
Structured Web
Documents

in XML
(a)

Adapted from slides from Grigoris
Antoniou and Frank van Harmelen

Outline

(1) Introduction

(2) XML details

(3) Structuring

– DTDs

– XML Schema

(4) Namespaces

(5) Accessing, querying XML documents: XPath

(6) Transformations: XSLT

Role of XML in the Semantic Web

lThe Semantic Web involves ideas and
languages at a fairly abstract level, e.g.: for
defining ontologies, publishing data using them

lXML is a
– Source of many key SW concepts & technology bits;
– Potential alternative for sharing data that newer

schemes must improve on; and
– Common serialization for SW data

To paraphrase Jamie Zawinski

Some people, when confronted
with a problem, think, "I know, I'll
use XML."

Now they have two problems.

“Some people, when confronted with a problem,
think "I know, I'll use regular expressions." Now
they have two problems.”
-- Wikiquote

https://en.wikipedia.org/wiki/Jamie_Zawinski
http://en.wikiquote.org/wiki/Jamie_Zawinski

History

lXML’s roots are in SGML
– Standard Generalized Markup Language
– A metalanguage for defining document markup languages
– Extensible, but complicated, verbose, hard to parse, …

lHTML was defines using SGML, ~1990 by TBL
– A markup language, not a markup metalanguage

lXML proposal to W3C in July 1996
– Simplified SGML to greatly expand power and flexibility of Web

lEvolving series of W3C recommendations
– Current recommendation: XML 5 (2008)

https://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
https://en.wikipedia.org/wiki/Metalanguage
https://www.w3.org/TR/REC-xml/

An HTML Example

<h2>Nonmonotonic Reasoning: Context-
Dependent Reasoning</h2>

<i>by V. Marek and
M. Truszczynski</i>

Springer 1993

ISBN 0387976892

The Same Example in XML

<book>
<title>Nonmonotonic Reasoning: Context-Dependent
Reasoning</title>
<author>V. Marek</author>
<author>M. Truszczynski</author>
<publisher>Springer</publisher>
<year>1993</year>
<ISBN>0387976892</ISBN>

</book>

HTML versus XML: Similarities

lBoth use tags (e.g. <h2> and </year>)
lTags may be nested (tags within tags)
lHuman users can read and interpret both

HTML and XML representations “easily”
… But how about machines?

Problems Interpreting HTML Documents

Problems for a machine trying to get the author
names of the book
–Authors’ names could appear immediately
after the title

–or immediately after the word “by” (or “van” if
it’s in Dutch)

–Are there two authors or just one, called “V.
Marek and M. Truszczynski”? <h2>Nonmonotonic Reasoning: Context-

Dependent Reasoning</h2>
<i>by V. Marek and M.
Truszczynski</i>

Springer 1993

ISBN 0387976892

HTML vs XML: Structural Information

lHTML documents don’t carry structured
information: pieces document and their
relations

lXML more easily accessible to machines since
– Every piece of information is described
– Relations defined through nesting structure
– E.g., <author> tags appear within <book>

tags, so they describe properties of a
particular book

HTML vs XML: Structural Information

lA machine processing the XML document can
assume (deduce/infer) that
– author element refers to enclosing book

element
– Without using background knowledge,

proximity or other heuristics
lXML allows definition of constraints on values

– E.g., a year must be a integer of four digits

HTML vs. XML: Formatting

lHTML representation provides more than XML
representation:
– Formatting of the document is described

lMain use of an HTML document is to display
information: it must define formatting

lXML: separation of content from display
– same information can be displayed in

different ways
– Presentation specified by documents using

other XML standards (CSS, XSL)

HTML vs. XML: Another Example

In HTML
<h2>Relationship matter-energy</h2>
<i> E = M × c^2 </i>

In XML
<equation>

<gloss>Relationship matter energy </gloss>
<leftside> E </leftside>
<rightside> M × c^2 </rightside>

</equation>

HTML vs. XML: Different Use of Tags

lAll HTML documents use the same tags
– HTML tags come from a finite, pre-defined collection
– Define properties for display: font, color, lists …

lXML documents can use completely different
tags
– XML tags not fixed: user definable tags
– XML is a meta markup language, i.e., a language for

defining markup languages

XML Vocabularies

lApplications must agree on common
vocabularies to communicate and collaborate

lCommunities and business sectors define their
specialized vocabularies
– mathematics (MathML)
– bioinformatics (BSML)
– human resources (HRML)
– Syndication (RSS)
– Vector graphics (SVG)
– …

https://en.wikipedia.org/wiki/MathML

Outline

(1) Introduction

(2) Description of XML

(3) Structuring

– DTDs

– XML Schema

(4) Namespaces

(5) Accessing, querying XML documents: XPath

(6) Transformations: XSLT

The XML Language

An XML document consists of
lA prolog
lA number of elements
lAn optional epilog (not discussed, not

used much)

XML documents are tree data structures

Prolog of an XML Document

The prolog consists of
lAn XML declaration and
lAn optional reference to external structuring

documents

<?xml version="1.0" encoding="UTF-16"?>

<!DOCTYPE book SYSTEM "book.dtd">

XML Elements

lElements are the things the XML document
talks about
– E.g., books, authors, publishers, …

lAn element consists of:
– An opening tag
– The content
– A closing tag

<lecturer> David Billington </lecturer>

XML Elements

lTag names can be chosen almost freely
lFirst character must be a letter,

underscore, or colon
lNo name may begin with the string

“xml” in any combination of cases
– E.g. “Xml”, “xML”

Content of XML Elements

lContent is what’s between the tags
l It can be text, or other elements, or nothing

<lecturer>
<name>David Billington</name>
<phone> +61 − 7 − 3875 507 </phone>

</lecturer>

l If there is no content, then element is called
empty; it can be abbreviated as follows:
<lecturer/> = <lecturer></lecturer>

XML Attributes

lAn empty element isn’t necessarily meaningless
– It may have properties expressed as
attributes

lAn attribute is a name-value pair inside the
opening tag of an element

<lecturer
name="David Billington"
phone="+61 − 7 − 3875 507" />

XML Attributes: An Example

<order orderNo="23456“
customer="John Smith"
date="October 15, 2017" >

<item itemNo="a528" quantity="1" />
<item itemNo="c817" quantity="3" />

</order>

The Same Example without Attributes
<order>

<orderNo>23456</orderNo>
<customer>John Smith</customer>
<date>October 15, 2017</date>
<item>

<itemNo>a528</itemNo>
<quantity>1</quantity>

</item>
<item>

<itemNo>c817</itemNo>
<quantity>3</quantity>
</item>

</order>

XML Elements vs. Attributes

lAttributes can be replaced by elements

lWhen to use elements and when attributes
is a mostly matter of taste

lBut attributes cannot be nested

Further Components of XML Docs

lComments
– A piece of text that is to be ignored by parser
<!-- This is a comment -->

lProcessing Instructions (PIs)
– Define procedural attachments
<?stylesheet type="text/css“

href="mystyle.css"?>

Well-Formed XML Documents

Constraints on syntactically correct documents:
– Only one outermost element (root element)
– Each element contains opening and corresponding

closing tag (except self-closing tags like <foo/>)
– Tags may not overlap

<author><name>Lee Hong</author></name>
– Attributes within an element have unique names
– Element and tag names must be permissible

e.g.: can’t use strings beginning with digit "2ndbest"

The Tree Model of XML Docs

The tree representation of an XML document is
an ordered labeled tree:

– Exactly one root
– No cycles
– Each non-root node has exactly one parent
– Each node has a label
– Order of elements is important
– … but order of attributes is not

Tree Model of XML Documents
<email>

<head>
<from name="Michael Maher"

address="michaelmaher@cs.gu.edu.au" />
<to name="Grigoris Antoniou"

address="grigoris@cs.unibremen.de" />
<subject>Where is your draft?</subject>

</head>
<body>

Grigoris, where is the draft of the paper you
promised me last week?

</body>
</email>

(2) XML details

Tree Model of XML Documents

Outline

(1) Introduction

(2) Description of XML

(3) Structuring

– DTDs

– XML Schema

(4) Namespaces

(5) Accessing, querying XML documents: XPath

(6) Transformations: XSLT

Structuring XML Documents

lSome XML documents must follow constraints
defined in a “template” that can…
– define the element and attribute names that

may be used
– define the structure

– what values an attribute may take
– which elements may or must occur within other

elements, etc.

l If such structuring information exists, the
document can be validated

Structuring XML Documents

lAn XML document is valid if
– it is well-formed XML
– respects the structuring information it uses

lWays to define structure of XML documents:
– DTDs (Document Type Definition) came first, was

based on SGML’s approach
– XML Schema (aka XML Schema Definition, XSD) is

more recent and expressive
– RELAX NG and DSDs are two alternatives

http://en.wikipedia.org/wiki/Document_Type_Definition
http://en.wikipedia.org/wiki/XML_Schema_(W3C)
http://en.wikipedia.org/wiki/RELAX_NG
http://en.wikipedia.org/wiki/DSDL

DTD: Element Type Definition

<lecturer>
<name>David Billington</name>
<phone> +61 − 7 − 3875 507 </phone>

</lecturer>

DTD for above element (and all lecturer elements):

<!ELEMENT lecturer (name, phone) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT phone (#PCDATA) >

The Meaning of the DTD

lThe element types lecturer, name, and phone
may be used in the document

l lecturer elements contain a name element and a
phone element, in that order (sequence)

lname and phone elements may have any
content
In DTDs, #PCDATA is the only atomic element
type; stands for “parsed character data”

<!ELEMENT lecturer (name, phone) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT phone (#PCDATA) >

Disjunction in Element Type Definitions

lWe say that lecturer elements contains either
a name or a phone element like:
<!ELEMENT lecturer (name | phone)>

lA lecturer element contains a name element
and a phone element in any order
<!ELEMENT

lecturer((name,phone)|(phone,name))>
lDo you see a problem with this approach?

Example of an XML Element

<order orderNo="23456"
customer="John Smith"
date="October 15, 2017">

<item itemNo="a528" quantity="1” />
<item itemNo="c817" quantity="3” />

</order>

Corresponding DTD
<!ELEMENT order (item+)>
<!ATTLIST order

orderNo ID #REQUIRED
customer CDATA #REQUIRED
date CDATA #REQUIRED >

<!ELEMENT item EMPTY>
<!ATTLIST item

itemNo ID #REQUIRED
quantity CDATA #REQUIRED
comments CDATA #IMPLIED >

Comments on the DTD

lThe item element type is defined to be empty
– i.e., it can contain no elements

l+ (after item) is a cardinality operator:
– It specifies how many item elements can be in an order
– ?: zero times or once
– *: zero or more times
– +: one or more times
– No cardinality operator:

once

<!ELEMENT order (item+)>
<!ATTLIST

order orderNo ID #REQUIRED
customer CDATA #REQUIRED
date CDATA #REQUIRED >

<!ELEMENT item EMPTY>
<!ATTLIST

item itemNo ID #REQUIRED
quantity CDATA #REQUIRED
comments CDATA #IMPLIED >

Comments on the DTD

l In addition to defining elements, we define
attributes

lDone in an attribute list containing:
– Name of element type to which list applies
– List of triples of attribute name, attribute

type, and value type
lAttribute name: name that may be used in an

XML document using a DTD

DTD: Attribute Types

lSimilar to predefined data types, but limited …
lThe most important types are

– CDATA, a string (sequence of characters)
– ID, a name that is unique across the entire XML

document (~DB key)
– IDREF, reference to another element with ID attribute

carrying same value as IDREF attribute (~ DB foreign key)
– IDREFS, a series of IDREFs
– (v1| . . . |vn), an enumeration of all possible values

l Limitations: no dates, number ranges, etc.

DTD: Attribute Value Types

l #REQUIRED
– Attribute must appear in every occurrence of the

element type in the XML document
l #IMPLIED

– The appearance of the attribute is optional
l #FIXED "value"

– Every element must have this attribute
l "value"

– This specifies the default value for the attribute

Referencing with IDREF and IDREFS

<!ELEMENT family (person*)>
<!ELEMENT person (name)>
<!ELEMENT name (#PCDATA)>
<!ATTLIST person

id ID #REQUIRED
mother IDREF #IMPLIED
father IDREF #IMPLIED
children IDREFS #IMPLIED >

An XML Document Respecting the DTD

<family>
<person id="bob" mother="mary" father="peter">

<name>Bob Marley</name>
</person>
<person id="bridget" mother="mary">

<name>Bridget Jones</name>
</person>
<person id="mary" children="bob bridget">

<name>Mary Poppins</name>
</person>
<person id="peter" children="bob">

<name>Peter Marley</name>
</person>

</family>

Email Element DTD 1/2

<!ELEMENT email (head,body)>
<!ELEMENT head (from,to+,cc*,subject)>
<!ELEMENT from EMPTY>
<!ATTLIST from

name CDATA #IMPLIED
address CDATA #REQUIRED>

<!ELEMENT to EMPTY>
<!ATTLIST to

name CDATA #IMPLIED
address CDATA #REQUIRED>

Email Element DTD 2/2

<!ELEMENT cc EMPTY>
<!ATTLIST cc

name CDATA #IMPLIED
address CDATA #REQUIRED>

<!ELEMENT subject (#PCDATA) >
<!ELEMENT body (text,attachment*) >
<!ELEMENT text (#PCDATA) >
<!ELEMENT attachment EMPTY >
<!ATTLIST attachment

encoding (mime|binhex) "mime"
file CDATA #REQUIRED>

Outline

(1) Introduction

(2) Description of XML

(3) Structuring

– DTDs

– XML Schema

(4) Namespaces

(5) Accessing, querying XML documents: XPath

(6) Transformations: XSLT

XML Schema (XSD)

l XML Schema is a significantly richer language
for defining the structure of XML documents

l Syntax based on XML itself, so separate tools
to handle them not needed

l Reuse and refinement of schemas => can
expand or delete existing schemas

l Sophisticated set of data types, compared to
DTDs, which only supports strings

l XML Schema recommendation published by
W3C in 2001, version 1.1 in 2012

https://en.wikipedia.org/wiki/XML_Schema_(W3C)
https://www.w3.org/standards/xml/schema

XML Schema

lAn XML schema is an element with an opening
tag like
<schema

"http://www.w3.org/2000/10/XMLSchema"
version="1.0">

lStructure of schema elements
– Element and attribute types using data types

Element Types

<element name="email"/>
<element name="head“

minOccurs="1“
maxOccurs="1"/>

<element name="to" minOccurs="1"/>

Cardinality constraints:
– minOccurs="x" (default value 1)
– maxOccurs="x" (default value 1)
– Generalizations of *,?,+ offered by DTDs

Attribute Types

<attribute name="id" type="ID“ use="required"/>
<attribute name="speaks" type="Language"

use="default" value="en"/>

lExistence: use="x", where x may be optional or
required

lDefault value: use="x" value="...", where x may be
default or fixed

Data Types

lMany built-in data types
– Numerical data types: integer, short, etc.
– String types: string, ID, IDREF, CDATA, etc.
– Date and time data types: time, month, etc.

lAlso user-defined data types
– simple data types, which can’t use

elements or attributes
– complex data types, which can use them

Complex Data Types

Complex data types are defined from existing
data types by defining some attributes (if any)
and using:

– sequence, a sequence of existing data type
elements (order is important)

– all, a collection of elements that must
appear (order is not important)

– choice, a collection of elements, of which
one will be chosen

(3) Structure: XML Schema

XML Schema: The Email Example

<element name="email" type="emailType"/>

<complexType name="emailType">
<sequence>

<element name="head" type="headType"/>
<element name="body" type="bodyType"/>

</sequence>
</complexType>

XML Schema: The Email Example

<complexType name="headType">
<sequence>

<element name="from" type="nameAddress"/>
<element name="to" type="nameAddress"

minOccurs="1" maxOccurs="unbounded"/>
<element name="cc" type="nameAddress"

minOccurs="0" maxOccurs="unbounded"/>
<element name="subject" type="string"/>

</sequence>
</complexType>

XML Schema: The Email Example

<complexType name="nameAddress">
<attribute name="name" type="string"

use="optional"/>
<attribute name="address"
type="string" use="required"/>

</complexType>

l Similar for bodyType

Next

(1) Introduction

(2) Description of XML

(3) Structuring

– DTDs

– XML Schema

(4) Namespaces

(5) Accessing, querying XML documents: XPath

(6) Transformations: XSLT

