
An overview of
Semantic Web Languages

and Technologies

Semantic Web Technologies
• W3C “recommendations”

– RDF, RDFS, RDFa, OWL, SPARQL, RIF, R2R, etc…

• Common tools and systems -- commercial, free
and open sourced
– Ontology editors, triple stores, reasoners, etc.

• Common ontologies and data sets
– Foaf, DBpedia, SKOS, PROV, etc.

• Infrastructure systems
– Search, ontology metadata, linking services

• Non W3C: Schema.org, Freebase, …

Common KR languages
• Knowledge representation and reasoning (KR&R) has

always been an important part of AI & other disciplines
• Many approaches have been developed, implemented

and evolved since the 1960s
• Most were one-offs, used only by their developers
• Starting in the 1990s, there was an interest in

developing a common KR language to support
knowledge reuse and distributed KB systems

• The Semantic Web languages (e.g., OWL) are a current
generation of this idea
– There are currently no other widely used KR languages

https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning

Questions
• Database (DB) vs. knowledge base (KB)?

– TL;DR: DBs have facts, KBs have general knowledge
and (maybe) facts

– DBs typically have simple schemas (knowledge) and
lots of data (facts)

– KBs have complex schemas (aka ontologies) and may
or may not have a lot of instances (data)

• KBs support inference, e.g.,
parent(?x,?y) => person(?x), person(?y), child(?y,?x), older(?x,?y), ?x≠?y
Parent(john,mary) => person(john), child(mary,john), …

Questions
What’s the impact of using different structures to
represent data or knowledge?
• Natural language
• Program code
• Relations vs. graphs vs. objects
• Logic vs. rules vs. procedures
• Neural networks
• Tensors

Questions
What’s our “semantic” model for facts and
knowledge?
• Classical logic is a common choice

– man(socrates), ∀x man(x) => mortal(x)
– Classical logic has limitations: facts and relations and “rules”

are either (always) True or False for all time

• May need to represent and reason with probabilistic or
fuzzy facts and knowledge

• May need to handle dynamic facts or knowledge

Semantic Web Technologies

• Basic approach uses classical logic for
underlying semantics
+ Simple, well understood, good reasoning algorithms
- No probabilities, adding extensions (e.g., for time)

adds complexity

• Knowledge represented as a graph
+ Simple, good tool support
- May be too simple

Two Semantic Web Notions
• The semantic web

– Idea of a web of machine understandable information
– Agnostic about the technology used to support it
– May involve more AI (e.g., NLP, machine learning)
– Human end users in the center

• The Semantic Web
– Current vision of a semantic web as defined by the W3C

community: a Web of data
– Using W3C supported standards, i.e., RDF, OWL, SPARQL,

XML, RIF, etc.
– By machines for machines with human-oriented

applications on top

W3C Semantic Web Stack

RDF is the first SW language
<rdf:RDF ……..>

<….>
<….>

</rdf:RDF>

XML Encoding
Graph

stmt(docInst, rdf_type, Document)
stmt(personInst, rdf_type, Person)
stmt(inroomInst, rdf_type, InRoom)
stmt(personInst, holding, docInst)
stmt(inroomInst, person, personInst)

Triples

RDF
Data Model

Good for
Machine

Processing

Good for
people, viz,
graph DBMS

Good For Reasoning and
Databases

RDF is a simple
language for building
graph based
representations

{"@context":{
"name": "http://…/name",
"Person": "http://…/Person"}
"@type": "Person",
"name": "Markus Lanthaler"

}

JSON Encoding

The RDF Data Model
• An RDF document is an unordered collection of

statements, each with a subject, predicate and object
(aka triples)

• A triple can be thought of as a labelled arc in a graph
• Statements describe properties of web resources
• Resource are objects that can be pointed to by a URI:

– a document, a picture, a paragraph on the Web, …
– E.g., http://umbc.edu/~finin/cv.html
– a book in the library, a real person (?)
– isbn://5031-4444-3333

• Properties themselves are also resources (URIs)

URIs are a foundation
• URI = Uniform Resource Identifier

– "The generic set of all names/addresses that are
short strings that refer to resources"

– URLs (Uniform Resource Locators) are a subset
of URIs, used for resources that can be accessed
on the web

• URIs look like URLs, often with fragment
identifiers pointing to a document part:
– http://foo.com/bar/mumble.html#pitch

http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://en.wikipedia.org/wiki/Uniform_resource_locator

URIs are a foundation
• URIs are unambiguous, unlike natural

language terms -- the web provides a global
namespace

• We can use a URI to denote something, e.g.,
a concept, entity, event or relation

• We usually assume references to the same
URI are to the same thing

What does a URI mean?
• Sometimes URIs denote a web resource

–http://umbc.edu/~finin/finin.jpg denotes a file
–We can use RDF to make assertions about the

resource, e.g., it’s an image and depicts a person
with name Tim Finin, …

• Sometimes concepts in the external world
–E.g., http://umbc.edu/ denotes a particular

university located in Baltimore
–This is done by social convention

• Cool URIs don’t change
–http://www.w3.org/Provider/Style/URI

http://www.w3.org/Provider/Style/URI

The RDF Graph
• An RDF document is an unordered collection of triples
• The subject of one triple can be the object of another
• The result is a directed,

labelled graph
• A triple’s object can

also be a literal, e.g.,
a string

• Graphs are simpler
that relational tables
or objects

• This is both a plus
and a minus

Simple RDF Example

http://umbc.edu/
~finin/talks/idm02/

“Intelligent Information Systems
on the Web”

http://umbc.edu/

dc:Title

dc:Creator

bib:Aff

“Tim Finin” “finin@umbc.edu”

bib:name
bib:email

Serialization

• A graph is an abstract model, we’ll need to
serialize it as text for many reasons, e.g.,
display, editing, exchange, …

• Multiple standard RDF serializations
• Most important: XML, Turtle, ntriples, JSON-LD
• Most Semantic Web tools can read or write in

any of these serializations

XML encoding for RDF

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:bib=http://daml.umbc.edu/ontologies/bib/>

<rdf:Description rdf:about="http://umbc.edu/~finin/talks/idm02/">
<dc:title>Intelligent Information Systems on the Web</dc:title>
<dc:creator>

<rdf:Description>
<bib:Name>Tim Finin</bib:Name>
<bib:Email>finin@umbc.edu</bib:Email>
<bib:Aff rdf:resource="http://umbc.edu/" />

</rdf:Description>
</dc:creator>

</rdf:Description>
</rdf:RDF>

Note the prefix declarations

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:bib=http://daml.umbc.edu/ontologies/bib/>

<rdf:Description rdf:about="http://umbc.edu/~finin/talks/idm02/">
<dc:title>Intelligent Information Systems on the Web</dc:title>
<dc:creator>
<rdf:Description>
<bib:Name>Tim Finin</bib:Name>
<bib:Email>finin@umbc.edu</bib:Email>
<bib:Aff rdf:resource="http://umbc.edu/" />

</rdf:Description>
</dc:creator>

</rdf:Description>
</rdf:RDF>

Note the prefix declarations

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:bib=http://daml.umbc.edu/ontologies/bib/>

<rdf:Description rdf:about="http://umbc.edu/~finin/talks/idm02/">
<dc:title>Intelligent Information Systems on the Web</dc:title>
<dc:creator>
<rdf:Description>
<bib:Name>Tim Finin</bib:Name>
<bib:Email>finin@umbc.edu</bib:Email>
<bib:Aff rdf:resource="http://umbc.edu/" />

</rdf:Description>
</dc:creator>

</rdf:Description>
</rdf:RDF>

Makes it easy to include terms from three
different “vocabularies”:
• rdf for terms that are part of its

representation language (e.g., rdf:type)
• dc for terms from the Dublin Core

vocabulary developed by librarians
• bib for terms from a bibliography

vocabulary developed at UMBC

An RDF validation service

http://www.w3.org/RDF/Validator/

Easy to convert between
serializations

• Most software tools can read and write
different serializations

• rdf2rdf is a simple handy utility for converting
from one RDF serialization to another

• Any23 is an open source library, web service
and command line tool that extracts structured
data in RDF format from a variety of Web
documents

http://www.l3s.de/~minack/rdf2rdf/
https://any23.apache.org/

N-triple representation

• N-triples is a line-oriented serialization for RDF
• URIs are wrapped in angle brackets, ended with a period

<subject> <predicate> <object> .

<http://umbc.edu/~finin/talks/idm02/> <http://purl.org/dc/elements/1.1/title>
"Intelligent Information Systems on the Web" .

<http://umbc.edu/~finin/talks/idm02/> <http://purl.org/dc/elements/1.1/creator>
_:node17i6ht38ux1 .

_:node17i6ht38ux1 <http://daml.umbc.edu/ontologies/bib/Name> "Tim Finin" .
_:node17i6ht38ux1 <http://daml.umbc.edu/ontologies/bib/Email> "finin@umbc.edu" .
_:node17i6ht38ux1 <http://daml.umbc.edu/ontologies/bib/Aff> <http://umbc.edu/> .

https://www.w3.org/TR/n-triples/

Turtle Serialization

• Turtle: a compact and readable serialization
prefix declarations
@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# .
@prefix dc: http://purl.org/dc/elements/1.1/ .
@prefix bib: http://daml.umbc.edu/ontologies/bib/ .

<http://umbc.edu/~finin/talks/idm02/>
dc:title "Intelligent Information Systems on the Web" ;
dc:creator

[bib:Name "Tim Finin” ;
bib:Email finin@umbc.edu ;
bib:Aff: "http://umbc.edu/"] .

https://www.w3.org/TR/turtle/
mailto:finin@umbc.edu

Turtle Syntax

:subj
:property1 :value1;
:property2 :value2, value3;
:property3 :value4.

More RDF Vocabulary
• RDF has terms for describing lists, bags,

sequences, simple datatypes, etc.
• RDF is a “pure” graph representation language

–Nodes and edges are simple objects
–Both have identifiers that are URIs

• Suppose we want to associate a probability with
an edge, e.g.,
(:flipper rdf:type :mammal) :probability 0.9
(:flipper rdf:type :fish) :probability 0.1

Property graphs?

• RDF is a “pure” graph model with only
labeled nodes and edges

• Many popular graph databases implement
property graphs (e.g., Neo4j)

• Nodes & edges can have properties, whose
values are literals or maybe lists of literals

• Results in a more compact graph
• But, as we’ll see, introduces some limitations

https://neo4j.com/developer/graph-database/

More RDF Vocabulary
• RDF also can describe triples through reification
• Enabling statements about statements

:flipper rdf:type :mammal .
• All non-literals have to

be URIs
• RDF uses prefixes for

readability
• We can specify what a

null prefix means
• If we don’t it means “in

this file”
• https://prefix.cc/ is one

service for finding
standard prefixes

https://en.wikipedia.org/wiki/Reification_(computer_science)
https://prefix.cc/

More RDF Vocabulary
• RDF also can describe triples through reification
• Enabling statements about statements

:flipper rdf:type :mammal .
_:s1 rdf:type rdf:Statement .
_:s1 rdf:subject :flipper .
_:s1 rdf:predicate :type .
_:s1 rdf:object :mammal .
_:s1 :probability 0.9

• The underscore
prefix is special

• It introduces blank
nodes

• We’ll talk about this
in more detail later

• For now, think of it
as introducing “a
new, nameless
thing”

https://en.wikipedia.org/wiki/Reification_(computer_science)

More RDF Vocabulary
• RDF also can describe triples through reification
• Enabling statements about statements

:flipper rdf:type :mammal .
_:s1 a rdf:Statement;

rdf:subject :flipper;
rdf:predicate :type;
rdf:object :mammal;
:probability 0.9 .

• Lookup the rdf
namespace via
https://prefix.cc/

• Visit it on the web
• You’ll see it defines

18 terms that have
special meaning in
RDF

https://en.wikipedia.org/wiki/Reification_(computer_science)
https://prefix.cc/
https://www.w3.org/1999/02/22-rdf-syntax-ns

More RDF Vocabulary
• RDF ABILITY TO describe triples through

reification enables statements about statements

:john bdi:believes _:s.
_:s rdf:type rdf:Statement.
_:s rdf:subject <http://ex.com/catalog/widgetX>.
_:s rdf:predicate cat:salePrice .
_:s rdf:object "19.95" .

https://en.wikipedia.org/wiki/Reification_(computer_science)

RDF Schema (RDFS)
• RDF Schema adds

taxonomies for
classes & properties
– subClass and

subProperty
• and some metadata.

– domain and range
constraints on
properties

• Many widely used
KG tools can import
and export in RDFS

Stanford Protégé KB editor
• Java, open sourced
• extensible, lots of plug-ins
• provides reasoning & server capabilities

https://protege.stanford.edu/

RDFS Vocabulary

• Terms for classes
– rdfs:Class
– rdfs:subClassOf

• Terms for properties
– rdfs:domain
– rdfs:range
– rdfs:subPropertyOf

• Special classes
– rdfs:Resource
– rdfs:Literal
– rdfs:Datatype

• Terms for collections
- rdfs:member
- rdfs:Container
- rdfs:ContainerMem-

bershipProperty
• Special properties
- rdfs:comment
- rdfs:seeAlso
- rdfs:isDefinedBy
- rdfs:label

RDFS introduces the following terms and gives each a
meaning w.r.t. the rdf data model

http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Class
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-subClassOf
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-domain
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-range
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-subPropertyOf
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Resource
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Literal
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Datatype
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-member
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-Container
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-ContainerMembershipProperty
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-comment
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-seeAlso
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-isDefinedBy
http://zemm.ira.uka.de:8080/~xamde/research/Wiki.jsp?page=Rdfs-label

RDF and RDF Schema

_:john rdf:type u:Chair;
g:name "John Smith" .

@prefix rdf: http://www.w3.org/1999/02/22-
rdf-syntax-ns# .
@prefix rdfs:

http://www.w3.org/2000/01/rdf-schema# .
@prefix g: http://schema.org/gen .
@prefix u: http://schema.org/univ .

g:name rdf:type rdfs:Property;
rdfs:domain g:Person .

u:Chair rdfs:subclassOf g:Person .

u:Chair

John Smith

rdf:type
g:name

g:Person

g:name

rdfs:Class rdfs:Property

rdf:type
rdf:type

rdf:type

rdfs:subclassOf
rdfs:domain

Schema-level information

Instance-level information

http://www.w3.org/2000/01/rdf-schema

RDFS supports simple inferences

• An RDF ontology plus some RDF statements may imply
additional RDF statements

• Not true of XML data
• Note that this is part of the data model and not of the

accessing or processing code

@prefix rdfs: <http://www...>.
@prefix : <…genesis.n3>.
:parent rdfs:domain :Person;

rdfs:range :Person.
:mother

rdfs:subProperty parent;
rdfs:domain :Woman.

:eve :mother :cain.

:parent a rdf:Property.
:Person a rdf:Class.
:Woman rdfs:subClassOf Person.
:mother a rdf:Property.
:eve a :Person;

a :Woman;
:parent :cain.

:cain a :Person.

New and
Improved!
100% Better
than XML!!

RDFS Terms

• Information on the RDFS vocabulary is given by
the file its prefix resolves to

• https://www.w3.org/2000/01/rdf-schema
• It provides some insight, e.g., rdfs: domain

goes from a rdfs:Property to a rdfs:Resource
• Not a formal definition though; that’s given in

logic

https://www.w3.org/2000/01/rdf-schema

Is RDF(S) better than XML?
Q: For a specific application, should I use XML or RDF?
A: It depends…
• XML's model is

– a tree, i.e., a strong hierarchy
– applications may rely on hierarchy position
– relatively simple syntax and structure
– not easy to combine trees

• RDF's model is
– a loose collections of relations
– applications may do database-like search
– not easy to recover hierarchy
– easy to combine relations in one big collection
– great for the integration of heterogeneous information

W3C Semantic Web Stack

Problems with RDFS
•RDFS too weak to describe resources in detail, e.g.

–No localised range and domain constraints
Can’t say that the range of hasChild is person when applied to
persons and dog when applied to dogs

–No existence/cardinality constraints
Can’t say that all instances of person have a mother that is also
a person, or that persons have exactly two parents

–No transitive, inverse or symmetrical properties
Can’t say isPartOf is a transitive property, hasPart is the inverse
of isPartOf or touches is symmetrical

•We need RDF terms providing these and other features.

W3C’s Web Ontology Language (OWL)

• DARPA project, DAML+OIL, begat OWL
• OWL released as W3C recommendation 2/10/04
• See the W3C OWL pages for overview, guide,

specification, test cases, etc.
• Three layers of OWL are defined of decreasing levels of

complexity and expressiveness
– OWL Full is the whole thing
– OWL DL (Description Logic) introduces restrictions
– OWL Lite is an entry level language intended to be easy to

understand and implement

• Owl 2 became a W3C recommendation in 2009, updated
in 2012

http://jena.apache.org/

OWL « RDF
• An OWL document is a set of RDF statements

–OWL defines semantics for certain statements
–Does NOT restrict what can be said; documents can

include arbitrary RDF
–But no OWL semantics for non-OWL statements

• Adds capabilities common to description logics, e.g.,
cardinality constraints, defined classes, equivalence,
disjoint classes, etc.

• Supports ontologies as objects (e.g., importing,
versioning, …

• A complete OWL reasoning is significantly more
complex than a complete RDFS reasoner

https://en.wikipedia.org/wiki/Description_logic

OWL « RDF
• RDF allows us to define instance-level data
• RDFS adds the ability to add some schema-level data
• OWL extends this to allow much more schema-level

information
• We typically use RDFS and OWL to define domain

ontologies (i.e., schemas)
• And then use those ontologies to state information

about instances
• Aside: I typically reserve the word ontology to refer to schema

definitions. These can include individuals, of course, but often
do not.

Embedding Semantic Data in HTML

• Embedding semantic data in HTML allows
documents to be understood by people and
machines
– RDFa is a ‘standard’ for embedding RDF in HTML as

tag attributes
– JSON-LD is a ‘standard’ for embedding RDF in a

simple json-compatible serialization
• Facebook looks for embedded RDFa state-

ments using its opengraph (og) vocabulary
• Bestbuy embeds produce info in RDFa

Detecting semantic data via a browser

https://www.allrecipes.com/recipe/12682/apple-pie-by-grandma-ople/

https://www.allrecipes.com/recipe/12682/apple-pie-by-grandma-ople/

Detecting semantic data via a browser

https://www.allrecipes.com/recipe/12682/apple-pie-by-grandma-ople/

Structured data sniffer
Shows many kinds of embedded data Structured data testing

Shows/debugs schema.org

https://www.allrecipes.com/recipe/12682/apple-pie-by-grandma-ople/

Semantic Data Browser/Query

Ontology Editor
• There are a number of editors available for

creating and editing ontologies and data
• We recommend using Protégé, a java-based

free system developed at Stanford
– Good support for

reasoning
– Lots of plugins

http://protege.stanford.edu/

Triple Stores
• A triple store is a database for RDF triples
• It usually has a native API and often accepts

SPARQL queries
• It might do reasoning, either in an eager

manner (as triples are loaded) or on demand
(to answer queries), etc.

• Some stores focus on scalability and others on
flexibility and features

• We’ll look at several, including Sesame, Apache
Jena and stardog

http://www.openrdf.org/
http://jena.apache.org/
http://stardog.com/

Frameworks and Libraries

• There are frameworks, libraries and packages
for most programming languages

• Jena is a very comprehensive Java framework
originally developed by HP and now Apache
– Triple store, SPARQL engine, Reasoners, and more

• Others are available for Python, Ruby, C#, Perl,
PHP, Prolog, Lisp, etc.

http://incubator.apache.org/jena/

Conclusion

• There’s quite a bit of technology needed to
support the Semantic Web

• This has been a brief tour
• We’ll cycle back on these and explore them in

more detail
• And give you a chance to use and experiment

with them

