
Chapter 3
RDF Schema

Introduction

lRDF has a very simple data model
lRDF Schema (RDFS) enriches the data model,

adding vocabulary & associated semantics for
– Classes and subclasses
– Properties and sub-properties
– Typing of properties

lSupport for describing simple ontologies
lAdds an object-oriented flavor
lBut with a logic-oriented approach and using

“open world” semantics

RDFS is a simple KB Language

Several widely used Knowledge-Base tools can import and export
in RDFS, including Stanford’s Protégé KB editor

RDFS Vocabulary

l Terms for classes
– rdfs:Class
– rdfs:subClassOf

l Terms for properties
– rdfs:domain
– rdfs:range
– rdfs:subPropertyOf

l Special classes
– rdfs:Resource
– rdfs:Literal
– rdfs:Datatype

l Terms for collections
– rdfs:member
– rdfs:Container
– rdfs:ContainerMem-

bershipProperty
l Special properties

– rdfs:comment
– rdfs:seeAlso

– rdfs:isDefinedBy
– rdfs:label

RDFS introduces the following terms, giving each a
meaning w.r.t. the rdf data model

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Class
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-subClassOf
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-domain
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-range
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-subPropertyOf
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Resource
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Literal
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Datatype
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-member
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Container
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-ContainerMembershipProperty
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-comment
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-seeAlso
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-isDefinedBy
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-label
http://www.w3.org/2000/01/rdf-schema

Modeling the semantics in logic

lWe could represent any RDF triple with a
binary predicate in logic, e.g.

type(john, human)
age(john, 32)
subclass(human, animal)

lBut traditionally we model a class or type as a
unary predicate
human(john)
age(john, 32)
subclass(human, animal)

Classes and Instances
lWe distinguish between

– Concrete “things” (individual objects) in the domain:
Discrete Math, Richard Chang, etc.

– Sets of individuals sharing properties called classes:
lecturers, students, courses etc.

lIndividual objects belonging to a class are
referred to as instances of that class

lRelationship between instances and classes in
RDF is through rdf:type

lNote similarity to classes and objects in an OO
prog. language (but RDF classes stand for sets)

Classes are Useful

Classes let us impose restrictions on what can
be stated in an RDF document using the schema

– As in programming languages
E.g., A+1, where A is an array

– Disallow nonsense from being stated by detecting
contradictions

– Allow us to infer a type of an object from how it is
used -- like type inference in a programming
language

Preventing nonsensical Statements

lDiscrete Math is taught by Calculus
– We want courses to be taught by lecturers only
– Restriction on values of the property “is taught by”

(range restriction)

lRoom ITE228 is taught by Richard Chang
– Only courses can be taught
– This imposes a restriction on the objects to which

the property can be applied (domain restriction)

Class Hierarchies

lClasses can be organized in hierarchies
– A is a subclass of B if and only if every instance of A

is also an instance of B
– We also say that B is a superclass of A

l The subclass graph needn’t be a tree
– A class may have multiple superclasses

lIn logic:
– subclass(p, q) ó p(x) => q(x)

– subclass(p, q) ∧ p(x) => q(x)

Domain and Range

lThe domain & range properties let us associate
classes with a property’s subject and object

lOnly a course can be taught
– domain(isTaughtBy, course)

lOnly an academic staff member can teach
– range(isTaughtBy, academicStaffMember)

lSemantics in logic:
– domain(pred, aclass)∧pred(subj, obj) => aclass(subj)
– range(pred, aclass)∧pred(subj, obj) => aclass(obj)

Property Hierarchies
lHierarchical relationships for properties

– E.g., “is taught by” is a subproperty of “involves”
– If a course C is taught by an academic staff member

A, then C also involves Α

lThe converse is not necessarily true
– E.g., A may be the teacher of the course C, or a TA

who grades student homework but doesn’t teach

lSemantics in logic
– subproperty(p, q) ∧ p(subj, obj) => q(sub,obj)
– e.g, subproperty(mother,parent), mother(p1, p2) =>

parent(p1, p2)

RDF Schema in RDF

lRDFS’s modelling primitives are defined using
resources and properties (RDF itself is used!)

l To declare that “lecturer” is a subclass of
“academic staff member”

– Define resources lecturer, academicStaffMember,
and subClassOf

– define property subClassOf
– Write triple (subClassOf,

lecturer,academicStaffMember)

Core Classes

l rdfs:Resource: class of all resources
l rdfs:Class: class of all classes
l rdfs:Literal: class of all literals (strings)
l rdf:Property: class of all properties
l rdf:Statement: class of all reified statements

Core Properties

l rdf:type: relates a resource to its class
The resource is declared to be an instance of that
class

l rdfs:subClassOf: relates a class to one of its
superclasses
All instances of a class are instances of its
superclass

l rdfs:subPropertyOf: relates a property to
one of its superproperties

Core Properties

l rdfs:domain: specifies domain of property P
– The class of those resources that may appear as

subjects in a triple with predicate P
– If domain not specified, any resource can be

subject

l rdfs:range: specifies range of a property P
– The class of those resources that may appear as

object in a triple with predicate P
– If range not specified, any resource can be object

Examples (in Turtle)

:lecturer a rdfs:Class;
rdfs:subCLassOf :staffMember .

:phone a rdfs:Property;
rdfs:domain :staffMember;
rdfs:range rdfs:Literal .

Relationships: Core Classes & Properties

l rdfs:subClassOf and rdfs:subPropertyOf are
transitive, by definition

l rdfs:Class is a subclass of rdfs:Resource
– Because every class is a resource

l rdfs:Resource is an instance of rdfs:Class
– rdfs:Resource is class of all resources, so it is a class

lEvery class is an instance of rdfs:Class
– For the same reason

Subclass Hierarchy of RDFS Primitives

rdfs:Resource

rdfs:Class rdf:Property rdfs:Literal

rdfs:Datatype rdf:XMLLiteral

arrows represent the rdfs:subClassOf relation

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Instance Relationships of RDFS Primitives

rdfs:Class

rdfs:Resource rdf:Property rdfs:Literal

rdfs:Datatype rdf:XMLLiteral

arrows represent the rdf:type relation

rdf:type

rdf:type
rdf:type

rdf:type

rdf:type

rdf:type

RDF and RDFS Property Instances

rdf:Property

rdfs:domain

rdf:range

rdf:type

rdfs:subClassOf rdfs:subPropertyOf

arrows represent the rdf:type relation

rdf:type rdf:type

rdf:type
rdf:type

rdf:type

Utility Properties

l rdfs:seeAlso relates a resource to another resource
that explains it

l rdfs:isDefinedBy: a subproperty of rdfs:seeAlso that
relates a resource to the place where its definition,
typically an RDF schema, is found

l rfds:comment. Comments, typically longer text, can
be associated with a resource

l rdfs:label. A human-friendly label (name) is associated
with a resource

Data and schema

Data

Schema

Syntactically it’s all just RDF. The data part only uses RDF
vocabulary and the schema part uses RDFS vocabulary

RDF and RDFS Namespaces

lThe RDF, RDFS and OWL namespaces specify
some constraints on the ‘languages’
– http://www.w3.org/1999/02/22-rdf-syntax-ns#
– http://www.w3.org/2000/01/rdf-schema#
– http://www.w3.org/2002/07/owl#

lStrangely, each uses terms from all three to
define its own terms

lDon’t be confused: the real semantics of the
terms isn’t specified in the namespace files

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl

RDF Namespace in turtle

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
a owl:Ontology ;
dc:title "The RDF Vocabulary (RDF)" ;
dc:description "This is the RDF Schema for the RDF vocabulary defined in the RDF

namespace." .

rdf:type a rdf:Property ;
rdfs:isDefinedBy <http://www.w3.org/1999/02/22-rdf-syntax-ns#> ;
rdfs:label "type" ;
rdfs:comment "The subject is an instance of a class." ;
rdfs:range rdfs:Class ;
rdfs:domain rdfs:Resource .

RDF Namespace example

rdf:Statement a rdfs:Class ;
rdfs:subClassOf rdfs:Resource ;
rdfs:comment "The class of RDF statements." .

rdf:subject a rdf:Property ;
rdfs:domain rdf:Statement ;
rdfs:range rdfs:Resource .

rdf:predicate a rdf:Property ;
rdfs:domain rdf:Statement ;
rdfs:range rdfs:Resource .

RDFS vs. OO Models

lIn OO models, an object class defines the
properties that apply to it
– Adding a new property means modifying the class

lIn RDF, properties defined globally and not
encapsulated as attributes in class definitions
– We can define new properties w/o changing class
– Properties can have properties

:mother rdfs:subPropertyOf :parent; rdf:type :FamilyRelation.

– But: can’t narrow domain & range of properties in a
subclass

Example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix bio: <http://example.com/biology#> .

bio:Animal a rdfs:Class.
bio:offspring a rdfs:Property;

rdfs:domain bio:Animal;
rdfs:range bio:Animal.

bio:Human rdfs:subClassOf bio:Animal.
bio:Dog rdfs:subClassOf bio:Animal.
:fido a bio:Dog.
:john a bio:Human;

bio:offspring :fido.

Ontology and Data

Let’s follow best practice and separate our ontology
(i.e., schema) file from the data

A simple Biology ontology

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix bio: <http://example.com/biology#> .

bio:Animal a rdfs:Class.
bio:offspring a rdfs:Property;

rdfs:domain bio:Animal;
rdfs:range bio:Animal.

bio:Human rdfs:subClassOf bio:Animal.
bio:Dog rdfs:subClassOf bio:Animal.

Some biological data

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix bio: <http://example.com/biology#> .
@prefix : <http://finin.org/example/#> .

fido’s a dog!
:fido a bio:Dog.

john’s human & has offspring fido
:john a bio:Human;

bio:offspring :fido.

Apache Jena
Apache Jena is a suite of high-quality, well-maintained,
opensource tools in Java for semantic web technology

https://jena.apache.org/

Jena’s riot command

l Jena has a set of command line tools
lRiot can convert between serializations and

also do simple rdfs inference
l Let’s try it on the example

riot --rdfs=bio0.ttl --formatted=ttl
mybio0.ttl

Riot rdfs inference
bio> riot --rdfs=bio0.ttl --formatted=ttl mybio0.ttl
@prefix : <http://finin.org/example/#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix bio: <http://example.com/biology#> .

:fido rdf:type bio:Dog ;
rdf:type bio:Animal .

:john rdf:type bio:Human ;
rdf:type bio:Animal ;
bio:offspring :fido ;
rdf:type bio:Animal .

:fido rdf:type bio:Animal .

bio>

Example

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix bio: <http://example.com/biology#> .

bio:Animal a rdfs:Class.
bio:offspring a rdfs:Property;

rdfs:domain bio:Animal;
rdfs:range bio:Animal.

bio:Human rdfs:subClassOf bio:Animal.
bio:Dog rdfs:subClassOf bio:Animal.
:fido a bio:Dog.
:john a bio:Human;

bio:offspring :fido.

There is no way to say that the
offspring of humans are
humans and the offspring of
dogs are dogs.

Example

Bio:child rdfs:subPropertyOf bio:offspring;
rdfs:domain bio:Human;
rdfs:range bio:Human.

Bio:puppy rdfs:subPropertyOf bio:offspring;
rdfs:domain bio:Dog;
rdfs:range bio:Dog.

:john bio:child :mary.
:fido bio:puppy :rover.

What do we know after
each of the last two triples
are asserted?

Example

Bio:child rdfs:subPropertyOf bio:offspring;
rdfs:domain bio:Human;
rdfs:range bio:Human.

Bio:puppy rdfs:subPropertyOf bio:offspring;
rdfs:domain bio:Dog;
rdfs:range bio:Dog.

:john bio:child :mary.
:fido bio:puppy :rover.

Suppose we also assert:
•:john bio:puppy :rover
•:john bio:child :fido

Not like types in OO systems

lClasses differ from types in OO systems in how
they are used
– They are not constraints on well-formedness as in

most programming languages

l Lack of negation & open world assumption in
RDF+RDFS makes detecting such contradictions
impossible!
– Can’t say that Dog and Human are disjoint classes
– Not knowing any individuals who are both doesn’t

mean it’s not possible

https://en.wikipedia.org/wiki/Open-world_assumption

No disjunctions or union types

What does this mean?

bio:Human rdfs:subClassOf bio:Animal.
bio:Cat rdfs:subClassOf bio:Animal.
bio:Dog rdfs:subClassOf bio:Animal.
bio:hasPet a rdfs:Property;

rdfs:domain bio:Human;
rdfs:range bio:Dog;
rdfs:range bio:Cat.

No disjunctions or union types

What does this mean?

Bio:Human rdfs:subClassOf bio:Animal.
bio:Cat rdfs:subClassOf bio:Animal.
Bio:Dog rdfs:subClassOf bio:Animal.
bio:hasPet a rdfs:Property;

rdfs:domain bio:Human;
rdfs:range bio:Dog;
rdfs:range bio:Cat.

Consider adding:
:john bio:hasPet :spot

No disjunctions or union types

What does this mean?

bio:Human rdfs:subClassOf bio:Animal.
bio:Cat rdfs:subClassOf bio:Animal.
bio:Dog rdfs:subClassOf bio:Animal.
bio:hasPet a rdfs:Property;

rdfs:domain bio:Human;
rdfs:range bio:Dog;
rdfs:range bio:Cat.

:john bio:hasPet :spot
=>
:john a bio:Human,

bio:Animal.
:spot a bio:Dog, bio:Cat,

bio:Animal.

What do we want to say?

lMany different possibilities
– Only a dog or cat can be an object of hasPet property
– Dogs and cats and maybe other animals are possible

as pets
– Dogs and cats and maybe other things, not

necessarily animals, are possible as pets
– All dogs and all cats are pets
– It’s possible for some dogs and some cats to be pets

lNot all of these can be said in RDF+RDFS
lWe can express all of these in OWL (I think)

What do we want to say?

animal

catdoghuman

pet

subclass
subclass

subclass

property

hasPet

subclass

domain

range

subclass

subclass subclass

What do we want to say?

animal

catdoghuman

pet

subclass
subclass

subclass

property

hasPet

subclass

domain

range

subclass

subclass subclass

john spothasPet

john spothasPet

What do we want to say?

animal

catdoghuman

pet

subclass
subclass

subclass

property

hasPet

subclass

domain

range

subclass

subclass subclass

All dogs are pets
All cats are pets
All pets are animals

:john bio:hasPet :spot
=>
:john a bio:Human,

bio:Animal.
:spot a bio:Pet,

bio:Animal.

What do we want to say?

animal

catdoghuman

pet

subclass
subclass

subclass

property

hasPet

subclass

domain

range

subclass

subclass subclass

All dogs are pets
All cats are pets
All pets are animals

:john bio:hasPet :spot
=>
:john a bio:Human,

bio:Animal.
:spot a bio:Pet,

bio:Animal.

What do we want to say?

animal

catdoghuman

pet

subclass
subclass

subclass

property

hasPet

subclass

domain

range

subclass

subclass subclass

john spothasPet

type
type

type
type

Classes and individuals are not disjoint

l In OO systems a thing is either a class or object
– Many KR systems are like this also

lNot so in RDFS
bio:Species rdf:type rdfs:Class.
bio:Dog rdf:type rdfs:Species;

rdfs:subClassOf bio:Animal.
:fido rdf:type bio:Dog.

lAdds richness to language but causes problems
– In OWL DL you can’t do this
– OWL has it’s own notion of a Class, owl:Class

•rdf:type links an individual
to a class it belongs to

•rdfs:subClass links a class to
a super-class it is part of

Inheritance is simple

lNo defaults, overriding, shadowing
lWhat you say about a class is necessarily true of

all sub-classes
lA class’s properties are not inherited by its

members
– Can’t say “Dog’s are normally friendly” or even “All

dogs are friendly”
– Meaning of the Dog class is a set of individuals
– Sets cannot be friendly

Set Based Model Theory Example

World Interpretation

Daisy isA Cow

Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

D

{... list of facts
about individuals ...}

a

b

Model

Mary drives Z123ABC

Is RDF(S) better than XML?
Q: For a specific application, should I use XML or RDF?
A: It depends…
l XML's model is

– a tree, i.e., a strong hierarchy
– applications may rely on hierarchy position
– relatively simple syntax and structure
– not easy to combine trees

l RDF's model is
– a loose collections of relations
– applications may do “database”-like search
– not easy to recover hierarchy
– easy to combine relations in one big collection
– great for the integration of heterogeneous information

RDFS too weak to describe resources in detail

– No localised range and domain constraints
Can’t say range of hasChild is person when applied to
persons and elephant when applied to elephants

– No existence/cardinality constraints
Can’t say all instances of person have a mother that is a
person, or that persons have exactly two parents

– No transitive, inverse or symmetrical properties
Can’t say isPartOf is a transitive property, hasPart is the
inverse of isPartOf or that touches is symmetrical

We need RDF terms providing these and other
features: this is where OWL comes in

RDF Conclusions
l Simple data model based on a graph, independent of

serializations (e.g., XML or N3)
l Has a formal semantics providing a dependable basis

for reasoning about the meaning of RDF expressions
l Has an XML serialization, can use XML schema

datatypes
l Open world assumption: anyone can make

statements about any resource
l RDFS adds vocabulary with well defined semantics

(e.g., Class, subClassOf, etc.)
l OWL addresses some of RDFS’s limitations adding

richness (and complexity)

