
1

First-Order	Logic:	
Review

RDFS/OWL	Smantics
•The	semantics	of	RDFS	and	OWL	are	based	on	
First	Order	Logic

•Advantages:
– Familiar,	well	defined,	well	understood,	
expressive,	powerful

–Good	procedures/tools	for	inference
•Disadvantages
–No	agreement	on	how	to	extend	for	probabilities,	
fuzzy	representations,	higher	order	logics,	etc.

–Hard	to	process	in	parallel
2

First-order	logic
• First-order	logic	(FOL)	models	the	world	in	terms	of	

– Objects, which	are	things	with	individual	identities
– Properties of	objects	that	distinguish	them	from	others
– Relations that	hold	among	sets	of	objects
– Functions, which	are	a	subset	of	relations	where	there	is	
only	one	“value” for	any	given	“input”

• Examples:	
– Objects:	Students,	lectures,	companies,	cars	...	
– Relations:	Brother-of,	bigger-than,	outside,	part-of,	has-
color,	occurs-after,	owns,	visits,	precedes,	...	

– Properties:	blue,	oval,	even,	large,	...	
– Functions:	father-of,	best-friend,	second-half,	more-than	...	

User	provides
•Constant	symbols	representing	individuals	in	the	
world
–Mary,	3,	green

•Function	symbols,	map	individuals	to	individuals
– father_of(Mary)	=	John
– color_of(Sky)	=	Blue

•Predicate	symbols,	map	individuals	to	truth	values
–greater(5,3)
– green(Grass)	
– color(Grass,	Green)

FOL	Provides

•Truth	values
–True,	False

•Variable	symbols
– E.g.,	x,	y,	foo

•Connectives
– Same	as	in	propositional	logic:	not	(¬),	and	(Ù),	
or	(Ú),	implies	(®),	iff («)

•Quantifiers
–Universal	"x	or		(Ax)
– Existential	$x	or	(Ex)	

Sentences:	built	from	terms	and	atoms

•A	term (denoting	a	real-world	individual)	is	a	
constant	symbol,	variable	symbol,	or	n-place	
function	of	n	terms,	e.g.:
–Constants:	john,	umbc
–Variables:	x,	y,	z
–Functions:	mother_of(john),	phone(mother(x))

•Ground	terms	have	no	variables	in	them
–Ground: john,		father_of(father_of(john))
–Not	Ground:	father_of(X)

Sentences:	built	from	terms	and	atoms

•An	atomic	sentence (which	has	value	true	or	
false)	is	an	n-place	predicate	of	n	terms,	e.g.:
–green(Kermit))
–between(Philadelphia,	Baltimore,	DC)
–loves(X,	mother(X))

•A	complex	sentence is	formed	from	atomic	
sentences	connected	by	logical	connectives:

¬P,	PÚQ,	PÙQ,	P®Q,	P«Q
where	P	and	Q	are	sentences

Sentences:	built	from	terms	and	atoms

•quantified	sentences adds	quantifiers	" and	$
–"x	loves(x,	mother(x))
–$x	number(x)	Ù greater(x,	100),	prime(x)

•A	well-formed	formula	(wff) is	a	sentence	
containing	no	“free” variables,	i.e.,	all	
variables	are	“bound” by	either	a	universal	or	
existential	quantifiers	
("x)P(x,y)	has	x	bound	as	a	universally	
quantified	variable,	but	y	is	free	

A	BNF	for	FOL
S := <Sentence> ;
<Sentence> := <AtomicSentence> |

<Sentence> <Connective> <Sentence> |
<Quantifier> <Variable>,... <Sentence> |
"NOT" <Sentence> |
"(" <Sentence> ")";

<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
<Term> "=" <Term>;

<Term> := <Function> "(" <Term>, ... ")" |
<Constant> |
<Variable>;

<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ;
<Function> := "Mother" | "LeftLegOf" | ... ;

Quantifiers
•Universal quantification	
–("x)P(x)	means	P	holds	for	all	values	of	x	in	
domain	associated	with	variable

–E.g.,	("x)	dolphin(x)	®mammal(x)
•Existential quantification	
–($x)P(x)	means	P	holds	for	some	value	of	x	
in	domain	associated	with	variable

–E.g.,	($x)	mammal(x)	Ù lays_eggs(x)
–This	lets	us	make	a	statement	about	some	
object	without	naming	it

Quantifiers	(1)

•Universal	quantifiers	often	used	with	implies	
to	form	rules:
("x)	student(x)	® smart(x)	means	“All	students	are	
smart”

•Universal	quantification	rarely	used	to	make	
blanket	statements	about	every	individual	in	
the	world:	
("x)	student(x)	Ù smart(x)	means	“Everyone	in	the	
world	is	a	student	and	is	smart”

Quantifiers	(2)

•Existential	quantifiers	usually	used	with	“and”
to	specify
a	list	of	properties	about	an	individual:
($x)	student(x)	Ù smart(x)	means	“There	is	a	
student	who	is	smart”

•Common	mistake:	represent	this	in	FOL	as:
($x)	student(x)	® smart(x)	

•What	does	this	sentence	mean?
–??

Quantifier	Scope
•FOL	sentences	have	structure,	like	programs
• In	particular,	the	variables	in	a	sentence	have	a	
scope

•For	example,	suppose	we	want	to	say	
–“everyone	who	is	alive	loves	someone”
– ("x)	alive(x)	® ($y)	loves(x,y)	

•Here’s	how	we	scope	the	variables
("x)	alive(x)	® ($y)	loves(x,y)

Scope	of	x
Scope	of	y

Quantifier	Scope
•Switching	order	of	universal	quantifiers	does	not	
change	the	meaning
– ("x)("y)P(x,y)	↔ ("y)("x)	P(x,y)
– “Dogs	hate	cats” (i.e.,	“all	dogs	hate	all	cats”)

• You	can	switch	order	of	existential	quantifiers
– ($x)($y)P(x,y)	↔ ($y)($x)	P(x,y)	
– “A	cat	killed	a	dog”

•Switching	order	of	universal	and	existential	
quantifiers	does	change	meaning:	
– Everyone	likes	someone:	("x)($y)	likes(x,y)	
– Someone	is	liked	by	everyone:	($y)("x)	likes(x,y)

Procedural	example	1
def verify1():
#	Everyone	likes	someone:	("x)($y)	likes(x,y)	
for	x	in	people():
found	=	False
for	y	in	people():
if	likes(x,y):

found	=	True
break

if	not	Found:
return	False

return	True

Every	person	has	at
least	one	individual	that
they	like.

Procedural	example	2
def verify2():
#	Someone	is	liked	by	everyone:	($y)("x)	likes(x,y)	
for	y	in	people():
found	=	True
for	x	in	people():
if	not	likes(x,y):

found	=	False
break

if	found
return	True

return	False

There	is	a	person	who	is
liked	by	every	person	in
the	universe.

Connections	between	" and	$

•We	can	relate	sentences	involving	" and	$ using	
extensions	to		De	Morgan’s	laws:
1. ("x)	¬P(x)	↔ ¬($x)	P(x)
2.¬("x)	P(x)	↔ ($x)	¬P(x)
3. ("x)	P(x)	↔ ¬ ($x)	¬P(x)
4. ($x)	P(x)	↔ ¬("x)	¬P(x)

• Examples
1. All	dogs	don’t	like	cats	↔ No	dogs	like	cats
2. Not	all	dogs	dance	↔ There	is	a	dog	that	doesn’t	dance
3. All	dogs	sleep	↔	There	is	no	dog	that	doesn’t	sleep
4. There	is	a	dog	that	talks	↔	Not	all	dogs	can’t	talk

Simple	genealogy	KB	in	FOL
Design	a	knowledge	base	using	FOL	that
– Has	facts	of	immediate	family	relations,	e.g.,	
spouses,	parents,	etc.

– Defines	of	more	complex	relations	
(ancestors,	relatives)

– Detect	conflicts,	e.g.,	you	are	your	own	
parent

– Infers	relations,	e.g.,	grandparernt from	
parent

– Answers	queries	about	relationships	
between	people

How	do	we	approach	this?
•Design	an	initial	ontology	of	types,	e.g.
– e.g.,	person,	man,	woman,	gender

•Add	general	individuals	to	ontology,	e.g.
– gender(male),	gender(female)

•Extend	ontology	be	defining	relations,	e.g.
– spouse,	has_child,	has_parent

•Add	general	constraints	to	relations,	e.g.
– spouse(X,Y)	=>	~	X	=	Y
– spouse(X,Y)	=>	person(X),	person(Y)

•Add	FOL	sentences	for	inference,	e.g.
– spouse(X,Y)	ó spouse(Y,X)
–man(X)	ó person(X)	∧has_gender(X,	male)

Simple	genealogy	KB	in	FOL
• Has	facts	of	immediate	family	relations,	
e.g.,	spouses,	parents,	etc.

• Has	definitions	of	more	complex	relations	
(ancestors,	relatives)

• Can	detect	conflicts,	e.g.,	you	are	your	own	
parent

• Can	infer	relations,	e.g.,	grandparernt from	
parent

• Can	answer	queries	about	relationships	
between	people

Example:	A	simple	genealogy	KB	by	FOL
•Predicates:
–parent(x,	y),	child(x,	y),	father(x,	y),	daughter(x,	y),	
etc.

– spouse(x,	y),	husband(x,	y),	wife(x,y)
– ancestor(x,	y),	descendant(x,	y)
–male(x),	female(y)
– relative(x,	y)

•Facts:
–husband(Joe,	Mary),	son(Fred,	Joe)
– spouse(John,	Nancy),	male(John),	son(Mark,	Nancy)
– father(Jack,	Nancy),	daughter(Linda,	Jack)
–daughter(Liz,	Linda)
–etc.

Example	Axioms
("x,y)	has_parent(x,	y)	↔ has_child (y,	x)
("x,y)	father(x,	y)	↔ parent(x,	y)	Ùmale(x)	;similar	for	mother(x,	y)
("x,y)	daughter(x,	y)	↔ child(x,	y)	Ù female(x)	;similar	for	son(x,	y)
("x,y)	husband(x,	y)	↔ spouse(x,	y)	Ùmale(x)	;similar	for	wife(x,	y)
("x,y)	spouse(x,	y)	↔ spouse(y,	x)		;spouse	relation	is	symmetric
("x,y)	parent(x,	y)	® ancestor(x,	y)	
("x,y)($z)	parent(x,	z)	Ù ancestor(z,	y)	® ancestor(x,	y)	
("x,y)	descendant(x,	y)	↔ ancestor(y,	x)	
("x,y)($z)	ancestor(z,	x)	Ù ancestor(z,	y)	® relative(x,	y)
("x,y)	spouse(x,	y)	® relative(x,	y)		;related	by	marriage
("x,y)($z)	relative(z,	x)	Ù relative(z,	y)	® relative(x,	y)		;transitive
("x,y)	relative(x,	y)	↔ relative(y,	x)			;symmetric

• Rules	for	genealogical	relations
("x,y)	parent(x,	y)	↔ child	(y,	x)
("x,y)	father(x,	y)	↔ parent(x,	y)	Ùmale(x)	;similarly	for	mother(x,	y)
("x,y)	daughter(x,	y)	↔ child(x,	y)	Ù female(x)	;similarly	for	son(x,	y)
("x,y)	husband(x,	y)	↔ spouse(x,	y)	Ùmale(x)	;similarly	for	wife(x,	y)
("x,y)	spouse(x,	y)	↔ spouse(y,	x)		;spouse	relation	is	symmetric
("x,y)	parent(x,	y)	® ancestor(x,	y)	
("x,y)($z)	parent(x,	z)	Ù ancestor(z,	y)	® ancestor(x,	y)	
("x,y)	descendant(x,	y)	↔ ancestor(y,	x)	
("x,y)($z)	ancestor(z,	x)	Ù ancestor(z,	y)	® relative(x,	y)	

;related	by	common	ancestry
("x,y)	spouse(x,	y)	® relative(x,	y)		;related	by	marriage
("x,y)($z)	relative(z,	x)	Ù relative(z,	y)	® relative(x,	y)		;transitive
("x,y)	relative(x,	y)	↔ relative(y,	x)			;symmetric

• Queries
– ancestor(Jack,	Fred)			;	the	answer	is	yes
– relative(Liz,	Joe)								;	the	answer	is	yes	
– relative(Nancy,		Matthew)			;no	answer,	no	under	closed	world	
assumption

– ($z)	ancestor(z,	Fred)	Ù ancestor(z,	Liz)

Axioms,	definitions	and	theorems
• Axioms: facts	and	rules	that	capture	the	(important)	
facts	and	concepts	about	a	domain;	axioms	can	be	used	
to	prove	theorems

– Mathematicians	dislike unnecessary	(dependent)	axioms,	i.e.	
ones	that	can	be	derived	from	others

– Dependent	axioms	can	make	reasoning	faster,	however
– Choosing	a	good	set	of	axioms	is	a	design	problem

• A	definition of	a	predicate	is	of	the	form	“p(X)	↔ …”
and	can	be	decomposed	into	two	parts
– Necessary description:	“p(x)	® …”
– Sufficient description	“p(x)	¬ …”
– Some	concepts have	definitions	(triangle)	and	some	do	not	
(person)

More	on	definitions

Example:	define	father(x,	y)	by	parent(x,	y)	and	
male(x)
• parent(x,	y)	is	a	necessary	(but	not	sufficient)	
description	of	father(x,	y)
father(x,	y)	® parent(x,	y)

• parent(x,	y)	^	male(x)	^	age(x,	35)	is	a	sufficient	(but	not	
necessary)	description	of	father(x,	y):
father(x,	y)	¬ parent(x,	y)	^	male(x)	^	age(x,	35)	

• parent(x,	y)	^	male(x)	is	a	necessary	and	sufficient	
description	of	father(x,	y)	
parent(x,	y)	^	male(x)	↔ father(x,	y)

Notational	differences
•Different	symbols	for	and,	or,	not,	implies,	...
–" $ Þ Û Ù Ú ¬ • É
–p	v	(q	^	r)	
– p	+	(q	*	r)

•Prolog
cat(X)	:- furry(X),	meows	(X),	has(X,	claws)

•Lispy notations
(forall ?x	(implies	(and	(furry	?x)	

(meows	?x)	
(has	?x	claws))

(cat	?x)))

A	example	of	FOL	in	use
•Semantics	of	W3C’s	semantic	web	stack	
(RDF,	RDFS,	OWL)	is	defined	in	FOL

•OWL	Full	is	equivalent	to	FOL
•Other	OWL	profiles	support	a	subset	of	FOL	
and	are	more	efficient

•However,	the	semantics	of	schema.org is	
only	defined	in	natural	language	text

•…and	Google’s	knowledge	Graph	probably	
(!)	uses	probabilities

27

FOL	Summary
•First	order	logic	(FOL)	introduces	predicates,	
functions	and	quantifiers

•More	expressive,	but	reasoning	more	complex
–Reasoning	in	propositional	logic	is	NP	hard,	FOL	is	
semi-decidable

•Common	AI	knowledge	representation	language
–Other	KR	languages	(e.g.,	OWL)	are	often	defined	by	
mapping	them	to	FOL

•FOL	variables	range	over	objects
–HOL	variables	range	over	functions,	predicates	or	
sentences

