P holds for some value of x in domain associated with variable
- -E.g., ($\exists x$) mammal(x) \land lays_eggs(x)
- This lets us make a statement about some object without naming it

Quantifiers (1)

 Universal quantifiers often used with implies to form rules:

 $(\forall x)$ student(x) \rightarrow smart(x) means "All students are smart"

 Universal quantification rarely used to make blanket statements about every individual in the world:

 $(\forall x)$ student(x) \land smart(x) means "Everyone in the world is a student and is smart"

Quantifiers (2)

- Existential quantifiers usually used with "and" to specify
 - a list of properties about an individual:

 $(\exists x) student(x) \land smart(x) means "There is a student who is smart"$

- Common mistake: represent this in FOL as: (∃x) student(x) → smart(x)
- What does this sentence mean?

-??

Quantifier Scope

- FOL sentences have structure, like programs
- In particular, the variables in a sentence have a scope
- For example, suppose we want to say
 - "everyone who is alive loves someone"
 - $-(\forall x) \text{ alive}(x) \rightarrow (\exists y) \text{ loves}(x,y)$
- Here's how we scope the variables $(\forall x) \text{ alive}(x) \rightarrow (\exists y) \text{ loves}(x,y)$
 - Scope of x
 Scope of y

Quantifier Scope

- Switching order of universal quantifiers does not change the meaning
 - $(\forall x)(\forall y) \mathsf{P}(x,y) \longleftrightarrow (\forall y)(\forall x) \mathsf{P}(x,y)$
 - "Dogs hate cats" (i.e., "all dogs hate all cats")
- You can switch order of existential quantifiers
 - $-(\exists x)(\exists y)P(x,y) \leftrightarrow (\exists y)(\exists x)P(x,y)$
 - "A cat killed a dog"
- Switching order of universal and existential quantifiers does change meaning:
 - Everyone likes someone: $(\forall x)(\exists y)$ likes(x,y)
 - Someone is liked by everyone: $(\exists y)(\forall x)$ likes(x,y)

Procedural example 1

def verify1():

Everyone likes someone: $(\forall x)(\exists y)$ likes(x,y)

for x in people():

found = False

for y in people():

if likes(x,y):

found = True

break

if not Found:

return False

return True

Every person has at least one individual that they like.

Procedural example 2

def verify2():

Someone is liked by everyone: $(\exists y)(\forall x)$ likes(x,y)

for y in people():

found = True

for x in people():

if not likes(x,y):

found = False

break

if found

return True

return False

There is a person who is liked by every person in the universe.

Connections between \forall and \exists

 We can relate sentences involving ∀ and ∃ using extensions to <u>De Morgan's laws</u>:

1. $(\forall x) \neg P(x) \leftrightarrow \neg (\exists x) P(x)$ 2. $\neg (\forall x) P(x) \leftrightarrow (\exists x) \neg P(x)$ 3. $(\forall x) P(x) \leftrightarrow \neg (\exists x) \neg P(x)$ 4. $(\exists x) P(x) \leftrightarrow \neg (\forall x) \neg P(x)$

- Examples
 - 1. All dogs don't like cats \leftrightarrow No dogs like cats
 - 2. Not all dogs dance \leftrightarrow There is a dog that doesn't dance
 - 3. All dogs sleep \leftrightarrow There is no dog that doesn't sleep
 - 4. There is a dog that talks \leftrightarrow Not all dogs can't talk

Simple genealogy KB in FOL

Design a knowledge base using FOL that

- Has facts of immediate family relations, e.g., spouses, parents, etc.
- Defines of more complex relations (ancestors, relatives)
- Detect conflicts, e.g., you are your own parent
- Infers relations, e.g., grandparernt from parent
- Answers queries about relationships between people

How do we approach this?

• Design an initial ontology of types, e.g.

-e.g., person, man, woman, gender

- Add general individuals to ontology, e.g. –gender(male), gender(female)
- Extend ontology be defining relations, e.g. – spouse, has_child, has_parent
- Add general constraints to relations, e.g.

-spouse(X,Y) $= > \sim X = Y$

- -spouse(X,Y) => person(X), person(Y)
- Add FOL sentences for inference, e.g.
 - -spouse(X,Y) \Leftrightarrow spouse(Y,X)
 - $-man(X) \Leftrightarrow person(X) \land has_gender(X, male)$

Simple genealogy KB in FOL

- Has facts of immediate family relations, e.g., spouses, parents, etc.
- Has definitions of more complex relations (ancestors, relatives)
- Can detect conflicts, e.g., you are your own parent
- Can infer relations, e.g., grandparernt from parent
- Can answer queries about relationships between people

Example: A simple genealogy KB by FOL

• Predicates:

- -parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
- -spouse(x, y), husband(x, y), wife(x,y)
- -ancestor(x, y), descendant(x, y)
- -male(x), female(y)
- -relative(x, y)
- Facts:
 - -husband(Joe, Mary), son(Fred, Joe)
 - -spouse(John, Nancy), male(John), son(Mark, Nancy)
 - -father(Jack, Nancy), daughter(Linda, Jack)
 - -daughter(Liz, Linda)
 - -etc.

Example Axioms

 $(\forall x,y) has_parent(x, y) \leftrightarrow has_child (y, x)$

 $(\forall x,y)$ father(x, y) \leftrightarrow parent(x, y) \land male(x) ;similar for mother(x, y)

 $(\forall x,y) \text{ daughter}(x, y) \leftrightarrow \text{child}(x, y) \land \text{female}(x) ; \text{similar for son}(x, y)$

 $(\forall x,y)$ husband $(x, y) \leftrightarrow$ spouse $(x, y) \land$ male(x) ;similar for wife(x, y)

 $(\forall x,y)$ spouse(x, y) \leftrightarrow spouse(y, x) ;spouse relation is symmetric

 $(\forall x,y) \text{ parent}(x, y) \rightarrow \text{ancestor}(x, y)$

 $(\forall x,y)(\exists z) \text{ parent}(x, z) \land \text{ancestor}(z, y) \rightarrow \text{ancestor}(x, y)$

 $(\forall x,y)$ descendant $(x, y) \leftrightarrow$ ancestor(y, x)

 $(\forall x,y)(\exists z) \text{ ancestor}(z, x) \land \text{ ancestor}(z, y) \rightarrow \text{relative}(x, y)$

 $(\forall x,y)$ spouse(x, y) \rightarrow relative(x, y) ;related by marriage

 $(\forall x,y)(\exists z) \text{ relative}(z, x) \land \text{ relative}(z, y) \rightarrow \text{ relative}(x, y) \text{ ;transitive}$

 $(\forall x,y)$ relative $(x, y) \leftrightarrow$ relative(y, x); symmetric

• Rules for genealogical relations

 $(\forall x,y) \text{ parent}(x, y) \leftrightarrow \text{child } (y, x)$

 $(\forall x,y)$ father(x, y) \leftrightarrow parent(x, y) \land male(x) ;similarly for mother(x, y)

 $(\forall x,y)$ daughter(x, y) \leftrightarrow child(x, y) \land female(x) ;similarly for son(x, y)

 $(\forall x,y)$ husband $(x, y) \leftrightarrow$ spouse $(x, y) \land$ male(x) ;similarly for wife(x, y)

 $(\forall x,y)$ spouse(x, y) \leftrightarrow spouse(y, x) ;spouse relation is symmetric

 $(\forall x,y) \text{ parent}(x, y) \rightarrow \text{ancestor}(x, y)$

 $(\forall x,y)(\exists z) \text{ parent}(x, z) \land \text{ancestor}(z, y) \rightarrow \text{ancestor}(x, y)$

 $(\forall x,y)$ descendant $(x, y) \leftrightarrow$ ancestor(y, x)

 $(\forall x,y)(\exists z) \text{ ancestor}(z, x) \land \text{ ancestor}(z, y) \rightarrow \text{relative}(x, y)$

;related by common ancestry

 $(\forall x,y)$ spouse(x, y) \rightarrow relative(x, y) ;related by marriage $(\forall x,y)(\exists z)$ relative(z, x) \land relative(z, y) \rightarrow relative(x, y) ;transitive $(\forall x,y)$ relative(x, y) \leftrightarrow relative(y, x) ;symmetric

- Queries
 - ancestor(Jack, Fred) ; the answer is yes
 - relative(Liz, Joe) ; the answer is yes
 - relative(Nancy, Matthew) ;no answer, no under closed world assumption
 - (\exists z) ancestor(z, Fred) \land ancestor(z, Liz)

Axioms, definitions and theorems

- Axioms: facts and rules that capture the (important) facts and concepts about a domain; axioms can be used to prove theorems
- Mathematicians dislike unnecessary (dependent) axioms, i.e. ones that can be derived from others
- Dependent axioms can make reasoning faster, however
- Choosing a good set of axioms is a design problem
- A definition of a predicate is of the form "p(X) ↔ …" and can be decomposed into two parts
 - Necessary description: " $p(x) \rightarrow ...$ "
 - Sufficient description " $p(x) \leftarrow ...$ "
 - Some concepts have definitions (triangle) and some do not (person)

More on definitions

Example: define father(x, y) by parent(x, y) and male(x)

 parent(x, y) is a necessary (but not sufficient) description of father(x, y)

father(x, y) \rightarrow parent(x, y)

 parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not necessary) description of father(x, y):

father(x, y) \leftarrow parent(x, y) ^ male(x) ^ age(x, 35)

 parent(x, y) ^ male(x) is a necessary and sufficient description of father(x, y)

 $parent(x, y) \land male(x) \leftrightarrow father(x, y)$

Notational differences

• Different symbols for and, or, not, implies, ...

$$\neg$$
 \neg \neg \neg \Rightarrow \Leftrightarrow \leftarrow \vdash \neg \neg

- -p v (q ^ r)
- -p + (q * r)
- Prolog

cat(X) :- furry(X), meows (X), has(X, claws)

Lispy notations

 (forall ?x (implies (and (furry ?x)
 (meows ?x)

(has ?x claws))

(cat ?x)))

A example of FOL in use

- Semantics of W3C's semantic web stack (RDF, RDFS, OWL) is defined in FOL
- OWL Full is equivalent to FOL
- Other OWL profiles support a subset of FOL and are more efficient
- However, the semantics of <u>schema.org</u> is only defined in natural language text
- ...and Google's knowledge Graph probably
 (!) uses probabilities

FOL Summary

- First order logic (FOL) introduces predicates, functions and quantifiers
- More expressive, but reasoning more complex
 - Reasoning in propositional logic is NP hard, FOL is semi-decidable
- Common AI knowledge representation language
 - Other KR languages (e.g., <u>OWL</u>) are often defined by mapping them to FOL
- FOL variables range over objects
 - HOL variables range over functions, predicates or sentences